Owing to the influence of sampling loss,cavity difference and detecting source,the multi-optical parameter measurement of atmospheric aerosol cannot be detected simultaneously in the same reference environment.In orde...Owing to the influence of sampling loss,cavity difference and detecting source,the multi-optical parameter measurement of atmospheric aerosol cannot be detected simultaneously in the same reference environment.In order to solve this problem,a new method of simultaneously detecting the aerosol optical parameters by coupling cavity ring-down spectrometer with photoacoustic spectroscopy is proposed.Firstly,the coupled photoacoustic cavity is formed by the organic fusion of the photoacoustic cavity and the ring-down cavity.Secondly,the integrated design of the coupling spectroscopy system is carried out.Finally,the extinction coefficient and absorption coefficient of aerosol are measured simultaneously by the system,and then the aerosol scattering coefficient and single albedo are calculated indirectly.The accuracy of the system is verified by comparing with the data from the environmental quality monitoring station,which provides a new idea for the detection of multi-optical characteristics of atmospheric aerosol.展开更多
Renewable energy sources, such as photovoltaic wind turbines, and wave power converters, use power converters to connect to the grid which causes a loss in rotational inertia. The attempt to meet the increasing energy...Renewable energy sources, such as photovoltaic wind turbines, and wave power converters, use power converters to connect to the grid which causes a loss in rotational inertia. The attempt to meet the increasing energy demand means that the interest for the integration of renewable energy sources in the existing power system is growing, but such integration poses challenges to the operating stability. Power converters play a major role in the evolution of power system towards SmartGrids, by regulating as virtual synchronous generators. The concept of virtual synchronous generators requires an energy storage system with power converters to emulate virtual inertia similar to the dynamics of traditional synchronous generators. In this paper, a dynamic droop control for the estimation of fundamental reference sources is implemented in the control loop of the converter, including active and reactive power components acting as a mechanical input to the virtual synchronous generator and the virtual excitation controller. An inertia coefficient and a droop coefficient are implemented in the control loop. The proposed controller uses a current synchronous detection scheme to emulate a virtual inertia from the virtual synchronous generators. In this study, a wave energy converter as the power source is used and a power management of virtual synchronous generators to control the frequency deviation and the terminal voltage is implemented. The dynamic control scheme based on a current synchronous detection scheme is presented in detail with a power management control. Finally, we carried out numerical simulations and verified the scheme through the experimental results in a microgrid structure.展开更多
Motivated by the relationship of the dynamic behaviors and network structure, in this paper, we present two efficient dynamic community detection algorithms. The phases of the nodes in the network can evolve according...Motivated by the relationship of the dynamic behaviors and network structure, in this paper, we present two efficient dynamic community detection algorithms. The phases of the nodes in the network can evolve according to our proposed differential equations. In each iteration, the phases of the nodes are controlled by several parameters. It is found that the phases of the nodes are ultimately clustered into several communities after a short period of evolution. They can be adopted to detect the communities successfully. The second differential equation can dynamically adjust several parameters, so it can obtain satisfactory detection results. Simulations on some test networks have verified the efficiency of the presented algorithms.展开更多
In this paper, a new chaotic system is introduced. The proposed system is a conventional power network that demonstrates a chaotic behavior under special operating conditions. Some features such as Lyapunov exponents ...In this paper, a new chaotic system is introduced. The proposed system is a conventional power network that demonstrates a chaotic behavior under special operating conditions. Some features such as Lyapunov exponents and a strange attractor show the chaotic behavior of the system, which decreases the system performance. Two different controllers are proposed to control the chaotic system. The first one is a nonlinear conventional controller that is simple and easy to construct, but the second one is developed based on the finite time control theory and optimized for faster control. A MATLAB-based simulation verifies the results.展开更多
