This article explores the impact of the three-dimensional cultivation mode on the development of the Suzhou tea industry,focusing on the diversified estimation of the value of output per acre and sales mode.It introdu...This article explores the impact of the three-dimensional cultivation mode on the development of the Suzhou tea industry,focusing on the diversified estimation of the value of output per acre and sales mode.It introduces the history and traditional cultivation practices of tea in Suzhou,as well as the current challenges and problems faced by the industry.An in-depth analysis was conducted on the overview and improvement plans of the three-dimensional cultivation mode,covering relevant technical methods.Based on this analysis,the impact of the three-dimensional cultivation on the value of output per acre was studied and predicted.Its potential and advantages were explored and compared with the effectiveness of traditional cultivation models.Additionally,the impact of the three-dimensional cultivation mode on sales was analyzed,examining its market adaptability and competitiveness,as well as its advantages in expanding sales channels and market coverage.The study also focused on the promoting effect of diversified sales models on the Suzhou tea industry,including direct consumption market development,tea processing product development and promotion,and the integration of tea culture and the tourism industry.To ensure sustainable development,the article evaluates the environmental impact,economic feasibility,social benefits,and farmer benefits of the three-dimensional cultivation model.Finally,the prospects for the development of the Suzhou tea industry were discussed,and the positioning and response strategies of the threedimensional cultivation model were proposed.展开更多
Hepatocellular carcinoma(HCC)presents challenges due to its high recurrence and metastasis rates and poor prognosis.While current clinical diagnostic and prognostic indicators exist,their accuracy remains imperfect du...Hepatocellular carcinoma(HCC)presents challenges due to its high recurrence and metastasis rates and poor prognosis.While current clinical diagnostic and prognostic indicators exist,their accuracy remains imperfect due to their biol-ogical complexity.Therefore,there is a quest to identify improved biomarkers for HCC diagnosis and prognosis.By combining long non-coding RNA(lncRNA)expression and somatic mutations,Duan et al identified five representative lncRNAs from 88 lncRNAs related to genomic instability(GI),forming a GI-derived lncRNA signature(LncSig).This signature outperforms previously re-ported LncSig and TP53 mutations in predicting HCC prognosis.In this editorial,we comprehensively evaluate the clinical application value of such prognostic evaluation model based on sequencing technology in terms of cost,time,and practicability.Additionally,we provide an overview of various prognostic models for HCC,aiding in a comprehensive understanding of research progress in pro-gnostic evaluation methods.展开更多
As the most economically developed metropolitan area in China’s Yangtze River Delta,the rapid changing land use patterns of Suzhou-Wuxi-Changzhou(Su-Xi-Chang) metropolitan area have profound impacts on the ecosystem ...As the most economically developed metropolitan area in China’s Yangtze River Delta,the rapid changing land use patterns of Suzhou-Wuxi-Changzhou(Su-Xi-Chang) metropolitan area have profound impacts on the ecosystem service value(ESV).Based on the patterns of land use change and the ESV change in Su-Xi-Chang metropolitan area from 2000 to 2020,we set up four scenarios:natural development scenario,urban development scenario,arable land protection scenario and ecological protection scenario,and simulated the impact of land use changes on the ESV in these scenarios.The results showed that:1) the area of built-up land in the Su-XiChang metropolitan area increased significantly from 2000 to 2020,and the area of other types of land decreased.Arable land underwent the highest transfer-out area,and was primarily converted into built-up land.The total ESV of Su-Xi-Chang metropolitan area increased initially then declined from 2000–2020,and the value of almost all individual ecosystem services decreased.2) Population density,GDP per area,night lighting intensity,and road network density can negatively impact the ESV.3) The total ESV loss under the natural development and urban development scenarios was high,and the expansion of the built-up land and the drastic shrinkage of the arable land contributed to the ESV decline under both scenarios.The total ESV under arable land protection and ecological protection scenarios increases,and therefore these scenarios are suitable for future land use optimization in Su-Xi-Chang.This study could provide a certain reference for land use planning and allocation,and offer guidance for the rational allocation of land resources.展开更多
In order to realize the accurate prediction of the total output value of construction industry in the future,the grey prediction model is used to compare the measured value with the predicted value from 2012 to 2021,a...In order to realize the accurate prediction of the total output value of construction industry in the future,the grey prediction model is used to compare the measured value with the predicted value from 2012 to 2021,and based on the existing data,the total output value of construction industry in Jiangxi Province in the next five years is predicted.The results show that the grey prediction model has a good prediction effect,and the error between the predicted value and the measured value is within 14%,which provides a basis for policy adjustment and resource optimization.展开更多
