Winter jujube(Ziziphus jujuba'Dongzao')is greatly appreciated by consumers for its excellent quality,but brand infringement frequently occurs in the market.Here,we first determined a total of 38 elements in 16...Winter jujube(Ziziphus jujuba'Dongzao')is greatly appreciated by consumers for its excellent quality,but brand infringement frequently occurs in the market.Here,we first determined a total of 38 elements in 167 winter jujube samples from the main winter jujube producing areas of China by inductively coupled plasma mass spectrometer(ICP-MS).As a result,16 elements(Mg,K,Mn,Cu,Zn,Mo,Ba,Be,As,Se,Cd,Sb,Ce,Er,Tl,and Pb)exhibited significant differences in samples from different producing areas.Supervised linear discriminant analysis(LDA)and orthogonal projection to latent structures discriminant analysis(OPLS-DA)showed better performance in identifying the origin of samples than unsupervised principal component analysis(PCA).LDA and OPLS-DA had a mean identification accuracy of 87.84 and 94.64%in the testing set,respectively.By using the multilayer perceptron(MLP)and C5.0,the prediction accuracy of the models could reach 96.36 and 91.06%,respectively.Based on the above four chemometric methods,Cd,Tl,Mo and Se were selected as the main variables and principal markers for the origin identification of winter jujube.Overall,this study demonstrates that it is practical and precise to identify the origin of winter jujube through multi-element fingerprint analysis with chemometrics,and may also provide reference for establishing the origin traceability system of other fruits.展开更多
In X-ray absorption fine structure(XAFS) experiments,Soller slits are widely used as filter devices in order to improve the signal to noise ratio.Performing high accuracy manual focusing operations is a time-consuming...In X-ray absorption fine structure(XAFS) experiments,Soller slits are widely used as filter devices in order to improve the signal to noise ratio.Performing high accuracy manual focusing operations is a time-consuming process;therefore,this work introduces an automatic focusing method for Soller slits in multi-element fluorescence detectors.This method establishes a relation model between the fluorescence intensity distribution and the coordinates of the fluorescence excitation point.According to this relation model,the actual coordinates of the fluorescence excitation point can be deduced from the detected fluorescence intensity distribution and used in focusing operations.This method has proven to be feasible in an XAFS experiment at the BL14W1 beamline of the Shanghai Synchrotron Radiation Facility.展开更多
For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grid...For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grids are used in middle additional areas. An algebra method is used to produce the initial grids in each area. And the girds are optimized by elliptical differential equation method. Then C-O-H zonal patched grids around multi-element airfoils are produced automatically and efficiently. A time accurate finite-volume integration method is used to solve the compressible laminar and turbulent Navier-Stokes (N-S) equations on the grids. Computational results prove the method to be effective.展开更多
To study the effects of the gamma reflection of multi-element materials,gamma ray transport models of single-element materials,such as iron and lead,and multielement materials,such as polyethylene and ordinary concret...To study the effects of the gamma reflection of multi-element materials,gamma ray transport models of single-element materials,such as iron and lead,and multielement materials,such as polyethylene and ordinary concrete,were established in this study.Relationships among the albedo factors of the gamma photons and energies and average energy of the reflected gamma rays by material type,material thickness,incident gamma energy,and incidence angle of gamma rays were obtained by Monte Carlo simulation.The results show that the albedo factors of single-element and multi-element materials increase rapidly with an increase in the material thickness.When the thickness of the material increases to a certain value,the albedo factors do not increase further but rather tend to the saturation value.The saturation values for the albedo factors of the gamma photons,and energies and the reflection thickness are related not only to the type of material but also to the incident gamma energy and incidence angle of the gamma rays.At a given incident gamma energy,which is between 0.2 and 2.5 MeV,the smaller the effective atomic number of the multi-element material is,the higher the saturation values of the albedo factors are.The larger the incidence angle of the gamma ray is,the greater the saturation value of the gamma albedo factor,saturation reflection thickness,and average saturation energy of the reflected gamma photons are.展开更多
The paper is to integrate aerodynamic and aero-acoustic optimizatiom design of high lift devices,especially for two-element airfoils with slat.Aerodynamic analysis on flow field utilizes a high-order,high-resolution s...The paper is to integrate aerodynamic and aero-acoustic optimizatiom design of high lift devices,especially for two-element airfoils with slat.Aerodynamic analysis on flow field utilizes a high-order,high-resolution spatial differential method for large eddy simulation(LES),which can guarantee accuracy and efficiency.The aeroacoustic analysis for noise level is calculated with Ffowcs Williams-Hawkings(FW-H)integration formula.Fidelity of calculation is verified by standard models.Method of streamline-based Euler simulation(MSES)is used to obtain the aerodynamic characters.Based on the confirmation of numerical methods,detailed research has been conducted for the leading edge slat on multi-element airfoils.Various slot parameter influences on noise are analyzed.The results of the slot optimization parameters can be used in multi-element airfoil design.展开更多