Multi-element array photoelectric detector is the core devices to form a photoelectric detection target with a large field of view.This photoelectric detection target brings about the problem of uneven detection sensi...Multi-element array photoelectric detector is the core devices to form a photoelectric detection target with a large field of view.This photoelectric detection target brings about the problem of uneven detection sensitivity distribution in the detection screen.To improve the uneven detection sensitivity of this photoelectric detection target,this paper analyzes the distribution law of the uneven detection sensitivity of the photoelectric detection target using the multi-element array photoelectric detector,dissects the main factors affecting the detection sensitivity according to the photoelectric detection principle,establishes the calculation model of detection sensitivity of the photoelectric detection target in the different detection areas and proposes a method to improve the detection sensitivity by compensating the gain of each unit photoelectric detector.The analysis of simulation and experimental results show that the proposed method of photoelectric detection target can effectively improve the output signal amplitude of the projectile under the certain detection distance,in particular,the output signal amplitude of the projectile is significantly increased when the projectile passes through the detection blind area.The experimental results are consistent with the simulation results,which verify the effectiveness of the proposed improvement method.展开更多
Periodic components are of great significance for fault diagnosis and health monitoring of rotating machinery.Time synchronous averaging is an effective and convenient technique for extracting those components.However...Periodic components are of great significance for fault diagnosis and health monitoring of rotating machinery.Time synchronous averaging is an effective and convenient technique for extracting those components.However,the performance of time synchronous averaging is seriously limited when the separate segments are poorly synchronized.This paper proposes a new averaging method capable of extracting periodic components without external reference and an accurate period to solve this problem.With this approach,phase detection and compensation eliminate all segments'phase differences,which enables the segments to be well synchronized.The effectiveness of the proposed method is validated by numerical and experimental signals.展开更多
Frame detection is important in burst communication systems for its contribu- tions in frame synchronization. It locates the information bits in the received data stream at receivers. To realize frame detection in the...Frame detection is important in burst communication systems for its contribu- tions in frame synchronization. It locates the information bits in the received data stream at receivers. To realize frame detection in the presence of additive white Gaussian noise (AWGN) and frequency offset, a constant false alarm rate (CFAR) detector is proposed through exploitation of cyclic autocorrelation feature implied in the preamble. The frame detection can be achieved prior to bit timing recovery. The threshold setting is independent of the signal level and noise level by utilizing CFAR method. Mathematical expressions is derived in AWGN channel by considering the probability of false alarm and probability of detection, separately. Given the probability of false alarm, the mathematical relationship between the frame detection performance and EJNo of received signals is established. Ex- perimental results are also presented in accor- dance with analysis.展开更多
A wearable UV sensor is designed to realize UV detection and a warning effect on people’s excessive UV exposure.It is noteworthy that the photoelectric system and supporting material of the most conventional sensor a...A wearable UV sensor is designed to realize UV detection and a warning effect on people’s excessive UV exposure.It is noteworthy that the photoelectric system and supporting material of the most conventional sensor are separated.The unstable connection between the two components and the complicated construction method makes the sensor susceptible to external motion interference and prone to failure.Herein,we developed a unique photo response mode of the UV sensor based on a novel photo responsive material.An azobenzene-containing polydimethylsiloxane(Azo-PDMS)film was prepared as the outer layer of the sensor.It integrated the functions of photo response source,support and protection,which realized the direct contact and rapid response to the UV light source.Carbon nanotube(CNT),wrapped in the middle of Azo-PDMS films as an inner layer,transformed the photomechanical response signal into the photoelectric signal.The photo response mode endows the sensor with excellent anti-motion interference capabilities and a true sense of UV-strain synchronous monitoring performance,which is of great significance to the practical application of wearable devices.In addition,based on the excellent properties of Azo-PDMS,the sensor can also protect the human body from UV damage,self-repair after fracture,and realize personalized customization through 3 D printing.It makes a breakthrough in the design and construction of wearable UV sensors and paves a new way to optimize sensor photo response modes.展开更多
