3-Hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate, an important intermediate in the synthesis of cholesterol and essential nonsterol isoprenoids. The reductase is subject to an exorbitant...3-Hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate, an important intermediate in the synthesis of cholesterol and essential nonsterol isoprenoids. The reductase is subject to an exorbitant amount of feedback control through multiple mechanisms that are mediated by sterol and nonsterol end-products of mevalonate metabolism. Here, I will discuss recent advances that shed light on one mechanism for control of reductase, which involves rapid degradation of the enzyme. Accumulation of certain sterols triggers binding of reductase to endoplasmic reticulum (ER) membrane proteins called Insig-1 and Insig-2. Reductase-Insig binding results in recruitment of a membrane-associated ubiquitin ligase called gp78, which initiates ubiquitination of reductase. This ubiquitination is an obligatory reaction for recognition and degradation of reductase from ER membranes by cytosolic 26S proteasomes. Thus, sterol-accelerated degradation of reductase represents an example of how a general cellular process (ER-associated degradation) is used to control an important metabolic pathway (cholesterol synthesis).展开更多
Viral infection causes host cells to produce type I interferons (IFNs), which are critically involved in viral clearance. Previous studies have demonstrated that activation of the transcription factor interferon reg...Viral infection causes host cells to produce type I interferons (IFNs), which are critically involved in viral clearance. Previous studies have demonstrated that activation of the transcription factor interferon regulatory factor (IRF)3 is essential for virus-triggered induction of type I IFNs. Here we show that the E3 ubiquitin ligase RBCC protein interacting with PKC1 (RBCK1) catalyzes the ubiquitination and degradation of IRF3. Overexpression of RBCK1 negatively regulates Sendai virus-triggered induction of type I IFNs, while knockdown of RBCK1 has the opposite effect. Plaque assays consistently demonstrate that RBCKI negatively regulates the cellular antiviral response. Furthermore, viral infection leads to induction of RBCK1 and subsequent degradation of IRF3. These findings suggest that the cellular antiviral response is controlled by a negative feedback regulatory mechanism involving RBCKl-mediated ubiquitination and degradation of IRF3.展开更多
Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback(CNF) control technique. The regulator is designed to ...Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback(CNF) control technique. The regulator is designed to be an additive combination of a linear regulator part and a nonlinear feedback part. The linear regulator part solves the regulation problem independently which produces a quick output response but large oscillations. The nonlinear feedback part with well-tuned parameters is introduced to improve the transient performance by smoothing the oscillatory convergence. It is shown that the introduction of the nonlinear feedback part does not change the solvability conditions of the linear discrete-time output regulation problem. The effectiveness of transient improvement is illustrated by a numeric example.展开更多
A nonautonomous delayed logistic model with linear feedback regulation is proposed in this paper. Sufficient conditions are derived for the existence, uniqueness and global asymptotic stability of positive periodic so...A nonautonomous delayed logistic model with linear feedback regulation is proposed in this paper. Sufficient conditions are derived for the existence, uniqueness and global asymptotic stability of positive periodic solution of the model展开更多
By means of the continuation theorem of the coincidence degree theory,the existence of two periodic solutions of a delayed single species model with feedback regulation and harvest term is obtained.
This paper has studied the output feedback regulation problem for 1-D anti-stable wave equation with distributed disturbance and a given reference signal generated by a finite-dimensional exosystem. We first design an...This paper has studied the output feedback regulation problem for 1-D anti-stable wave equation with distributed disturbance and a given reference signal generated by a finite-dimensional exosystem. We first design an observer for both exosystem and auxiliary PDE system to recover the state. Then we show the well-posedness of the regulator equations and propose an observer-based feedback control law to regulate the tracking error to zero exponentially and keep all the states bounded.展开更多
A robust partial-state feedback asymptotic regulating control scheme is developed for a class of cascade systems with both nonlinear uncertainties and unknown control directions. A parameter separation technique is in...A robust partial-state feedback asymptotic regulating control scheme is developed for a class of cascade systems with both nonlinear uncertainties and unknown control directions. A parameter separation technique is introduced to separate the time-varying uncertainty and the unmeasurable state from nonlinear functions. Then, the Nussbaum-type gain method together with the idea of changing supply functions is adopted in the design of a smooth partial-state regulator that can ensure all the signals of the closed-loop system are globally uniformly bounded. Especially, the system state asymptotically converges to zero. The design procedure is illustrated through an example and the simulation results show that the controller is feasible and effective.展开更多