Cruise value chain is to take the exchange of cruise products and services as the core in a certain spatial scope,and enterprises with core advantages within or between different industries establish associations in a...Cruise value chain is to take the exchange of cruise products and services as the core in a certain spatial scope,and enterprises with core advantages within or between different industries establish associations in accordance with certain technical and economic conditions,so as to realise the multi-dimensional extension and value appreciation of the cruise value chain in the vertical and horizontal links,and ultimately establish a chain-network type of enterprise strategic alliance.This paper tries to analyse the value-added factors of the cruise industry chain by constructing a multi-level hierarchical structural model with reference to the influencing factor analysis methods of relevant literature-DEMATEL(Decision Making Experiment and Evaluation Experiment)and ISM(Interpretative Structural Model).The study shows that the innovation and scale value-added module in the upstream of the cruise industry chain is the core module of value-added of the whole cruise industry chain,and the value-added mainly originates from the design and manufacturing of cruise ships.The middle reaches of the cruise industry chain are mainly cruise operation enterprises,and the specificity of cruise operation determines that its brand value-added is mainly accomplished through the global layout of multinational corporations,and the cruise brand is able to drive the consumption demand and has value-added ability.The downstream value-added of the cruise industry chain is mainly realised through the increase in profits of cruise tourism service products.展开更多
With the increased competition of modern economy and globalization,consumer creation which based on the analysis of consumer behavior was more and more attentioned and respected by business.Based on the meaning and ch...With the increased competition of modern economy and globalization,consumer creation which based on the analysis of consumer behavior was more and more attentioned and respected by business.Based on the meaning and characteristics of agricultural product consumer creation,index system of value model of agricultural product consumer creation was put forward through analytical hierarchy process(AHP).The weights of the indicators and related indicators of impact on the value were analyzed,and value models of agricultural product consumer creation were constructed to provide ideas for development of agricultural product consumer market and research of consumer value.Consumer creation was constructed to provide ideas for development of agricultural product consumer market and research of consumer value.展开更多
The performance of corporate social responsibility is conducive to the con- tinuous improvement of their profitability, and promotes the upgrading of corporation value. However, it is difficult to confirm, calculate a...The performance of corporate social responsibility is conducive to the con- tinuous improvement of their profitability, and promotes the upgrading of corporation value. However, it is difficult to confirm, calculate and check the costs and benefits brought by the implementation of corporate social responsibility under the current ac- counting theory system, so it is difficult to estimate whether the fulfillment of corpo- rate social responsibility has any effects on the corporation value assessment. Therefore, based on corporate social responsibility, the correction mode of corpora- tion value assessment is put forward.展开更多
This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting de...This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR.展开更多
Slope aspect is one of the indispensable internal factors besides lithology, relative elevation and slope degree. In this paper authors use information value model with Geo graphical Information System (GIS) technol...Slope aspect is one of the indispensable internal factors besides lithology, relative elevation and slope degree. In this paper authors use information value model with Geo graphical Information System (GIS) technology to study how slope aspect contributes to landslide growth from Yunyang to Wushan segment in the Three Gorges Reservoir area, and the relationship between aspect and landslide growth is quantified. Through the research on 205 landslides examples, it is found that the slope contributes most whose aspect is towards south,southeast and southwest aspect contribute moderately, and other five aspects contribute little. The research result inosculates preferably with the fact. The result of this paper can provide potent gist to the construction of Three Gorges Reservoir area in future.展开更多
Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence...Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence, a comprehensive map of landslide susceptibility is required which may be significantly helpful in reducing loss of property and human life. In this study, an integrated model of information value method and logistic regression is proposed by using their merits at maximum and overcoming their weaknesses, which may enhance precision and accuracy of landslide susceptibility assessment. A detailed and reliable landslide inventory with 1587 landslides was prepared and randomly divided into two groups,(i) training dataset and(ii) testing dataset. Eight distinct landslide conditioning factors including lithology, slope gradient, aspect, elevation, distance to drainages,distance to faults, distance to roads and vegetation coverage were selected for landslide susceptibility mapping. The produced landslide susceptibility maps were validated by the success rate and prediction rate curves. The validation results show that the success rate and the prediction rate of the integrated model are 81.7 % and 84.6 %, respectively, which indicate that the proposed integrated method is reliable to produce an accurate landslide susceptibility map and the results may be used for landslides management and mitigation.展开更多
In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are co...In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method.展开更多