In time division multiple access (TDMA) communication systems, correctly estimating the synchronization parameters is very important for reliable data transfer. The algorithms used for frequency/phase and symbol timin...In time division multiple access (TDMA) communication systems, correctly estimating the synchronization parameters is very important for reliable data transfer. The algorithms used for frequency/phase and symbol timing estimates are generally accepted as knowing the start of signal (SoS) parameter. Therefore, within these parameters, the SoS parameter is of particularly great importance. In this study, a reduced version of the SoS estimation algorithm introduced by Hosseini and Perrins is presented to estimate SoS for Gaussian Minimum Shift Keying (GMSK) modulated signals in burst format over additive white Gaussian noise (AWGN) channels. The reduced algorithm can be implemented on FPGA by using half the number of complex multipliers that would be required by the double correlation method and is robust to carrier frequency/phase errors. Simulations performed under 0.1 normalized frequency offset conditions show that the proposed algorithm has a probability of false lock which is less than 7×10-2, even at 0 dB SNR level.展开更多
In response to the downlink synchronization requirements of the user equipment(UE)or third-party radio equipment in fifth-generation(5G)mobile communication systems,a synchronization algorithm of primary synchroni-zat...In response to the downlink synchronization requirements of the user equipment(UE)or third-party radio equipment in fifth-generation(5G)mobile communication systems,a synchronization algorithm of primary synchroni-zation signal(PSS)was designed and developed in the 5G system based on block cross-correlation.According to the new characteristics of the 5G synchronization channel and broadcast channel,starting from the traditional downlink synchronization algorithm of long-term evolution(LTE),the detection performance of the algorithm under a low signal-to-noise ratio(SNR)is improved by introducing an incoherent accumulation,and the new scheme of joint coarse frequency offset estimation is used to improve the frequency offset estimation performance.Finally,the performance of the proposed synchronization algorithm is verified by conducting a simulation on a 5G downlink simulation platform based on MATLAB software.Simulation results show that the improved downlink synchronization algorithm has stable performance in the tapped delay line-C(TDL-C)and additive white Gaussian noise(AWGN)channels with large frequency deviation and low SNR.展开更多
The carrier synchronization algorithm of the autonomous radio for deep space is studied.When the signal modulation is unknown,this paper improves the existing universal carrier synchronization loop for multiple modula...The carrier synchronization algorithm of the autonomous radio for deep space is studied.When the signal modulation is unknown,this paper improves the existing universal carrier synchronization loop for multiple modulations,expands the frequency tracking range of the loop,proposes a Tong detection-based M-ary Phase Shift Keying(M-PSK)signal locking detection algorithm to rapidly and effectively determine whether the current phase discrimination mode matches the modulation mode,so as to independently choose whether to switch the phase discrimination mode.Through theoretical analysis and comparison,it is described that the total detection probability of the algorithm proposed in this paper is significantly higher than the probability of single lock detection.Simulation results show that the algorithm has high detection probabiUty and low computational complexity at a low signal to noise ratio.展开更多
Aiming at enhancing the quality as well as the reliability of synchronization, this paper is concerned with the fault detection issue within the synchronization process for a class of nonlinear systems in the existenc...Aiming at enhancing the quality as well as the reliability of synchronization, this paper is concerned with the fault detection issue within the synchronization process for a class of nonlinear systems in the existence of external disturbances. To handle such problems, the concept of robust fault-sensitive (RFS) synchronization is proposed, and a method of determining such a kind of syncbronization is developed. Under the framework of RFS synchronization, the master and the slave systems are robustly synchronized, and at the same time, sensitive to possible faults based on a mixed H_/H~ performance. The design of desired output feedback controller is realized by solving a linear matrix inequality, and the fault sensitivity H index can be optimized via a convex optimization algorithm. A master-slave configuration composed of identical Chua's circuits is adopted as a numerical example to demonstrate the effectiveness and applicability of the analytical results.展开更多
This work introduces an observer structure and highlights its distinct advantages in fault detection and isolation. Its application to the issue of shorted turns detection in synchronous generators is demonstrated. Fo...This work introduces an observer structure and highlights its distinct advantages in fault detection and isolation. Its application to the issue of shorted turns detection in synchronous generators is demonstrated. For the theoretical foundation, the convergence and design of Luenberger-type observers for disturbed linear time-invariant (LTI) single-input single-output (SISO) systems are reviewed with a particular focus on input and output disturbances. As an additional result, a simple observer design for stationary output disturbances that avoids a system order extension, as in classical results, is proposed.展开更多