A mathematical model for the analysis of a gas-solid reacting system is presented. This model is an alternative to the classical shrinking-core model. The model has a structure that can be easily transformed into a ca...A mathematical model for the analysis of a gas-solid reacting system is presented. This model is an alternative to the classical shrinking-core model. The model has a structure that can be easily transformed into a canonical control form, which is proper for controller synthesis. Analytical solution of the model to describe the open-loop behavior is expressed in terms of the Lambert function. The Lambert function is evaluated from aTaylorexpansion series. Besides, a controller is proposed to regulate the reacted layer thickness using initially the diffusion coefficient as control input. The control law is synthesized employing the feedback linearization technique. Main contributions of this work are the synthesis of the layer thickness controller, and the employment of the process temperature as substitute of the diffusion coefficient as the control input.展开更多
Functional MRI was used to map the brains of subjects on-line during the process of media training for the acquisition and improvement of self-regulation mechanisms. The temporal and spatial dynamics of the new neural...Functional MRI was used to map the brains of subjects on-line during the process of media training for the acquisition and improvement of self-regulation mechanisms. The temporal and spatial dynamics of the new neural network formation were studied in real and simulated (false) biofeedback game, and their qualitative characteristics were discussed. It has been shown that immersion into a virtual competitive game, controlled by physiological responses, causes a wide involvement of the cortices, characterized by a high volume of activation in the mid-temporal, occipital and frontal areas, the cuneus and the precuneus. In both forms of media training, high values of activation volume were identified in the cerebellar structures.展开更多
Based on the feedback linearization technique, we present a systematic design method for the General Integral Control and a new integral control strategy along with a class of fire-new integrator. By using the linear ...Based on the feedback linearization technique, we present a systematic design method for the General Integral Control and a new integral control strategy along with a class of fire-new integrator. By using the linear system theory and Lyapunov method along with LaSalle’s invariance principle, the conditions on the control gains to ensure regionally as well as semi-globally asymptotic stability are provided. Theoretical analysis and simulation results demonstrated that: by using this design method, General Integral Control can deal with nonlinearity and uncertainties of dynamics more effectively;the optimum response can be achieved in the whole control domain, even under uncertain payload and varying-time disturbances. This means that General Integral Control has strong robustness, fast convergence, good flexibility, and then makes the engineers design a high performance controller more easily.展开更多
This paper proposes an output feedback nonlinear general integral controller for a class of uncertain nonlinear system. By solving Lyapunov equation, we demonstrate a new proposition on Equal ratio gain technique. By ...This paper proposes an output feedback nonlinear general integral controller for a class of uncertain nonlinear system. By solving Lyapunov equation, we demonstrate a new proposition on Equal ratio gain technique. By using Equal ratio gain technique, Singular perturbation technique and Lyapunov method, theorem to ensure regionally as well as semi-globally exponential stability is established in terms of some bounded information. Moreover, a real time method to evaluate the ratio coefficients of controller and observer are proposed such that their values can be chosen moderately. Theoretical analysis and simulation results show that not only output feedback nonlinear general integral control has the striking robustness but also the organic combination of Equal ratio gain technique and Singular perturbation technique constitutes a powerful tool to solve the output feedback control design problem of dynamics with the nonlinear and uncertain actions.展开更多
文摘3-Hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate, an important intermediate in the synthesis of cholesterol and essential nonsterol isoprenoids. The reductase is subject to an exorbitant amount of feedback control through multiple mechanisms that are mediated by sterol and nonsterol end-products of mevalonate metabolism. Here, I will discuss recent advances that shed light on one mechanism for control of reductase, which involves rapid degradation of the enzyme. Accumulation of certain sterols triggers binding of reductase to endoplasmic reticulum (ER) membrane proteins called Insig-1 and Insig-2. Reductase-Insig binding results in recruitment of a membrane-associated ubiquitin ligase called gp78, which initiates ubiquitination of reductase. This ubiquitination is an obligatory reaction for recognition and degradation of reductase from ER membranes by cytosolic 26S proteasomes. Thus, sterol-accelerated degradation of reductase represents an example of how a general cellular process (ER-associated degradation) is used to control an important metabolic pathway (cholesterol synthesis).
基金We thank members of our laboratory for technical help and stimulating discussion. This work was supported by the National Basic Research Program of China (No. 2006CB504301) and the National Natural Science Foundation of China (No. 30630019 and No. 30570959).
文摘Viral infection causes host cells to produce type I interferons (IFNs), which are critically involved in viral clearance. Previous studies have demonstrated that activation of the transcription factor interferon regulatory factor (IRF)3 is essential for virus-triggered induction of type I IFNs. Here we show that the E3 ubiquitin ligase RBCC protein interacting with PKC1 (RBCK1) catalyzes the ubiquitination and degradation of IRF3. Overexpression of RBCK1 negatively regulates Sendai virus-triggered induction of type I IFNs, while knockdown of RBCK1 has the opposite effect. Plaque assays consistently demonstrate that RBCKI negatively regulates the cellular antiviral response. Furthermore, viral infection leads to induction of RBCK1 and subsequent degradation of IRF3. These findings suggest that the cellular antiviral response is controlled by a negative feedback regulatory mechanism involving RBCKl-mediated ubiquitination and degradation of IRF3.