Traditional distributed denial of service(DDoS)detection methods need a lot of computing resource,and many of them which are based on single element have high missing rate and false alarm rate.In order to solve the pr...Traditional distributed denial of service(DDoS)detection methods need a lot of computing resource,and many of them which are based on single element have high missing rate and false alarm rate.In order to solve the problems,this paper proposes a DDoS attack information fusion method based on CNN for multi-element data.Firstly,according to the distribution,concentration and high traffic abruptness of DDoS attacks,this paper defines six features which are respectively obtained from the elements of source IP address,destination IP address,source port,destination port,packet size and the number of IP packets.Then,we propose feature weight calculation algorithm based on principal component analysis to measure the importance of different features in different network environment.The algorithm of weighted multi-element feature fusion proposed in this paper is used to fuse different features,and obtain multi-element fusion feature(MEFF)value.Finally,the DDoS attack information fusion classification model is established by using convolutional neural network and support vector machine respectively based on the MEFF time series.Experimental results show that the information fusion method proposed can effectively fuse multi-element data,reduce the missing rate and total error rate,memory resource consumption,running time,and improve the detection rate.展开更多
A multivariate statistical analysis was performed on multi-element soil geochemical data from the Koda Hill-Bulenga gold prospects in the Wa-Lawra gold belt, northwest Ghana. The objectives of the study were to define...A multivariate statistical analysis was performed on multi-element soil geochemical data from the Koda Hill-Bulenga gold prospects in the Wa-Lawra gold belt, northwest Ghana. The objectives of the study were to define gold relationships with other trace elements to determine possible pathfinder elements for gold from the soil geochemical data. The study focused on seven elements, namely, Au, Fe, Pb, Mn, Ag, As and Cu. Factor analysis and hierarchical cluster analysis were performed on the analyzed samples. Factor analysis explained 79.093% of the total variance of the data through three factors. This had the gold factor being factor 3, having associations of copper, iron, lead and manganese and accounting for 20.903% of the total variance. From hierarchical clustering, gold was also observed to be clustering with lead, copper, arsenic and silver. There was further indication that, gold concentrations were lower than that of its associations. It can be inferred from the results that, the occurrence of gold and its associated elements can be linked to both primary dispersion from underlying rocks and secondary processes such as lateritization. This data shows that Fe and Mn strongly associated with gold, and alongside Pb, Ag, As and Cu, these elements can be used as pathfinders for gold in the area, with ferruginous zones as targets.展开更多
A factor analysis was applied to soil geochemical data to define anomalies related to buried Pb-Zn mineralization.A favorable main factor with a strong association of the elements Zn,Cu and Pb,related to mineralizatio...A factor analysis was applied to soil geochemical data to define anomalies related to buried Pb-Zn mineralization.A favorable main factor with a strong association of the elements Zn,Cu and Pb,related to mineralization,was selected for interpretation.The median+2 MAD(median absolute deviation)method of exploratory data analysis(EDA)and C-A(concentration-area)fractal modeling were then applied to the Mahalanobis distance,as defined by Zn,Cu and Pb from the factor analysis to set the thresholds for defining multi-element anomalies.As a result,the median+2 MAD method more successfully identified the Pb-Zn mineralization than the C-A fractal model.The soil anomaly identified by the median+2 MAD method on the Mahalanobis distances defined by three principal elements(Zn,Cu and Pb)rather than thirteen elements(Co,Zn,Cu,V,Mo,Ni,Cr,Mn,Pb,Ba,Sr,Zr and Ti)was the more favorable reflection of the ore body.The identified soil geochemical anomalies were compared with the in situ economic Pb-Zn ore bodies for validation.The results showed that the median+2 MAD approach is capable of mapping both strong and weak geochemical anomalies related to buried Pb-Zn mineralization,which is therefore useful at the reconnaissance drilling stage.展开更多
Multi-element analysis in historical sites is a major issue in archaeological studies;however,this approach is almost unknown among Iranian scholars.Geochemical multi-element analysis of soil is very important to eval...Multi-element analysis in historical sites is a major issue in archaeological studies;however,this approach is almost unknown among Iranian scholars.Geochemical multi-element analysis of soil is very important to evaluate anthropogenic activities.The aim of this study consists of assessing the potential usefulness of multi-elemental soil analysis,obtained by Analytical Jena atomic absorption spectrophotometer(AAS) and ICP-MS,to recognize ancient anthropogenic features on the territory of Tappe Rivi(North Khorasan,Iran).For that purpose,a total of 80 ancient soil samples were sampled from each soil horizon and cultural layer.The research involved Fe,Al,Cd,Cu,Ni,Co,Cr,Pb,and P which trace element samples were extracted according to the International Standard ISO 11466 and phosphorus samples by Olsen method.Besides,the contamination of the soils was assessed based on enrichment factors(EFs) by using Fe as a reference element.This geochemical/archaeological approach highlights that the content of most elements in the Parthian and Sassanid ages were significantly higher than the contents of the elements in other zones,which shows that by the development of the eras,the content of the elements has also increased.Also,the accumulation of metals in the Rivi site was significantly higher than in the control area.Among the sampled zones,enrichment factor(EF) indicated that the enrichment of Cu and phosphate at the Parthian and Sassanid had the highest content.This result is important because it shows that the amount of metals and human activities are directly related to each other during different ages.展开更多