在未来的通信网络中,被广泛期待的第6代移动通信系统(The Sixth Generation of Mobile Communications System,6G)技术将面临诸多挑战,其中包括在高速移动场景下的超高可靠通信问题。正交时频空间(Orthogonal Time Frequency Space,OTFS...在未来的通信网络中,被广泛期待的第6代移动通信系统(The Sixth Generation of Mobile Communications System,6G)技术将面临诸多挑战,其中包括在高速移动场景下的超高可靠通信问题。正交时频空间(Orthogonal Time Frequency Space,OTFS)调制技术克服了传统通信系统在高速移动环境下多径和多普勒效应的影响,为实现6G超高可靠通信提供了新的可能性。该文首先介绍了OTFS的基本原理、数学模型、干扰与优势分析。然后,归纳分析了OTFS技术在同步、信道估计、信号检测技术上的研究现状。接着,从车联网、无人机、卫星通信、海洋通信4个典型应用场景分析了OTFS的应用趋势。最后,从降低多维匹配滤波器、相位解调和信道估计、硬件实现的复杂度和提高对时频资源的高度利用4个角度探讨了未来研究OTFS需要克服的困难和挑战。展开更多
基金supported by the Major Project of Natural Science Research in Universities of Anhui Province,China(Grant No.KJ2021ZD0052)the Open Foundation of Key Laboratory of Environmental Optics and Technology of Chinese Academy of Sciences(Grant No.2009DP1730652020-03)the Research and Development Project of Wuhu Research Institute of Anhui University of Science and Technology,China(Grant No.ALW2020YF17)。
文摘Owing to the influence of sampling loss,cavity difference and detecting source,the multi-optical parameter measurement of atmospheric aerosol cannot be detected simultaneously in the same reference environment.In order to solve this problem,a new method of simultaneously detecting the aerosol optical parameters by coupling cavity ring-down spectrometer with photoacoustic spectroscopy is proposed.Firstly,the coupled photoacoustic cavity is formed by the organic fusion of the photoacoustic cavity and the ring-down cavity.Secondly,the integrated design of the coupling spectroscopy system is carried out.Finally,the extinction coefficient and absorption coefficient of aerosol are measured simultaneously by the system,and then the aerosol scattering coefficient and single albedo are calculated indirectly.The accuracy of the system is verified by comparing with the data from the environmental quality monitoring station,which provides a new idea for the detection of multi-optical characteristics of atmospheric aerosol.
基金Swedish Research Council(VR)STandUP for Energy,MaRINET2 and Erasmus Mundus(EMINTE)Ph.D.Scholarship for the support of the work
文摘Renewable energy sources, such as photovoltaic wind turbines, and wave power converters, use power converters to connect to the grid which causes a loss in rotational inertia. The attempt to meet the increasing energy demand means that the interest for the integration of renewable energy sources in the existing power system is growing, but such integration poses challenges to the operating stability. Power converters play a major role in the evolution of power system towards SmartGrids, by regulating as virtual synchronous generators. The concept of virtual synchronous generators requires an energy storage system with power converters to emulate virtual inertia similar to the dynamics of traditional synchronous generators. In this paper, a dynamic droop control for the estimation of fundamental reference sources is implemented in the control loop of the converter, including active and reactive power components acting as a mechanical input to the virtual synchronous generator and the virtual excitation controller. An inertia coefficient and a droop coefficient are implemented in the control loop. The proposed controller uses a current synchronous detection scheme to emulate a virtual inertia from the virtual synchronous generators. In this study, a wave energy converter as the power source is used and a power management of virtual synchronous generators to control the frequency deviation and the terminal voltage is implemented. The dynamic control scheme based on a current synchronous detection scheme is presented in detail with a power management control. Finally, we carried out numerical simulations and verified the scheme through the experimental results in a microgrid structure.
基金supported by the National Natural Science Foundation of China(Grant No.61272279)the TianYuan Special Funds of the National Natural Science Foundation of China(Grant No.11326239)+1 种基金the Higher School Science and Technology Research Project of Inner Mongolia,China(Grant No.NJZY13119)the Inner Mongolia University of Technology,China(Grant No.ZD201221)
文摘Motivated by the relationship of the dynamic behaviors and network structure, in this paper, we present two efficient dynamic community detection algorithms. The phases of the nodes in the network can evolve according to our proposed differential equations. In each iteration, the phases of the nodes are controlled by several parameters. It is found that the phases of the nodes are ultimately clustered into several communities after a short period of evolution. They can be adopted to detect the communities successfully. The second differential equation can dynamically adjust several parameters, so it can obtain satisfactory detection results. Simulations on some test networks have verified the efficiency of the presented algorithms.
文摘In this paper, a new chaotic system is introduced. The proposed system is a conventional power network that demonstrates a chaotic behavior under special operating conditions. Some features such as Lyapunov exponents and a strange attractor show the chaotic behavior of the system, which decreases the system performance. Two different controllers are proposed to control the chaotic system. The first one is a nonlinear conventional controller that is simple and easy to construct, but the second one is developed based on the finite time control theory and optimized for faster control. A MATLAB-based simulation verifies the results.
