High-performance blue organic light-emitting diodes (OLEDs) are developed. A concept of using multiple-emissive layer (EML) configuration is adopted. In this letter, bis(2-methyl-8-quinolinolate)-4- (phenylphen...High-performance blue organic light-emitting diodes (OLEDs) are developed. A concept of using multiple-emissive layer (EML) configuration is adopted. In this letter, bis(2-methyl-8-quinolinolate)-4- (phenylphenolato)A1 (BAlq) and 9,10-di(naphtha-2-yl)anthracene (ADN), which serve n- and p-type EMLs, respectively, are used to evaluate and demonstrate the multi-EML concept for blue OLEDs. The thickness effect of individual EMLs and the number of EMLs, e.g., triple and quadruple EML components, on the power efficiency of blue OLEDs are systematically investigated. To illustrate the point, the total thickness of the emissive region in different blue OLEDs are kept contact at 30 nm for comparison. The power efficiency of blue OLEDs with a quadruple EML structure of BAlq/ADN/BAlq/ADN is about 40% higher than that of blue OLEDs having a single EML unit. The Commission Internationale deL'eclairage color coordinates of multi-EML OLEDs have values that represent the average of blue emissions from individual EMLs of BAlq and ADN.展开更多
Carbon dots(CDs), a new building unit, have been revolutionizing the fields of biomedicine, bioimaging, and optoelectronics with their excellent physical, chemical, and biological properties. However, the difficulty o...Carbon dots(CDs), a new building unit, have been revolutionizing the fields of biomedicine, bioimaging, and optoelectronics with their excellent physical, chemical, and biological properties. However, the difficulty of preparing excitation-dependent full-spectrum fluorescent CDs has seriously hindered their further research in fluorescence emission mechanisms and biomedicine. Here, we report full-spectrum fluorescent CDs that exhibit controlled emission changes from purple(380 nm) to red(613 nm) at room temperature by changing the excitation wavelength, and the excitation dependence was closely related to the regulation of sp2 and sp3 hybrid carbon structures by β-cyclodextrin-related groups. In addition,by regulating the content of β-cyclodextrin, the optimal quantum yields of full-spectrum fluorescent CDs were 8.97%, 8.35%, 7.90%, 9.69% and 17.4% at the excitation wavelengths of 340, 350, 390, 410 and 540 nm,respectively. Due to their excellent biocompatibility and color tunability, full-spectrum fluorescent CDs emitted bright and steady purple, blue, green, yellow, and red fluorescence in MCF-7 cells. Moreover, we optimized the imaging conditions of CDs and mitochondrial-specific dyes;and realized the mitochondrialtargeted co-localization imaging of purple, blue and green fluorescence. After that, we also explored the effect of full-spectrum fluorescent CDs in vivo fluorescence imaging through the intratumorally, subcutaneously, and caudal vein, and found that full-spectrum fluorescent CDs had good fluorescence imaging ability in vivo.展开更多
基金This research project entitled"Development of High-efficient White Organic Light-emitting Diodes for Lighting Application"was supported by Korea Industry Foundation
文摘High-performance blue organic light-emitting diodes (OLEDs) are developed. A concept of using multiple-emissive layer (EML) configuration is adopted. In this letter, bis(2-methyl-8-quinolinolate)-4- (phenylphenolato)A1 (BAlq) and 9,10-di(naphtha-2-yl)anthracene (ADN), which serve n- and p-type EMLs, respectively, are used to evaluate and demonstrate the multi-EML concept for blue OLEDs. The thickness effect of individual EMLs and the number of EMLs, e.g., triple and quadruple EML components, on the power efficiency of blue OLEDs are systematically investigated. To illustrate the point, the total thickness of the emissive region in different blue OLEDs are kept contact at 30 nm for comparison. The power efficiency of blue OLEDs with a quadruple EML structure of BAlq/ADN/BAlq/ADN is about 40% higher than that of blue OLEDs having a single EML unit. The Commission Internationale deL'eclairage color coordinates of multi-EML OLEDs have values that represent the average of blue emissions from individual EMLs of BAlq and ADN.
基金supported by the National Natural Science Foundation of China(No.U2230123)the Science Foundation of the Science and Technology Department of Sichuan Province(No.22ZYZYTS0159)+4 种基金Science Foundation of China University of Petroleum(Nos.2462019QNXZ02,2462019BJRC007)Science Foundation of China University of Petroleum(East China)(No.2462020YXZZ018)Science and Technology Innovation Commission of Shenzhen(No.JSGG20210802153410031)Science and Technology Project of Nanshan District(No.NS_(2)021016)the Scientific Research Startup Fund for Discipline Leader of Huazhong University of Science and Technology Union Shenzhen Hospital(Nanshan Hospital)(No.YN2021002)。
文摘Carbon dots(CDs), a new building unit, have been revolutionizing the fields of biomedicine, bioimaging, and optoelectronics with their excellent physical, chemical, and biological properties. However, the difficulty of preparing excitation-dependent full-spectrum fluorescent CDs has seriously hindered their further research in fluorescence emission mechanisms and biomedicine. Here, we report full-spectrum fluorescent CDs that exhibit controlled emission changes from purple(380 nm) to red(613 nm) at room temperature by changing the excitation wavelength, and the excitation dependence was closely related to the regulation of sp2 and sp3 hybrid carbon structures by β-cyclodextrin-related groups. In addition,by regulating the content of β-cyclodextrin, the optimal quantum yields of full-spectrum fluorescent CDs were 8.97%, 8.35%, 7.90%, 9.69% and 17.4% at the excitation wavelengths of 340, 350, 390, 410 and 540 nm,respectively. Due to their excellent biocompatibility and color tunability, full-spectrum fluorescent CDs emitted bright and steady purple, blue, green, yellow, and red fluorescence in MCF-7 cells. Moreover, we optimized the imaging conditions of CDs and mitochondrial-specific dyes;and realized the mitochondrialtargeted co-localization imaging of purple, blue and green fluorescence. After that, we also explored the effect of full-spectrum fluorescent CDs in vivo fluorescence imaging through the intratumorally, subcutaneously, and caudal vein, and found that full-spectrum fluorescent CDs had good fluorescence imaging ability in vivo.