Most real application processes belong to a complex nonlinear system with incomplete information. It is difficult to estimate a model by assuming that the data set is governed by a global model. Moreover, in real proc...Most real application processes belong to a complex nonlinear system with incomplete information. It is difficult to estimate a model by assuming that the data set is governed by a global model. Moreover, in real processes, the available data set is usually obtained with missing values. To overcome the shortcomings of global modeling and missing data values, a new modeling method is proposed. Firstly, an incomplete data set with missing values is partitioned into several clusters by a K-means with soft constraints (KSC) algorithm, which incorporates soft constraints to enable clustering with missing values. Then a local model based on each group is developed by using SVR algorithm, which adopts a missing value insensitive (MVI) kernel to investigate the missing value estimation problem. For each local model, its valid area is gotten as well. Simulation results prove the effectiveness of the current local model and the estimation algorithm.展开更多
The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific...The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific value representing the actual thermal energy provided for blast furnace was proposed. A cost performance evaluation model of coal injection was built up for the optimal selection of various kinds of coal based on effective calorific value. The model contains two indicators: coal effective calorific value which has eight sub-indicators and coal injection cost which includes four sub-indicators. In addition, the calculation principle and application of cost performance evaluation model in a Chinese large-scale iron and steel company were comprehensively introduced. The evaluation results finally confirm that this novel model is of great significance to the optimal selection of blast furnace pulverized coal.展开更多
To overcome the deficiencies of the existing Verhulst GM(1,1) model, based on the existing grey theory, a non-equal-interval direct optimum Verhulst GM(1,1) model is built which chooses a modified n-th component x(n) ...To overcome the deficiencies of the existing Verhulst GM(1,1) model, based on the existing grey theory, a non-equal-interval direct optimum Verhulst GM(1,1) model is built which chooses a modified n-th component x(n) of X(0) as the starting condition of the grey differential model. It optimizes a modified β value and the background value, and takes two times fitting optimization. The new model extends equal intervals to non-equal-intervals and is suitable for general data modelling and estimating parameters of the direct Verhulst GM(1,1). The new model does not need to pre-process the primitive data, nor accumulate generating operation (AGO) and inverse accumulated generating operation (IAGO). It is not only suitable for equal interval data modelling, but also for non-equal interval data modelling. As the new information is fully used and two times fitting optimization is taken, the fitting accuracy is the highest in all existing models. The example shows that the new model is simple and practical. The new model is worth expanding on and applying in data processing or on-line monitoring for tests, social sciences and other engineering sciences.展开更多
BACKGROUND Non-alcoholic fatty liver disease(NAFLD)with hepatic histological NAFLD activity score≥4 and fibrosis stage F≥2 is regarded as“at risk”non-alcoholic steatohepatitis(NASH).Based on an international conse...BACKGROUND Non-alcoholic fatty liver disease(NAFLD)with hepatic histological NAFLD activity score≥4 and fibrosis stage F≥2 is regarded as“at risk”non-alcoholic steatohepatitis(NASH).Based on an international consensus,NAFLD and NASH were renamed as metabolic dysfunction-associated steatotic liver disease(MASLD)and metabolic dysfunction-associated steatohepatitis(MASH),respectively;hence,we introduced the term“high-risk MASH”.Diagnostic values of seven non-invasive models,including FibroScan-aspartate transaminase(FAST),fibrosis-4(FIB-4),aspartate transaminase to platelet ratio index(APRI),etc.for high-risk MASH have rarely been studied and compared in MASLD.AIM To assess the clinical value of seven non-invasive models as alternatives to liver biopsy for diagnosing high-risk MASH.METHODS A retrospective analysis was conducted on 309 patients diagnosed with NAFLD via liver biopsy at Beijing Ditan Hospital,between January 2012 and December 2020.After screening for MASLD and the exclusion criteria,279 patients wereincluded and categorized into high-risk and non-high-risk MASH groups.Utilizing threshold values of each model,sensitivity,specificity,positive predictive value(PPV),and negative predictive values(NPV),were calculated.Receiver operating characteristic curves were constructed to evaluate their diagnostic efficacy based on the area under the curve(AUROC).RESULTS MASLD diagnostic criteria were met by 99.4%patients with NAFLD.The MASLD population was analyzed in two cohorts:Overall population(279 patients)and the subgroup(117 patients)who underwent liver transient elastography(FibroScan).In the overall population,FIB-4 showed better diagnostic efficacy and higher PPV,with sensitivity,specificity,PPV,NPV,and AUROC of 26.9%,95.2%,73.5%,72.2%,and 0.75.APRI,Forns index,and aspartate transaminase to alanine transaminase ratio(ARR)showed moderate diagnostic efficacy,whereas S index and gamma-glutamyl transpeptidase to platelet ratio(GPR)were relatively weaker.In the subgroup,FAST had the highest diagnostic efficacy,its sensitivity,specificity,PPV,NPV,and AUROC were 44.2%,92.3%,82.1%,67.4%,and 0.82.The FIB-4 AUROC was 0.76.S index and GPR exhibited almost no diagnostic value for high-risk MASH.CONCLUSION FAST and FIB-4 could replace liver biopsy as more effectively diagnostic methods for high-risk MASH compared to APRI,Forns index,ARR,S index,and GPR;FAST is superior to FIB-4.展开更多
In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed metho...In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.展开更多