基金supported by Project of the Xi’an Science and Technology Innovation talent service enterprise project(No.2020KJRC0041)National Natural Science Foundation of China(No.62073256)Key Programs of Shaanxi Science and Technology Department(No.2020GY-125)。
文摘Multi-element array photoelectric detector is the core devices to form a photoelectric detection target with a large field of view.This photoelectric detection target brings about the problem of uneven detection sensitivity distribution in the detection screen.To improve the uneven detection sensitivity of this photoelectric detection target,this paper analyzes the distribution law of the uneven detection sensitivity of the photoelectric detection target using the multi-element array photoelectric detector,dissects the main factors affecting the detection sensitivity according to the photoelectric detection principle,establishes the calculation model of detection sensitivity of the photoelectric detection target in the different detection areas and proposes a method to improve the detection sensitivity by compensating the gain of each unit photoelectric detector.The analysis of simulation and experimental results show that the proposed method of photoelectric detection target can effectively improve the output signal amplitude of the projectile under the certain detection distance,in particular,the output signal amplitude of the projectile is significantly increased when the projectile passes through the detection blind area.The experimental results are consistent with the simulation results,which verify the effectiveness of the proposed improvement method.
基金Supported by National Postdoctoral Program for Innovative Talent of China (Grant No.BX20180031)。
文摘Periodic components are of great significance for fault diagnosis and health monitoring of rotating machinery.Time synchronous averaging is an effective and convenient technique for extracting those components.However,the performance of time synchronous averaging is seriously limited when the separate segments are poorly synchronized.This paper proposes a new averaging method capable of extracting periodic components without external reference and an accurate period to solve this problem.With this approach,phase detection and compensation eliminate all segments'phase differences,which enables the segments to be well synchronized.The effectiveness of the proposed method is validated by numerical and experimental signals.
基金supported by National Science Foundation of China under Grant No.61401205
文摘Frame detection is important in burst communication systems for its contribu- tions in frame synchronization. It locates the information bits in the received data stream at receivers. To realize frame detection in the presence of additive white Gaussian noise (AWGN) and frequency offset, a constant false alarm rate (CFAR) detector is proposed through exploitation of cyclic autocorrelation feature implied in the preamble. The frame detection can be achieved prior to bit timing recovery. The threshold setting is independent of the signal level and noise level by utilizing CFAR method. Mathematical expressions is derived in AWGN channel by considering the probability of false alarm and probability of detection, separately. Given the probability of false alarm, the mathematical relationship between the frame detection performance and EJNo of received signals is established. Ex- perimental results are also presented in accor- dance with analysis.
文摘A wearable UV sensor is designed to realize UV detection and a warning effect on people’s excessive UV exposure.It is noteworthy that the photoelectric system and supporting material of the most conventional sensor are separated.The unstable connection between the two components and the complicated construction method makes the sensor susceptible to external motion interference and prone to failure.Herein,we developed a unique photo response mode of the UV sensor based on a novel photo responsive material.An azobenzene-containing polydimethylsiloxane(Azo-PDMS)film was prepared as the outer layer of the sensor.It integrated the functions of photo response source,support and protection,which realized the direct contact and rapid response to the UV light source.Carbon nanotube(CNT),wrapped in the middle of Azo-PDMS films as an inner layer,transformed the photomechanical response signal into the photoelectric signal.The photo response mode endows the sensor with excellent anti-motion interference capabilities and a true sense of UV-strain synchronous monitoring performance,which is of great significance to the practical application of wearable devices.In addition,based on the excellent properties of Azo-PDMS,the sensor can also protect the human body from UV damage,self-repair after fracture,and realize personalized customization through 3 D printing.It makes a breakthrough in the design and construction of wearable UV sensors and paves a new way to optimize sensor photo response modes.
文摘In time division multiple access (TDMA) communication systems, correctly estimating the synchronization parameters is very important for reliable data transfer. The algorithms used for frequency/phase and symbol timing estimates are generally accepted as knowing the start of signal (SoS) parameter. Therefore, within these parameters, the SoS parameter is of particularly great importance. In this study, a reduced version of the SoS estimation algorithm introduced by Hosseini and Perrins is presented to estimate SoS for Gaussian Minimum Shift Keying (GMSK) modulated signals in burst format over additive white Gaussian noise (AWGN) channels. The reduced algorithm can be implemented on FPGA by using half the number of complex multipliers that would be required by the double correlation method and is robust to carrier frequency/phase errors. Simulations performed under 0.1 normalized frequency offset conditions show that the proposed algorithm has a probability of false lock which is less than 7×10-2, even at 0 dB SNR level.