The effects of Al and Sc on mechanical properties of FeCoNi multi-element alloys(MEAs) were investigated by compressive tests. The microstructures of FeCoNi MEAs with different contents of Al and Sc were characterized...The effects of Al and Sc on mechanical properties of FeCoNi multi-element alloys(MEAs) were investigated by compressive tests. The microstructures of FeCoNi MEAs with different contents of Al and Sc were characterized and the strengthening mechanisms were discussed. The results show that FeCoNi MEA with a low content of Al has a face-centered cubic(FCC) structure. The yield strength increases linearly with the increase of Al content, which is largely caused by solid solution hardening. Further addition of Sc can promote the formation of a new phase in(FeCoNi)1-xAlx MEAs. A minor addition of Sc can significantly increase the yield strengths of(FeCoNi)1-xAlx MEAs with a low Al content and improve the compressive plasticity of(FeCoNi)1-xAlx MEAs with a high Al content.展开更多
A hybrid Cartesian grid/gridless method is developed for calculating viscous flows over multi-element airfoils.The method adopts an unstructured Cartesian grid to cover most areas of the computational domain and leave...A hybrid Cartesian grid/gridless method is developed for calculating viscous flows over multi-element airfoils.The method adopts an unstructured Cartesian grid to cover most areas of the computational domain and leaves only small region adjacent to the aerodynamic bodies to be filled with the cloud of points used in the gridless methods,which results in a better combination of the computational efficiency of the Cartesian grid and the flexibility of the gridless method in handling complex geometries.The clouds of points in the local gridless region are implemented in an anisotropic way according to the features of the thin boundary layer of the viscous flows over the airfoils,and the clouds of points at the vicinity of the interface between the grid and the gridless regions are also controlled by using an adaptive refinement technique during the generation of the unstructured Cartesian grid.An implementation of the resulting hybrid method is presented for solving two-dimensional compressible Navier-Stokes(NS)equations.The simulations of the viscous flows over a RAE2822airfoil or a two-element airfoil are successfully carried out,and the obtained results agree well with the available experimental data.展开更多
A set of serf-developed apparatus for foundation physical model were utilized to conduct model tests of the multi-element composite foundation with a steel pipe pile and several gravel piles. Some load-bearing charact...A set of serf-developed apparatus for foundation physical model were utilized to conduct model tests of the multi-element composite foundation with a steel pipe pile and several gravel piles. Some load-bearing characteristics of the multi-element Composite foundation, including the curves of foundation settlement, stresses of piles, pile-soil stress ratio, and load-sharing ratio of piles and soil, were obtained to study its working performances in silty sand soil. The experimental results revealed that the multi-element composite foundation with steel pipe pile and gravel pile contributed more than the gravel pile composite foundation in improving the bearing capacity of the silty fine sand.展开更多
High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were ...High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were deposited by the halide vapor phase epitaxy on patterned GaN templates with sapphire substrates.The spectral dependencies of the photoelectric properties of struc-tures were analyzed in the wavelength interval 200-370 nm.The maximum photo to dark current ratio,responsivity,detectiv-ity and external quantum efficiency of structures were determined as:180.86 arb.un.,3.57 A/W,1.78×10^(12) Hz^(0.5)∙cm·W^(-1) and 2193.6%,respectively,at a wavelength of 200 nm and an applied voltage of 1 V.The enhancement of the photoresponse was caused by the decrease in the Schottky barrier at the Pt/κ(ε)-Ga_(2)O_(3)interface under ultraviolet exposure.The detectors demon-strated could functionalize in self-powered mode due to built-in electric field at the Pt/κ(ε)-Ga_(2)O_(3)interface.The responsivity and external quantum efficiency of the structures at a wavelength of 254 nm and zero applied voltage were 0.9 mA/W and 0.46%,respectively.The rise and decay times in self-powered mode did not exceed 100 ms.展开更多