In recent decades,the generation of Municipal Solid Waste(MSW)is steadily increasing due to urbanization and technological advancement.The col-lection and disposal of municipal solid waste cause considerable environme...In recent decades,the generation of Municipal Solid Waste(MSW)is steadily increasing due to urbanization and technological advancement.The col-lection and disposal of municipal solid waste cause considerable environmental degradation,making MSW management a global priority.Waste-to-energy(WTE)using thermochemical process has been identified as the key solution in this area.After evaluating many automated Higher Heating Value(HHV)predic-tion approaches,an Optimal Deep Learning-based HHV Prediction(ODL-HHVP)model for MSW management has been developed.The objective of the ODL-HHVP model is to forecast the HHV of municipal solid waste,based on its oxy-gen,water,hydrogen,carbon,nitrogen,sulphur and ash constituents.In addition,the ODL-HHVP model contains a Deep Support Vector Machine(DSVM)regres-sion component that can accurately predict the HHV.In addition,the Beetle Swarm Optimization(BSO)method is utilised as a hyperparameter optimizer in conjunction with the DSVM model,resulting in the highest HHV prediction accu-racy.A comprehensive simulation study is conducted to validate the performance of the ODL-HHVP method.The Multiple Linear Regression(MLR),Genetic Pro-gramming(GP),Resilient backpropagation(RP),Levenberg Marquardt(LM)and DSVM approaches have attained an ineffective result with RMSEs of 4.360,2.870,3.590,3.100 and 3.050,respectively.The experimentalfindings demon-strate that the ODL-HHVP technique outperforms existing state-of-art technolo-gies in a variety of respects.展开更多
Through the Economic-Value-Added(EVA)valuation model,the expected market value of equity can be determined by adding the book value of equity with the present value of expected EVAs under the assumption of constant re...Through the Economic-Value-Added(EVA)valuation model,the expected market value of equity can be determined by adding the book value of equity with the present value of expected EVAs under the assumption of constant required return and constant return on equity.The equation of EVA valuation model has taken its shape under the assumption of constant required return and constant return on equity.However,a large body of empirical evidence indicates that required rate of return never remain constant.The EVA-valuation model formulated under constant required return cannot be implemented under the scenario of changing required return.In this study,we explored whether the EVA valuation model could be implemented under changing required return by making any changes in the model and found that it could be implemented under the scenario of changing required return by replacing the book value of the equity of the existing model with the present value of required earnings or normal market earnings.We further examined whether the explanatory ability of the EVA valuation model under the assumption of changing required return is better than that of the valuation model under the assumption of constant required return.Relative information content analyses were conducted by considering sample of the intrinsic value of equities determined by valuation models and the market value of equities of 69 large-cap,88 mid-cap,and 79 small-cap companies.The results showed that the EVA-based valuation model with changing normal market return outperformed the EVA-based valuation model with constant required return.展开更多
We consider a problem from stock market modeling, precisely, choice of adequate distribution of modeling extremal behavior of stock market data. Generalized extreme value (GEV) distribution and generalized Pareto (GP)...We consider a problem from stock market modeling, precisely, choice of adequate distribution of modeling extremal behavior of stock market data. Generalized extreme value (GEV) distribution and generalized Pareto (GP) distribution are the classical distributions for this problem. However, from 2004, [1] and many other researchers have been empirically showing that generalized logistic (GL) distribution is a better model than GEV and GP distributions in modeling extreme movement of stock market data. In this paper, we show that these results are not accidental. We prove the theoretical importance of GL distribution in extreme value modeling. For proving this, we introduce a general multivariate limit theorem and deduce some important multivariate theorems in probability as special cases. By using the theorem, we derive a limit theorem in extreme value theory, where GL distribution plays central role instead of GEV distribution. The proof of this result is parallel to the proof of classical extremal types theorem, in the sense that, it possess important characteristic in classical extreme value theory, for e.g. distributional property, stability, convergence and multivariate extension etc.展开更多
基金Suzhou Agricultural Vocational and Technical College Young Teachers Research Ability Enhancement Program“Research and Screening of Bacteria for Fermented Beverages of Vice Tea and Loquat Flower”(Project No.QN[2022]01)。
文摘This article explores the impact of the three-dimensional cultivation mode on the development of the Suzhou tea industry,focusing on the diversified estimation of the value of output per acre and sales mode.It introduces the history and traditional cultivation practices of tea in Suzhou,as well as the current challenges and problems faced by the industry.An in-depth analysis was conducted on the overview and improvement plans of the three-dimensional cultivation mode,covering relevant technical methods.Based on this analysis,the impact of the three-dimensional cultivation on the value of output per acre was studied and predicted.Its potential and advantages were explored and compared with the effectiveness of traditional cultivation models.Additionally,the impact of the three-dimensional cultivation mode on sales was analyzed,examining its market adaptability and competitiveness,as well as its advantages in expanding sales channels and market coverage.The study also focused on the promoting effect of diversified sales models on the Suzhou tea industry,including direct consumption market development,tea processing product development and promotion,and the integration of tea culture and the tourism industry.To ensure sustainable development,the article evaluates the environmental impact,economic feasibility,social benefits,and farmer benefits of the three-dimensional cultivation model.Finally,the prospects for the development of the Suzhou tea industry were discussed,and the positioning and response strategies of the threedimensional cultivation model were proposed.