基金The Social Development Projects of Jiangsu Science and Technology Department(No.BE2018704).
文摘In response to the downlink synchronization requirements of the user equipment(UE)or third-party radio equipment in fifth-generation(5G)mobile communication systems,a synchronization algorithm of primary synchroni-zation signal(PSS)was designed and developed in the 5G system based on block cross-correlation.According to the new characteristics of the 5G synchronization channel and broadcast channel,starting from the traditional downlink synchronization algorithm of long-term evolution(LTE),the detection performance of the algorithm under a low signal-to-noise ratio(SNR)is improved by introducing an incoherent accumulation,and the new scheme of joint coarse frequency offset estimation is used to improve the frequency offset estimation performance.Finally,the performance of the proposed synchronization algorithm is verified by conducting a simulation on a 5G downlink simulation platform based on MATLAB software.Simulation results show that the improved downlink synchronization algorithm has stable performance in the tapped delay line-C(TDL-C)and additive white Gaussian noise(AWGN)channels with large frequency deviation and low SNR.
基金Supported by Program for New Century Excellent Talents in University(NCET-12-0030)National Natural Science Foundation of China(91438116)
文摘The carrier synchronization algorithm of the autonomous radio for deep space is studied.When the signal modulation is unknown,this paper improves the existing universal carrier synchronization loop for multiple modulations,expands the frequency tracking range of the loop,proposes a Tong detection-based M-ary Phase Shift Keying(M-PSK)signal locking detection algorithm to rapidly and effectively determine whether the current phase discrimination mode matches the modulation mode,so as to independently choose whether to switch the phase discrimination mode.Through theoretical analysis and comparison,it is described that the total detection probability of the algorithm proposed in this paper is significantly higher than the probability of single lock detection.Simulation results show that the algorithm has high detection probabiUty and low computational complexity at a low signal to noise ratio.
基金supported by the National Natural Science Foundation of China (Grant No. 60874011)the National Science and Technology Infrastructure Program (Grant No. 2008BAA13B07)the China Postdoctoral Science Foundation (Grant No. 20100480242)
文摘Aiming at enhancing the quality as well as the reliability of synchronization, this paper is concerned with the fault detection issue within the synchronization process for a class of nonlinear systems in the existence of external disturbances. To handle such problems, the concept of robust fault-sensitive (RFS) synchronization is proposed, and a method of determining such a kind of syncbronization is developed. Under the framework of RFS synchronization, the master and the slave systems are robustly synchronized, and at the same time, sensitive to possible faults based on a mixed H_/H~ performance. The design of desired output feedback controller is realized by solving a linear matrix inequality, and the fault sensitivity H index can be optimized via a convex optimization algorithm. A master-slave configuration composed of identical Chua's circuits is adopted as a numerical example to demonstrate the effectiveness and applicability of the analytical results.
文摘This work introduces an observer structure and highlights its distinct advantages in fault detection and isolation. Its application to the issue of shorted turns detection in synchronous generators is demonstrated. For the theoretical foundation, the convergence and design of Luenberger-type observers for disturbed linear time-invariant (LTI) single-input single-output (SISO) systems are reviewed with a particular focus on input and output disturbances. As an additional result, a simple observer design for stationary output disturbances that avoids a system order extension, as in classical results, is proposed.
文摘在未来的通信网络中,被广泛期待的第6代移动通信系统(The Sixth Generation of Mobile Communications System,6G)技术将面临诸多挑战,其中包括在高速移动场景下的超高可靠通信问题。正交时频空间(Orthogonal Time Frequency Space,OTFS)调制技术克服了传统通信系统在高速移动环境下多径和多普勒效应的影响,为实现6G超高可靠通信提供了新的可能性。该文首先介绍了OTFS的基本原理、数学模型、干扰与优势分析。然后,归纳分析了OTFS技术在同步、信道估计、信号检测技术上的研究现状。接着,从车联网、无人机、卫星通信、海洋通信4个典型应用场景分析了OTFS的应用趋势。最后,从降低多维匹配滤波器、相位解调和信道估计、硬件实现的复杂度和提高对时频资源的高度利用4个角度探讨了未来研究OTFS需要克服的困难和挑战。