Topmetal-M2 is a large-area pixel sensor chip fabricated using the GSMC 130 nm CMOS process in 2021.The pixel array of Topmetal-M2 consists of pixels of 400 rows×512 columns with a pixel pitch of 45μm×45μm...Topmetal-M2 is a large-area pixel sensor chip fabricated using the GSMC 130 nm CMOS process in 2021.The pixel array of Topmetal-M2 consists of pixels of 400 rows×512 columns with a pixel pitch of 45μm×45μm.The array is divided into 16 subarrays,with pixels of 400 rows×32 columns per subarray.Each pixel incorporates two charge sensors:a diode sensor and a Topmetal sensor.The in-pixel circuit primarily consists of a charge-sensitive amplifier for energy measurements,a discriminator with a peak-holding circuit,and a time-to-amplitude converter for time-of-arrival measurements.The pixel of Topmetal-M2 has a charge input range of~0-3 k e-,a voltage output range of~0-180 mV,and a charge-voltage conversion gain of~59.56μV∕e-.The average equivalent noise charge of Topmetal-M2,which includes the readout electronic system noise,is~43.45 e-.In the scanning mode,the time resolution of Topmetal-M2 is 1 LSB=1.25μs,and the precision is^()7.41μs.At an operating voltage of 1.5 V,Topmetal-M2 has a power consumption of~49 mW∕cm~2.In this article,we provide a comprehensive overview of the chip architecture,pixel working principles,and functional behavior of Topmetal-M2.Furthermore,we present the results of preliminary tests conducted on Topmetal-M2,namely,alpha-particle and soft X-ray tests.展开更多
Text perception is crucial for understanding the semantics of outdoor scenes,making it a key requirement for building intelligent systems for driver assistance or autonomous driving.Text information in car-mounted vid...Text perception is crucial for understanding the semantics of outdoor scenes,making it a key requirement for building intelligent systems for driver assistance or autonomous driving.Text information in car-mounted videos can assist drivers in making decisions.However,Car-mounted video text images pose challenges such as complex backgrounds,small fonts,and the need for real-time detection.We proposed a robust Car-mounted Video Text Detector(CVTD).It is a lightweight text detection model based on ResNet18 for feature extraction,capable of detecting text in arbitrary shapes.Our model efficiently extracted global text positions through the Coordinate Attention Threshold Activation(CATA)and enhanced the representation capability through stacking two Feature Pyramid Enhancement Fusion Modules(FPEFM),strengthening feature representation,and integrating text local features and global position information,reinforcing the representation capability of the CVTD model.The enhanced feature maps,when acted upon by Text Activation Maps(TAM),effectively distinguished text foreground from non-text regions.Additionally,we collected and annotated a dataset containing 2200 images of Car-mounted Video Text(CVT)under various road conditions for training and evaluating our model’s performance.We further tested our model on four other challenging public natural scene text detection benchmark datasets,demonstrating its strong generalization ability and real-time detection speed.This model holds potential for practical applications in real-world scenarios.展开更多
As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and...As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility.展开更多
Time-encoded imaging is useful for identifying potential special nuclear materials and other radioactive sources at a distance.In this study,a large field-of-view time-encoded imager was developed for gamma-ray and ne...Time-encoded imaging is useful for identifying potential special nuclear materials and other radioactive sources at a distance.In this study,a large field-of-view time-encoded imager was developed for gamma-ray and neutron source hotspot imaging based on a depth-of-interaction(DOI)detector.The imager primarily consists of a DOI detector system and a rotary dual-layer cylindrical coded mask.An EJ276 plastic scintillator coupled with two SiPMs was designed as the DOI detector to increase the field of view and improve the imager performance.The difference in signal time at both ends and the log of the signal amplitude ratio were used to calculate the interaction position resolution.The position resolution of the DOI detector was calibrated using a collimated Cs-137 source,and the full width at half maximum of the reconstruction position of the Gaussian fitting curve was approximately 4.4 cm.The DOI detector can be arbitrarily divided into several units to independently reconstruct the source distribution images.The unit length was optimized via Am-Be source-location experiments.A multidetector filtering method is proposed for image denoising.This method can effectively reduce image noise caused by poor DOI detector position resolution.The vertical field of view of the imager was(-55°,55°)when the detector was placed in the center of the coded mask.A DT neutron source at 20 m standoff could be located within 2400 s with an angular resolution of 3.5°.展开更多
DD4hep serves as a generic detector description toolkit recommended for offline software development in next-generation high-energy physics(HEP)experiments.Conversely,Filmbox(FBX)stands out as a widely used 3D modelin...DD4hep serves as a generic detector description toolkit recommended for offline software development in next-generation high-energy physics(HEP)experiments.Conversely,Filmbox(FBX)stands out as a widely used 3D modeling file format within the 3D software industry.In this paper,we introduce a novel method that can automatically convert complex HEP detector geometries from DD4hep description into 3D models in the FBX format.The feasibility of this method was dem-onstrated by its application to the DD4hep description of the Compact Linear Collider detector and several sub-detectors of the super Tau-Charm facility and circular electron-positron collider experiments.The automatic DD4hep–FBX detector conversion interface provides convenience for further development of applications,such as detector design,simulation,visualization,data monitoring,and outreach,in HEP experiments.展开更多
基金This work was supported by the Scientific Research Foundation for High Level Talents of Qingdao Agricultural University,China(665-1120015)the National Program for Quality and Safety Risk Assessment of Agricultural Products of China(GJFP2019011)the National Natural Science Foundation of China(42207017).