基金The National Key R&D Program of China(Key Special Project for Marine Environmental Security and Sustainable Development of Coral Reefs 2022-3.3),No.2022YFC3103-004001Scientific Research Foundation of Shanghai Municipal Health Commission of Changning District,No.20234Y038.
文摘Hepatocellular carcinoma(HCC)presents challenges due to its high recurrence and metastasis rates and poor prognosis.While current clinical diagnostic and prognostic indicators exist,their accuracy remains imperfect due to their biol-ogical complexity.Therefore,there is a quest to identify improved biomarkers for HCC diagnosis and prognosis.By combining long non-coding RNA(lncRNA)expression and somatic mutations,Duan et al identified five representative lncRNAs from 88 lncRNAs related to genomic instability(GI),forming a GI-derived lncRNA signature(LncSig).This signature outperforms previously re-ported LncSig and TP53 mutations in predicting HCC prognosis.In this editorial,we comprehensively evaluate the clinical application value of such prognostic evaluation model based on sequencing technology in terms of cost,time,and practicability.Additionally,we provide an overview of various prognostic models for HCC,aiding in a comprehensive understanding of research progress in pro-gnostic evaluation methods.
基金Under the auspices of Humanities and Social Sciences Foundation of Soochow University(No.22XM2008)National Social Science Foundation of China(No.23BGL168)。
文摘As the most economically developed metropolitan area in China’s Yangtze River Delta,the rapid changing land use patterns of Suzhou-Wuxi-Changzhou(Su-Xi-Chang) metropolitan area have profound impacts on the ecosystem service value(ESV).Based on the patterns of land use change and the ESV change in Su-Xi-Chang metropolitan area from 2000 to 2020,we set up four scenarios:natural development scenario,urban development scenario,arable land protection scenario and ecological protection scenario,and simulated the impact of land use changes on the ESV in these scenarios.The results showed that:1) the area of built-up land in the Su-XiChang metropolitan area increased significantly from 2000 to 2020,and the area of other types of land decreased.Arable land underwent the highest transfer-out area,and was primarily converted into built-up land.The total ESV of Su-Xi-Chang metropolitan area increased initially then declined from 2000–2020,and the value of almost all individual ecosystem services decreased.2) Population density,GDP per area,night lighting intensity,and road network density can negatively impact the ESV.3) The total ESV loss under the natural development and urban development scenarios was high,and the expansion of the built-up land and the drastic shrinkage of the arable land contributed to the ESV decline under both scenarios.The total ESV under arable land protection and ecological protection scenarios increases,and therefore these scenarios are suitable for future land use optimization in Su-Xi-Chang.This study could provide a certain reference for land use planning and allocation,and offer guidance for the rational allocation of land resources.
文摘In order to realize the accurate prediction of the total output value of construction industry in the future,the grey prediction model is used to compare the measured value with the predicted value from 2012 to 2021,and based on the existing data,the total output value of construction industry in Jiangxi Province in the next five years is predicted.The results show that the grey prediction model has a good prediction effect,and the error between the predicted value and the measured value is within 14%,which provides a basis for policy adjustment and resource optimization.
