The new Austrian tunneling method (NATM) is widely applied in design and construction of underground engineering projects. When the type and distribution of unfavorable geological bodies (UGBs) associated with the...The new Austrian tunneling method (NATM) is widely applied in design and construction of underground engineering projects. When the type and distribution of unfavorable geological bodies (UGBs) associated with their influences on geoengineering are complicated or unfortunately are overlooked, we should pay more attentions to internal features of rocks grades IV and V (even in local but mostly controlling zones). With increasing attentions to the characteristics, mechanism and influences of engineering construction-triggered geohazards, it is crucial to fully understand the disturbance of these geohazards on project construction. A reasonable determination method in construction procedure, i.e. the shape of working face, the type of engineering support and the choice of feasible procedure, should be considered in order to mitigate the construction-triggered geohazards. Due to their high sensitivity to groundwater and in-situ stress, various UGBs exhibit hysteretic nature and failure modes. To give a complete understanding on the internal causes, the emphasis on advanced comprehensive geological forecasting and overall reinforcement treatment is therefore of more practical significance. Compre- hensive evaluation of influential factors, identification of UGB, and measures of discontinuity dynamic controlling comprises the geoengineering condition evaluation and dynamic controlling method. In a case of a cut slope, the variations of UGBs and the impacts of key environmental factors are presented, where more severe construction-triggered geohazards emerged in construction stage than those predicted in design and field investigation stages. As a result, the weight ratios of different influential factors with respect to field investigation, design and construction are obtained.展开更多
Alzheimer's disease(AD)represents the main form of dementia;however,valid diagnosis and treatment measures are lacking.The discovery of valuable biomarkers through omics technologies can help solve this problem.Fo...Alzheimer's disease(AD)represents the main form of dementia;however,valid diagnosis and treatment measures are lacking.The discovery of valuable biomarkers through omics technologies can help solve this problem.For this reason,metabolomic analysis using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS)was carried out on plasma,hippocampus,and cortex samples of an AD rat model.Based on the metabolomic data,we report a multi-factor combined biomarker screening strategy to rapidly and accurately identify potential biomarkers.Compared with the usual procedure,our strategy can identify fewer biomarkers with higher diagnostic specificity and sensitivity.In addition to diagnosis,the potential biomarkers identified using our strategy were also beneficial for drug evaluation.Multi-factor combined biomarker screening strategy was used to identify differential metabolites from a rat model of amyloid beta peptide 1e40(Aβ_(1-40))plus ibotenic acid-induced AD(compared with the controls)for the first time;lysophosphatidylcholine(LysoPC)and intermediates of sphingolipid metabolism were screened as potential biomarkers.Subsequently,the effects of donepezil and pine nut were successfully reflected by regulating the levels of the abovementioned biomarkers and metabolic profile distribution in partial least squaresdiscriminant analysis(PLS-DA).This novel biomarker screening strategy can be used to analyze other metabolomic data to simultaneously enable disease diagnosis and drug evaluation.展开更多
基金support by the National Natural Science Foundation of China (No. 41372324)support from the Chinese Special Funds for Major State Basic Research Project under Grant No. 2010CB732001
文摘The new Austrian tunneling method (NATM) is widely applied in design and construction of underground engineering projects. When the type and distribution of unfavorable geological bodies (UGBs) associated with their influences on geoengineering are complicated or unfortunately are overlooked, we should pay more attentions to internal features of rocks grades IV and V (even in local but mostly controlling zones). With increasing attentions to the characteristics, mechanism and influences of engineering construction-triggered geohazards, it is crucial to fully understand the disturbance of these geohazards on project construction. A reasonable determination method in construction procedure, i.e. the shape of working face, the type of engineering support and the choice of feasible procedure, should be considered in order to mitigate the construction-triggered geohazards. Due to their high sensitivity to groundwater and in-situ stress, various UGBs exhibit hysteretic nature and failure modes. To give a complete understanding on the internal causes, the emphasis on advanced comprehensive geological forecasting and overall reinforcement treatment is therefore of more practical significance. Compre- hensive evaluation of influential factors, identification of UGB, and measures of discontinuity dynamic controlling comprises the geoengineering condition evaluation and dynamic controlling method. In a case of a cut slope, the variations of UGBs and the impacts of key environmental factors are presented, where more severe construction-triggered geohazards emerged in construction stage than those predicted in design and field investigation stages. As a result, the weight ratios of different influential factors with respect to field investigation, design and construction are obtained.
基金supported by the National Natural Science Foundation of China(Grant No.:81673392).
文摘Alzheimer's disease(AD)represents the main form of dementia;however,valid diagnosis and treatment measures are lacking.The discovery of valuable biomarkers through omics technologies can help solve this problem.For this reason,metabolomic analysis using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS)was carried out on plasma,hippocampus,and cortex samples of an AD rat model.Based on the metabolomic data,we report a multi-factor combined biomarker screening strategy to rapidly and accurately identify potential biomarkers.Compared with the usual procedure,our strategy can identify fewer biomarkers with higher diagnostic specificity and sensitivity.In addition to diagnosis,the potential biomarkers identified using our strategy were also beneficial for drug evaluation.Multi-factor combined biomarker screening strategy was used to identify differential metabolites from a rat model of amyloid beta peptide 1e40(Aβ_(1-40))plus ibotenic acid-induced AD(compared with the controls)for the first time;lysophosphatidylcholine(LysoPC)and intermediates of sphingolipid metabolism were screened as potential biomarkers.Subsequently,the effects of donepezil and pine nut were successfully reflected by regulating the levels of the abovementioned biomarkers and metabolic profile distribution in partial least squaresdiscriminant analysis(PLS-DA).This novel biomarker screening strategy can be used to analyze other metabolomic data to simultaneously enable disease diagnosis and drug evaluation.