文摘Winter jujube(Ziziphus jujuba'Dongzao')is greatly appreciated by consumers for its excellent quality,but brand infringement frequently occurs in the market.Here,we first determined a total of 38 elements in 167 winter jujube samples from the main winter jujube producing areas of China by inductively coupled plasma mass spectrometer(ICP-MS).As a result,16 elements(Mg,K,Mn,Cu,Zn,Mo,Ba,Be,As,Se,Cd,Sb,Ce,Er,Tl,and Pb)exhibited significant differences in samples from different producing areas.Supervised linear discriminant analysis(LDA)and orthogonal projection to latent structures discriminant analysis(OPLS-DA)showed better performance in identifying the origin of samples than unsupervised principal component analysis(PCA).LDA and OPLS-DA had a mean identification accuracy of 87.84 and 94.64%in the testing set,respectively.By using the multilayer perceptron(MLP)and C5.0,the prediction accuracy of the models could reach 96.36 and 91.06%,respectively.Based on the above four chemometric methods,Cd,Tl,Mo and Se were selected as the main variables and principal markers for the origin identification of winter jujube.Overall,this study demonstrates that it is practical and precise to identify the origin of winter jujube through multi-element fingerprint analysis with chemometrics,and may also provide reference for establishing the origin traceability system of other fruits.
基金supported by National Nature Science Foundation of China(No.11175244)
文摘In X-ray absorption fine structure(XAFS) experiments,Soller slits are widely used as filter devices in order to improve the signal to noise ratio.Performing high accuracy manual focusing operations is a time-consuming process;therefore,this work introduces an automatic focusing method for Soller slits in multi-element fluorescence detectors.This method establishes a relation model between the fluorescence intensity distribution and the coordinates of the fluorescence excitation point.According to this relation model,the actual coordinates of the fluorescence excitation point can be deduced from the detected fluorescence intensity distribution and used in focusing operations.This method has proven to be feasible in an XAFS experiment at the BL14W1 beamline of the Shanghai Synchrotron Radiation Facility.
文摘For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grids are used in middle additional areas. An algebra method is used to produce the initial grids in each area. And the girds are optimized by elliptical differential equation method. Then C-O-H zonal patched grids around multi-element airfoils are produced automatically and efficiently. A time accurate finite-volume integration method is used to solve the compressible laminar and turbulent Navier-Stokes (N-S) equations on the grids. Computational results prove the method to be effective.
基金This work was supported by the State Key Lab of Intense Pulsed Radiation Simulation and Effect Basic Research Foundation(No.SKLIPR1504).
文摘To study the effects of the gamma reflection of multi-element materials,gamma ray transport models of single-element materials,such as iron and lead,and multielement materials,such as polyethylene and ordinary concrete,were established in this study.Relationships among the albedo factors of the gamma photons and energies and average energy of the reflected gamma rays by material type,material thickness,incident gamma energy,and incidence angle of gamma rays were obtained by Monte Carlo simulation.The results show that the albedo factors of single-element and multi-element materials increase rapidly with an increase in the material thickness.When the thickness of the material increases to a certain value,the albedo factors do not increase further but rather tend to the saturation value.The saturation values for the albedo factors of the gamma photons,and energies and the reflection thickness are related not only to the type of material but also to the incident gamma energy and incidence angle of the gamma rays.At a given incident gamma energy,which is between 0.2 and 2.5 MeV,the smaller the effective atomic number of the multi-element material is,the higher the saturation values of the albedo factors are.The larger the incidence angle of the gamma ray is,the greater the saturation value of the gamma albedo factor,saturation reflection thickness,and average saturation energy of the reflected gamma photons are.
文摘The paper is to integrate aerodynamic and aero-acoustic optimizatiom design of high lift devices,especially for two-element airfoils with slat.Aerodynamic analysis on flow field utilizes a high-order,high-resolution spatial differential method for large eddy simulation(LES),which can guarantee accuracy and efficiency.The aeroacoustic analysis for noise level is calculated with Ffowcs Williams-Hawkings(FW-H)integration formula.Fidelity of calculation is verified by standard models.Method of streamline-based Euler simulation(MSES)is used to obtain the aerodynamic characters.Based on the confirmation of numerical methods,detailed research has been conducted for the leading edge slat on multi-element airfoils.Various slot parameter influences on noise are analyzed.The results of the slot optimization parameters can be used in multi-element airfoil design.
基金This work was supported by the Hainan Provincial Natural Science Foundation of China[2018CXTD333,617048]National Natural Science Foundation of China[61762033,61702539]+1 种基金Hainan University Doctor Start Fund Project[kyqd1328]Hainan University Youth Fund Project[qnjj1444].