基金Tropical Ocean University 2023 Provincial Key Discipline Construction Project-Business Administration.Project of the National Social Science Foundation:Research on the Cooperation Mechanism and Realisation Path for the Cooperative Development of the Cruise Industry in the Countries Surrounding the South China Sea(19XJY001)Key Laboratory of the Ministry of Culture and Tourism on Data Mining,Monitoring and Early Warning Technology for Island Tourism Resources(KLITRDMM 2022-15).
文摘Cruise value chain is to take the exchange of cruise products and services as the core in a certain spatial scope,and enterprises with core advantages within or between different industries establish associations in accordance with certain technical and economic conditions,so as to realise the multi-dimensional extension and value appreciation of the cruise value chain in the vertical and horizontal links,and ultimately establish a chain-network type of enterprise strategic alliance.This paper tries to analyse the value-added factors of the cruise industry chain by constructing a multi-level hierarchical structural model with reference to the influencing factor analysis methods of relevant literature-DEMATEL(Decision Making Experiment and Evaluation Experiment)and ISM(Interpretative Structural Model).The study shows that the innovation and scale value-added module in the upstream of the cruise industry chain is the core module of value-added of the whole cruise industry chain,and the value-added mainly originates from the design and manufacturing of cruise ships.The middle reaches of the cruise industry chain are mainly cruise operation enterprises,and the specificity of cruise operation determines that its brand value-added is mainly accomplished through the global layout of multinational corporations,and the cruise brand is able to drive the consumption demand and has value-added ability.The downstream value-added of the cruise industry chain is mainly realised through the increase in profits of cruise tourism service products.
基金Supported by Rural Development Research Center in Sichuan(2009CR2110921)~~
文摘With the increased competition of modern economy and globalization,consumer creation which based on the analysis of consumer behavior was more and more attentioned and respected by business.Based on the meaning and characteristics of agricultural product consumer creation,index system of value model of agricultural product consumer creation was put forward through analytical hierarchy process(AHP).The weights of the indicators and related indicators of impact on the value were analyzed,and value models of agricultural product consumer creation were constructed to provide ideas for development of agricultural product consumer market and research of consumer value.Consumer creation was constructed to provide ideas for development of agricultural product consumer market and research of consumer value.
文摘The performance of corporate social responsibility is conducive to the con- tinuous improvement of their profitability, and promotes the upgrading of corporation value. However, it is difficult to confirm, calculate and check the costs and benefits brought by the implementation of corporate social responsibility under the current ac- counting theory system, so it is difficult to estimate whether the fulfillment of corpo- rate social responsibility has any effects on the corporation value assessment. Therefore, based on corporate social responsibility, the correction mode of corpora- tion value assessment is put forward.
基金This work was supported in part by the National Natural Science Foundation of China(61601418,41602362,61871259)in part by the Opening Foundation of Hunan Engineering and Research Center of Natural Resource Investigation and Monitoring(2020-5)+1 种基金in part by the Qilian Mountain National Park Research Center(Qinghai)(grant number:GKQ2019-01)in part by the Geomatics Technology and Application Key Laboratory of Qinghai Province,Grant No.QHDX-2019-01.
文摘This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR.
文摘Slope aspect is one of the indispensable internal factors besides lithology, relative elevation and slope degree. In this paper authors use information value model with Geo graphical Information System (GIS) technology to study how slope aspect contributes to landslide growth from Yunyang to Wushan segment in the Three Gorges Reservoir area, and the relationship between aspect and landslide growth is quantified. Through the research on 205 landslides examples, it is found that the slope contributes most whose aspect is towards south,southeast and southwest aspect contribute moderately, and other five aspects contribute little. The research result inosculates preferably with the fact. The result of this paper can provide potent gist to the construction of Three Gorges Reservoir area in future.
基金supported by the Project of the 12th Five-year National Sci-Tech Support Plan of China(2011BAK12B09)China Special Project of Basic Work of Science and Technology(2011FY110100-2)
文摘Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence, a comprehensive map of landslide susceptibility is required which may be significantly helpful in reducing loss of property and human life. In this study, an integrated model of information value method and logistic regression is proposed by using their merits at maximum and overcoming their weaknesses, which may enhance precision and accuracy of landslide susceptibility assessment. A detailed and reliable landslide inventory with 1587 landslides was prepared and randomly divided into two groups,(i) training dataset and(ii) testing dataset. Eight distinct landslide conditioning factors including lithology, slope gradient, aspect, elevation, distance to drainages,distance to faults, distance to roads and vegetation coverage were selected for landslide susceptibility mapping. The produced landslide susceptibility maps were validated by the success rate and prediction rate curves. The validation results show that the success rate and the prediction rate of the integrated model are 81.7 % and 84.6 %, respectively, which indicate that the proposed integrated method is reliable to produce an accurate landslide susceptibility map and the results may be used for landslides management and mitigation.