基金supported by the National Natural Science Foundation of China(61074004)the Research Fund for the Doctoral Program of Higher Education(20110121110017)
文摘Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback(CNF) control technique. The regulator is designed to be an additive combination of a linear regulator part and a nonlinear feedback part. The linear regulator part solves the regulation problem independently which produces a quick output response but large oscillations. The nonlinear feedback part with well-tuned parameters is introduced to improve the transient performance by smoothing the oscillatory convergence. It is shown that the introduction of the nonlinear feedback part does not change the solvability conditions of the linear discrete-time output regulation problem. The effectiveness of transient improvement is illustrated by a numeric example.
文摘A nonautonomous delayed logistic model with linear feedback regulation is proposed in this paper. Sufficient conditions are derived for the existence, uniqueness and global asymptotic stability of positive periodic solution of the model
基金Supported by the Science and Technical Foundation to Hubei University of Technology[2006(5)]
文摘By means of the continuation theorem of the coincidence degree theory,the existence of two periodic solutions of a delayed single species model with feedback regulation and harvest term is obtained.
文摘This paper has studied the output feedback regulation problem for 1-D anti-stable wave equation with distributed disturbance and a given reference signal generated by a finite-dimensional exosystem. We first design an observer for both exosystem and auxiliary PDE system to recover the state. Then we show the well-posedness of the regulator equations and propose an observer-based feedback control law to regulate the tracking error to zero exponentially and keep all the states bounded.
基金supported by the National Natural Science Foundation of China (No.60774010,60574080)the research startup Foundation of Qufu Normal University
文摘A robust partial-state feedback asymptotic regulating control scheme is developed for a class of cascade systems with both nonlinear uncertainties and unknown control directions. A parameter separation technique is introduced to separate the time-varying uncertainty and the unmeasurable state from nonlinear functions. Then, the Nussbaum-type gain method together with the idea of changing supply functions is adopted in the design of a smooth partial-state regulator that can ensure all the signals of the closed-loop system are globally uniformly bounded. Especially, the system state asymptotically converges to zero. The design procedure is illustrated through an example and the simulation results show that the controller is feasible and effective.
文摘A mathematical model for the analysis of a gas-solid reacting system is presented. This model is an alternative to the classical shrinking-core model. The model has a structure that can be easily transformed into a canonical control form, which is proper for controller synthesis. Analytical solution of the model to describe the open-loop behavior is expressed in terms of the Lambert function. The Lambert function is evaluated from aTaylorexpansion series. Besides, a controller is proposed to regulate the reacted layer thickness using initially the diffusion coefficient as control input. The control law is synthesized employing the feedback linearization technique. Main contributions of this work are the synthesis of the layer thickness controller, and the employment of the process temperature as substitute of the diffusion coefficient as the control input.
文摘Functional MRI was used to map the brains of subjects on-line during the process of media training for the acquisition and improvement of self-regulation mechanisms. The temporal and spatial dynamics of the new neural network formation were studied in real and simulated (false) biofeedback game, and their qualitative characteristics were discussed. It has been shown that immersion into a virtual competitive game, controlled by physiological responses, causes a wide involvement of the cortices, characterized by a high volume of activation in the mid-temporal, occipital and frontal areas, the cuneus and the precuneus. In both forms of media training, high values of activation volume were identified in the cerebellar structures.
文摘Based on the feedback linearization technique, we present a systematic design method for the General Integral Control and a new integral control strategy along with a class of fire-new integrator. By using the linear system theory and Lyapunov method along with LaSalle’s invariance principle, the conditions on the control gains to ensure regionally as well as semi-globally asymptotic stability are provided. Theoretical analysis and simulation results demonstrated that: by using this design method, General Integral Control can deal with nonlinearity and uncertainties of dynamics more effectively;the optimum response can be achieved in the whole control domain, even under uncertain payload and varying-time disturbances. This means that General Integral Control has strong robustness, fast convergence, good flexibility, and then makes the engineers design a high performance controller more easily.
文摘This paper proposes an output feedback nonlinear general integral controller for a class of uncertain nonlinear system. By solving Lyapunov equation, we demonstrate a new proposition on Equal ratio gain technique. By using Equal ratio gain technique, Singular perturbation technique and Lyapunov method, theorem to ensure regionally as well as semi-globally exponential stability is established in terms of some bounded information. Moreover, a real time method to evaluate the ratio coefficients of controller and observer are proposed such that their values can be chosen moderately. Theoretical analysis and simulation results show that not only output feedback nonlinear general integral control has the striking robustness but also the organic combination of Equal ratio gain technique and Singular perturbation technique constitutes a powerful tool to solve the output feedback control design problem of dynamics with the nonlinear and uncertain actions.