文摘Traditional distributed denial of service(DDoS)detection methods need a lot of computing resource,and many of them which are based on single element have high missing rate and false alarm rate.In order to solve the problems,this paper proposes a DDoS attack information fusion method based on CNN for multi-element data.Firstly,according to the distribution,concentration and high traffic abruptness of DDoS attacks,this paper defines six features which are respectively obtained from the elements of source IP address,destination IP address,source port,destination port,packet size and the number of IP packets.Then,we propose feature weight calculation algorithm based on principal component analysis to measure the importance of different features in different network environment.The algorithm of weighted multi-element feature fusion proposed in this paper is used to fuse different features,and obtain multi-element fusion feature(MEFF)value.Finally,the DDoS attack information fusion classification model is established by using convolutional neural network and support vector machine respectively based on the MEFF time series.Experimental results show that the information fusion method proposed can effectively fuse multi-element data,reduce the missing rate and total error rate,memory resource consumption,running time,and improve the detection rate.
文摘A multivariate statistical analysis was performed on multi-element soil geochemical data from the Koda Hill-Bulenga gold prospects in the Wa-Lawra gold belt, northwest Ghana. The objectives of the study were to define gold relationships with other trace elements to determine possible pathfinder elements for gold from the soil geochemical data. The study focused on seven elements, namely, Au, Fe, Pb, Mn, Ag, As and Cu. Factor analysis and hierarchical cluster analysis were performed on the analyzed samples. Factor analysis explained 79.093% of the total variance of the data through three factors. This had the gold factor being factor 3, having associations of copper, iron, lead and manganese and accounting for 20.903% of the total variance. From hierarchical clustering, gold was also observed to be clustering with lead, copper, arsenic and silver. There was further indication that, gold concentrations were lower than that of its associations. It can be inferred from the results that, the occurrence of gold and its associated elements can be linked to both primary dispersion from underlying rocks and secondary processes such as lateritization. This data shows that Fe and Mn strongly associated with gold, and alongside Pb, Ag, As and Cu, these elements can be used as pathfinders for gold in the area, with ferruginous zones as targets.
文摘A factor analysis was applied to soil geochemical data to define anomalies related to buried Pb-Zn mineralization.A favorable main factor with a strong association of the elements Zn,Cu and Pb,related to mineralization,was selected for interpretation.The median+2 MAD(median absolute deviation)method of exploratory data analysis(EDA)and C-A(concentration-area)fractal modeling were then applied to the Mahalanobis distance,as defined by Zn,Cu and Pb from the factor analysis to set the thresholds for defining multi-element anomalies.As a result,the median+2 MAD method more successfully identified the Pb-Zn mineralization than the C-A fractal model.The soil anomaly identified by the median+2 MAD method on the Mahalanobis distances defined by three principal elements(Zn,Cu and Pb)rather than thirteen elements(Co,Zn,Cu,V,Mo,Ni,Cr,Mn,Pb,Ba,Sr,Zr and Ti)was the more favorable reflection of the ore body.The identified soil geochemical anomalies were compared with the in situ economic Pb-Zn ore bodies for validation.The results showed that the median+2 MAD approach is capable of mapping both strong and weak geochemical anomalies related to buried Pb-Zn mineralization,which is therefore useful at the reconnaissance drilling stage.
文摘Multi-element analysis in historical sites is a major issue in archaeological studies;however,this approach is almost unknown among Iranian scholars.Geochemical multi-element analysis of soil is very important to evaluate anthropogenic activities.The aim of this study consists of assessing the potential usefulness of multi-elemental soil analysis,obtained by Analytical Jena atomic absorption spectrophotometer(AAS) and ICP-MS,to recognize ancient anthropogenic features on the territory of Tappe Rivi(North Khorasan,Iran).For that purpose,a total of 80 ancient soil samples were sampled from each soil horizon and cultural layer.The research involved Fe,Al,Cd,Cu,Ni,Co,Cr,Pb,and P which trace element samples were extracted according to the International Standard ISO 11466 and phosphorus samples by Olsen method.Besides,the contamination of the soils was assessed based on enrichment factors(EFs) by using Fe as a reference element.This geochemical/archaeological approach highlights that the content of most elements in the Parthian and Sassanid ages were significantly higher than the contents of the elements in other zones,which shows that by the development of the eras,the content of the elements has also increased.Also,the accumulation of metals in the Rivi site was significantly higher than in the control area.Among the sampled zones,enrichment factor(EF) indicated that the enrichment of Cu and phosphate at the Parthian and Sassanid had the highest content.This result is important because it shows that the amount of metals and human activities are directly related to each other during different ages.
基金Projects(51671217,51604112) supported by the National Natural Science Foundation of ChinaProject(2017JJ3089) supported by the Natural Science Foundation of Hunan Province,China
文摘The effects of Al and Sc on mechanical properties of FeCoNi multi-element alloys(MEAs) were investigated by compressive tests. The microstructures of FeCoNi MEAs with different contents of Al and Sc were characterized and the strengthening mechanisms were discussed. The results show that FeCoNi MEA with a low content of Al has a face-centered cubic(FCC) structure. The yield strength increases linearly with the increase of Al content, which is largely caused by solid solution hardening. Further addition of Sc can promote the formation of a new phase in(FeCoNi)1-xAlx MEAs. A minor addition of Sc can significantly increase the yield strengths of(FeCoNi)1-xAlx MEAs with a low Al content and improve the compressive plasticity of(FeCoNi)1-xAlx MEAs with a high Al content.