基金Supported in part by the National Thousand Talents Program of Chinathe National Natural Science Foundation of China(61473054)the Fundamental Research Funds for the Central Universities of China
文摘In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method.
基金supported by Key Discipline Construction Program of Beijing Municipal Commission of Education (XK10008043)
文摘Most real application processes belong to a complex nonlinear system with incomplete information. It is difficult to estimate a model by assuming that the data set is governed by a global model. Moreover, in real processes, the available data set is usually obtained with missing values. To overcome the shortcomings of global modeling and missing data values, a new modeling method is proposed. Firstly, an incomplete data set with missing values is partitioned into several clusters by a K-means with soft constraints (KSC) algorithm, which incorporates soft constraints to enable clustering with missing values. Then a local model based on each group is developed by using SVR algorithm, which adopts a missing value insensitive (MVI) kernel to investigate the missing value estimation problem. For each local model, its valid area is gotten as well. Simulation results prove the effectiveness of the current local model and the estimation algorithm.
基金Project(51134008)supported by the National Natural Science Foundation of ChinaProject(2012CB720401)supported by the National Basic Research Program of China
文摘The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific value representing the actual thermal energy provided for blast furnace was proposed. A cost performance evaluation model of coal injection was built up for the optimal selection of various kinds of coal based on effective calorific value. The model contains two indicators: coal effective calorific value which has eight sub-indicators and coal injection cost which includes four sub-indicators. In addition, the calculation principle and application of cost performance evaluation model in a Chinese large-scale iron and steel company were comprehensively introduced. The evaluation results finally confirm that this novel model is of great significance to the optimal selection of blast furnace pulverized coal.
基金The 11th Five-Year Plan for Key Constructing Academic Subject of Hunan Province(No.XJT2006180)Natural Science Foundation of Hunan Province (No.07JJ3093)Hunan Province Foundation Research Program (No.2007FJ3030,2007GK3058)
文摘To overcome the deficiencies of the existing Verhulst GM(1,1) model, based on the existing grey theory, a non-equal-interval direct optimum Verhulst GM(1,1) model is built which chooses a modified n-th component x(n) of X(0) as the starting condition of the grey differential model. It optimizes a modified β value and the background value, and takes two times fitting optimization. The new model extends equal intervals to non-equal-intervals and is suitable for general data modelling and estimating parameters of the direct Verhulst GM(1,1). The new model does not need to pre-process the primitive data, nor accumulate generating operation (AGO) and inverse accumulated generating operation (IAGO). It is not only suitable for equal interval data modelling, but also for non-equal interval data modelling. As the new information is fully used and two times fitting optimization is taken, the fitting accuracy is the highest in all existing models. The example shows that the new model is simple and practical. The new model is worth expanding on and applying in data processing or on-line monitoring for tests, social sciences and other engineering sciences.
基金Supported by National Natural Science Foundation of China,No.82170591Natural Science Foundation of Beijing,No.7222097.
文摘BACKGROUND Non-alcoholic fatty liver disease(NAFLD)with hepatic histological NAFLD activity score≥4 and fibrosis stage F≥2 is regarded as“at risk”non-alcoholic steatohepatitis(NASH).Based on an international consensus,NAFLD and NASH were renamed as metabolic dysfunction-associated steatotic liver disease(MASLD)and metabolic dysfunction-associated steatohepatitis(MASH),respectively;hence,we introduced the term“high-risk MASH”.Diagnostic values of seven non-invasive models,including FibroScan-aspartate transaminase(FAST),fibrosis-4(FIB-4),aspartate transaminase to platelet ratio index(APRI),etc.for high-risk MASH have rarely been studied and compared in MASLD.AIM To assess the clinical value of seven non-invasive models as alternatives to liver biopsy for diagnosing high-risk MASH.METHODS A retrospective analysis was conducted on 309 patients diagnosed with NAFLD via liver biopsy at Beijing Ditan Hospital,between January 2012 and December 2020.After screening for MASLD and the exclusion criteria,279 patients wereincluded and categorized into high-risk and non-high-risk MASH groups.Utilizing threshold values of each model,sensitivity,specificity,positive predictive value(PPV),and negative predictive values(NPV),were calculated.Receiver operating characteristic curves were constructed to evaluate their diagnostic efficacy based on the area under the curve(AUROC).RESULTS MASLD diagnostic criteria were met by 99.4%patients with NAFLD.The MASLD population was analyzed in two cohorts:Overall population(279 patients)and the subgroup(117 patients)who underwent liver transient elastography(FibroScan).In the overall population,FIB-4 showed better diagnostic efficacy and higher PPV,with sensitivity,specificity,PPV,NPV,and AUROC of 26.9%,95.2%,73.5%,72.2%,and 0.75.APRI,Forns index,and aspartate transaminase to alanine transaminase ratio(ARR)showed moderate diagnostic efficacy,whereas S index and gamma-glutamyl transpeptidase to platelet ratio(GPR)were relatively weaker.In the subgroup,FAST had the highest diagnostic efficacy,its sensitivity,specificity,PPV,NPV,and AUROC were 44.2%,92.3%,82.1%,67.4%,and 0.82.The FIB-4 AUROC was 0.76.S index and GPR exhibited almost no diagnostic value for high-risk MASH.CONCLUSION FAST and FIB-4 could replace liver biopsy as more effectively diagnostic methods for high-risk MASH compared to APRI,Forns index,ARR,S index,and GPR;FAST is superior to FIB-4.