基金Supported by the National Natural Science Foundation of China(11172134)the Funding of Jiangsu Innovation Program for Graduate Education(CXZZ110192)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A hybrid Cartesian grid/gridless method is developed for calculating viscous flows over multi-element airfoils.The method adopts an unstructured Cartesian grid to cover most areas of the computational domain and leaves only small region adjacent to the aerodynamic bodies to be filled with the cloud of points used in the gridless methods,which results in a better combination of the computational efficiency of the Cartesian grid and the flexibility of the gridless method in handling complex geometries.The clouds of points in the local gridless region are implemented in an anisotropic way according to the features of the thin boundary layer of the viscous flows over the airfoils,and the clouds of points at the vicinity of the interface between the grid and the gridless regions are also controlled by using an adaptive refinement technique during the generation of the unstructured Cartesian grid.An implementation of the resulting hybrid method is presented for solving two-dimensional compressible Navier-Stokes(NS)equations.The simulations of the viscous flows over a RAE2822airfoil or a two-element airfoil are successfully carried out,and the obtained results agree well with the available experimental data.
基金The National Natural Science Foundation of China (No.50478090)
文摘A set of serf-developed apparatus for foundation physical model were utilized to conduct model tests of the multi-element composite foundation with a steel pipe pile and several gravel piles. Some load-bearing characteristics of the multi-element Composite foundation, including the curves of foundation settlement, stresses of piles, pile-soil stress ratio, and load-sharing ratio of piles and soil, were obtained to study its working performances in silty sand soil. The experimental results revealed that the multi-element composite foundation with steel pipe pile and gravel pile contributed more than the gravel pile composite foundation in improving the bearing capacity of the silty fine sand.
基金Research of the photoelectric properties of theκ(ε)-Ga_(2)O_(3)films was supported by the Russian Science Foundation,grant number 20-79-10043-P.Fabrication of the ultraviolet detectors based on theκ(ε)-Ga_(2)O_(3)layers was supported by the grant under the Decree of the Government of the Rus-sian Federation No.220 of 09 April 2010(Agreement No.075-15-2022-1132 of 01 July 2022)Research of the structural prop-erties of theκ(ε)-Ga_(2)O_(3)was supported by the St.Petersburg State University,grant number 94034685.
文摘High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were deposited by the halide vapor phase epitaxy on patterned GaN templates with sapphire substrates.The spectral dependencies of the photoelectric properties of struc-tures were analyzed in the wavelength interval 200-370 nm.The maximum photo to dark current ratio,responsivity,detectiv-ity and external quantum efficiency of structures were determined as:180.86 arb.un.,3.57 A/W,1.78×10^(12) Hz^(0.5)∙cm·W^(-1) and 2193.6%,respectively,at a wavelength of 200 nm and an applied voltage of 1 V.The enhancement of the photoresponse was caused by the decrease in the Schottky barrier at the Pt/κ(ε)-Ga_(2)O_(3)interface under ultraviolet exposure.The detectors demon-strated could functionalize in self-powered mode due to built-in electric field at the Pt/κ(ε)-Ga_(2)O_(3)interface.The responsivity and external quantum efficiency of the structures at a wavelength of 254 nm and zero applied voltage were 0.9 mA/W and 0.46%,respectively.The rise and decay times in self-powered mode did not exceed 100 ms.
基金supported by the National Key Research and Development Program of China(No.2020YFE0202002)the National Natural Science Foundation of China(Nos.11875146 and U1932143)。
文摘Topmetal-M2 is a large-area pixel sensor chip fabricated using the GSMC 130 nm CMOS process in 2021.The pixel array of Topmetal-M2 consists of pixels of 400 rows×512 columns with a pixel pitch of 45μm×45μm.The array is divided into 16 subarrays,with pixels of 400 rows×32 columns per subarray.Each pixel incorporates two charge sensors:a diode sensor and a Topmetal sensor.The in-pixel circuit primarily consists of a charge-sensitive amplifier for energy measurements,a discriminator with a peak-holding circuit,and a time-to-amplitude converter for time-of-arrival measurements.The pixel of Topmetal-M2 has a charge input range of~0-3 k e-,a voltage output range of~0-180 mV,and a charge-voltage conversion gain of~59.56μV∕e-.The average equivalent noise charge of Topmetal-M2,which includes the readout electronic system noise,is~43.45 e-.In the scanning mode,the time resolution of Topmetal-M2 is 1 LSB=1.25μs,and the precision is^()7.41μs.At an operating voltage of 1.5 V,Topmetal-M2 has a power consumption of~49 mW∕cm~2.In this article,we provide a comprehensive overview of the chip architecture,pixel working principles,and functional behavior of Topmetal-M2.Furthermore,we present the results of preliminary tests conducted on Topmetal-M2,namely,alpha-particle and soft X-ray tests.
基金This work is supported in part by the National Natural Science Foundation of China(Grant Number 61971078)which provided domain expertise and computational power that greatly assisted the activity+1 种基金This work was financially supported by Chongqing Municipal Education Commission Grants forMajor Science and Technology Project(KJZD-M202301901)the Science and Technology Research Project of Jiangxi Department of Education(GJJ2201049).
文摘Text perception is crucial for understanding the semantics of outdoor scenes,making it a key requirement for building intelligent systems for driver assistance or autonomous driving.Text information in car-mounted videos can assist drivers in making decisions.However,Car-mounted video text images pose challenges such as complex backgrounds,small fonts,and the need for real-time detection.We proposed a robust Car-mounted Video Text Detector(CVTD).It is a lightweight text detection model based on ResNet18 for feature extraction,capable of detecting text in arbitrary shapes.Our model efficiently extracted global text positions through the Coordinate Attention Threshold Activation(CATA)and enhanced the representation capability through stacking two Feature Pyramid Enhancement Fusion Modules(FPEFM),strengthening feature representation,and integrating text local features and global position information,reinforcing the representation capability of the CVTD model.The enhanced feature maps,when acted upon by Text Activation Maps(TAM),effectively distinguished text foreground from non-text regions.Additionally,we collected and annotated a dataset containing 2200 images of Car-mounted Video Text(CVT)under various road conditions for training and evaluating our model’s performance.We further tested our model on four other challenging public natural scene text detection benchmark datasets,demonstrating its strong generalization ability and real-time detection speed.This model holds potential for practical applications in real-world scenarios.
基金supported by the National Natural Science Foundation of China(62305261,62305262)the Natural Science Foundation of Shaanxi Province(2024JC-YBMS-021,2024JC-YBMS-788,2023-JC-YB-065,2023-JC-QN-0693,2022JQ-652)+1 种基金the Xi’an Science and Technology Bureau of University Service Enterprise Project(23GXFW0043)the Cross disciplinary Research and Cultivation Project of Xi’an University of Architecture and Technology(2023JCPY-17)。
文摘As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility.
基金supported by the National Natural Science Foundation of China(Nos.11975121,12205131)the Fundamental Research Funds for the Central Universities(No.lzujbky-2021-sp58)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX22_0354)。
文摘Time-encoded imaging is useful for identifying potential special nuclear materials and other radioactive sources at a distance.In this study,a large field-of-view time-encoded imager was developed for gamma-ray and neutron source hotspot imaging based on a depth-of-interaction(DOI)detector.The imager primarily consists of a DOI detector system and a rotary dual-layer cylindrical coded mask.An EJ276 plastic scintillator coupled with two SiPMs was designed as the DOI detector to increase the field of view and improve the imager performance.The difference in signal time at both ends and the log of the signal amplitude ratio were used to calculate the interaction position resolution.The position resolution of the DOI detector was calibrated using a collimated Cs-137 source,and the full width at half maximum of the reconstruction position of the Gaussian fitting curve was approximately 4.4 cm.The DOI detector can be arbitrarily divided into several units to independently reconstruct the source distribution images.The unit length was optimized via Am-Be source-location experiments.A multidetector filtering method is proposed for image denoising.This method can effectively reduce image noise caused by poor DOI detector position resolution.The vertical field of view of the imager was(-55°,55°)when the detector was placed in the center of the coded mask.A DT neutron source at 20 m standoff could be located within 2400 s with an angular resolution of 3.5°.
基金supported by the National Natural Science Foundation of China(Nos.12175321,11975021,11675275,and U1932101)National Key Research and Development Program of China(Nos.2023YFA1606000 and 2020YFA0406400)+2 种基金State Key Laboratory of Nuclear Physics and Technology,Peking University(Nos.NPT2020KFY04 and NPT2020KFY05)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA10010900)National College Students Science and Technology Innovation Project,and Undergraduate Base Scientific Research Project of Sun Yat-sen University。
文摘DD4hep serves as a generic detector description toolkit recommended for offline software development in next-generation high-energy physics(HEP)experiments.Conversely,Filmbox(FBX)stands out as a widely used 3D modeling file format within the 3D software industry.In this paper,we introduce a novel method that can automatically convert complex HEP detector geometries from DD4hep description into 3D models in the FBX format.The feasibility of this method was dem-onstrated by its application to the DD4hep description of the Compact Linear Collider detector and several sub-detectors of the super Tau-Charm facility and circular electron-positron collider experiments.The automatic DD4hep–FBX detector conversion interface provides convenience for further development of applications,such as detector design,simulation,visualization,data monitoring,and outreach,in HEP experiments.