基金supported by the National Science Fund for Distinguished Young Scholars (62225303)the Fundamental Research Funds for the Central Universities (buctrc202201)+1 种基金China Scholarship Council,and High Performance Computing PlatformCollege of Information Science and Technology,Beijing University of Chemical Technology。
文摘In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.
文摘In recent decades,the generation of Municipal Solid Waste(MSW)is steadily increasing due to urbanization and technological advancement.The col-lection and disposal of municipal solid waste cause considerable environmental degradation,making MSW management a global priority.Waste-to-energy(WTE)using thermochemical process has been identified as the key solution in this area.After evaluating many automated Higher Heating Value(HHV)predic-tion approaches,an Optimal Deep Learning-based HHV Prediction(ODL-HHVP)model for MSW management has been developed.The objective of the ODL-HHVP model is to forecast the HHV of municipal solid waste,based on its oxy-gen,water,hydrogen,carbon,nitrogen,sulphur and ash constituents.In addition,the ODL-HHVP model contains a Deep Support Vector Machine(DSVM)regres-sion component that can accurately predict the HHV.In addition,the Beetle Swarm Optimization(BSO)method is utilised as a hyperparameter optimizer in conjunction with the DSVM model,resulting in the highest HHV prediction accu-racy.A comprehensive simulation study is conducted to validate the performance of the ODL-HHVP method.The Multiple Linear Regression(MLR),Genetic Pro-gramming(GP),Resilient backpropagation(RP),Levenberg Marquardt(LM)and DSVM approaches have attained an ineffective result with RMSEs of 4.360,2.870,3.590,3.100 and 3.050,respectively.The experimentalfindings demon-strate that the ODL-HHVP technique outperforms existing state-of-art technolo-gies in a variety of respects.
文摘Through the Economic-Value-Added(EVA)valuation model,the expected market value of equity can be determined by adding the book value of equity with the present value of expected EVAs under the assumption of constant required return and constant return on equity.The equation of EVA valuation model has taken its shape under the assumption of constant required return and constant return on equity.However,a large body of empirical evidence indicates that required rate of return never remain constant.The EVA-valuation model formulated under constant required return cannot be implemented under the scenario of changing required return.In this study,we explored whether the EVA valuation model could be implemented under changing required return by making any changes in the model and found that it could be implemented under the scenario of changing required return by replacing the book value of the equity of the existing model with the present value of required earnings or normal market earnings.We further examined whether the explanatory ability of the EVA valuation model under the assumption of changing required return is better than that of the valuation model under the assumption of constant required return.Relative information content analyses were conducted by considering sample of the intrinsic value of equities determined by valuation models and the market value of equities of 69 large-cap,88 mid-cap,and 79 small-cap companies.The results showed that the EVA-based valuation model with changing normal market return outperformed the EVA-based valuation model with constant required return.
文摘We consider a problem from stock market modeling, precisely, choice of adequate distribution of modeling extremal behavior of stock market data. Generalized extreme value (GEV) distribution and generalized Pareto (GP) distribution are the classical distributions for this problem. However, from 2004, [1] and many other researchers have been empirically showing that generalized logistic (GL) distribution is a better model than GEV and GP distributions in modeling extreme movement of stock market data. In this paper, we show that these results are not accidental. We prove the theoretical importance of GL distribution in extreme value modeling. For proving this, we introduce a general multivariate limit theorem and deduce some important multivariate theorems in probability as special cases. By using the theorem, we derive a limit theorem in extreme value theory, where GL distribution plays central role instead of GEV distribution. The proof of this result is parallel to the proof of classical extremal types theorem, in the sense that, it possess important characteristic in classical extreme value theory, for e.g. distributional property, stability, convergence and multivariate extension etc.