期刊文献+
共找到98篇文章
< 1 2 5 >
每页显示 20 50 100
Dynamic adaptive spatio-temporal graph network for COVID-19 forecasting
1
作者 Xiaojun Pu Jiaqi Zhu +3 位作者 Yunkun Wu Chang Leng Zitong Bo Hongan Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期769-786,共18页
Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning mode... Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting. 展开更多
关键词 ADAPTIVE COVID-19 forecasting dynamic INTERVENTION spatio-temporal graph neural networks
下载PDF
Multi-Scale Location Attention Model for Spatio-Temporal Prediction of Disease Incidence
2
作者 Youshen Jiang Tongqing Zhou +2 位作者 Zhilin Wang Zhiping Cai Qiang Ni 《Intelligent Automation & Soft Computing》 2024年第3期585-597,共13页
Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of th... Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of the exist-ing work fails to make full use of the temporal and spatial characteristics of epidemics,and also relies on multi-variate data for prediction.In this paper,we propose a Multi-Scale Location Attention Graph Neural Networks(MSLAGNN)based on a large number of Centers for Disease Control and Prevention(CDC)patient electronic medical records research sequence source data sets.In order to understand the geography and timeliness of infec-tious diseases,specific neural networks are used to extract the geography and timeliness of infectious diseases.In the model framework,the features of different periods are extracted by a multi-scale convolution module.At the same time,the propagation effects between regions are simulated by graph convolution and attention mechan-isms.We compare the proposed method with the most advanced statistical methods and deep learning models.Meanwhile,we conduct comparative experiments on data sets with different time lengths to observe the predic-tion performance of the model in the face of different degrees of data collection.We conduct extensive experi-ments on real-world epidemic-related data sets.The method has strong prediction performance and can be readily used for epidemic prediction. 展开更多
关键词 spatio-temporal prediction infectious diseases graph neural networks
下载PDF
Source Camera Identification Algorithm Based on Multi-Scale Feature Fusion
3
作者 Jianfeng Lu Caijin Li +2 位作者 Xiangye Huang Chen Cui Mahmoud Emam 《Computers, Materials & Continua》 SCIE EI 2024年第8期3047-3065,共19页
The widespread availability of digital multimedia data has led to a new challenge in digital forensics.Traditional source camera identification algorithms usually rely on various traces in the capturing process.Howeve... The widespread availability of digital multimedia data has led to a new challenge in digital forensics.Traditional source camera identification algorithms usually rely on various traces in the capturing process.However,these traces have become increasingly difficult to extract due to wide availability of various image processing algorithms.Convolutional Neural Networks(CNN)-based algorithms have demonstrated good discriminative capabilities for different brands and even different models of camera devices.However,their performances is not ideal in case of distinguishing between individual devices of the same model,because cameras of the same model typically use the same optical lens,image sensor,and image processing algorithms,that result in minimal overall differences.In this paper,we propose a camera forensics algorithm based on multi-scale feature fusion to address these issues.The proposed algorithm extracts different local features from feature maps of different scales and then fuses them to obtain a comprehensive feature representation.This representation is then fed into a subsequent camera fingerprint classification network.Building upon the Swin-T network,we utilize Transformer Blocks and Graph Convolutional Network(GCN)modules to fuse multi-scale features from different stages of the backbone network.Furthermore,we conduct experiments on established datasets to demonstrate the feasibility and effectiveness of the proposed approach. 展开更多
关键词 Source camera identification camera forensics convolutional neural network feature fusion transformer block graph convolutional network
下载PDF
基于链接关系预测的弯曲密集型商品文本检测
4
作者 耿磊 李嘉琛 +2 位作者 刘彦北 李月龙 李晓捷 《天津工业大学学报》 CAS 北大核心 2024年第4期50-59,74,共11页
针对商品包装文本检测任务中弯曲密集型文本导致的错检、漏检问题,提出了一种由2个子网络组成的基于链接关系预测的文本检测框架(text detection network based on relational prediction,RPTNet)。在文本组件检测网络中,下采样采用卷... 针对商品包装文本检测任务中弯曲密集型文本导致的错检、漏检问题,提出了一种由2个子网络组成的基于链接关系预测的文本检测框架(text detection network based on relational prediction,RPTNet)。在文本组件检测网络中,下采样采用卷积神经网络和自注意力并行的双分支结构提取局部和全局特征,并加入空洞特征增强模块(DFM)减少深层特征图在降维过程中信息的丢失;上采样采用特征金字塔与多级注意力融合模块(MAFM)相结合的方式进行多级特征融合以增强文本特征间的潜在联系,通过文本检测器从上采样输出的特征图中检测文本组件;在链接关系预测网络中,采用基于图卷积网络的关系推理框架预测文本组件间的深层相似度,采用双向长短时记忆网络将文本组件聚合为文本实例。为验证RRNet的检测性能,构建了一个由商品包装图片组成的文本检测数据集(text detection dataset composed of commodity packaging,CPTD1500)。实验结果表明:RPTNet不仅在公开文本数据集CTW-1500和Total-Text上取得了优异的性能,而且在CPTD1500数据集上的召回率和F值分别达到了85.4%和87.5%,均优于当前主流算法。 展开更多
关键词 文本检测 卷积神经网络 自注意力 特征融合 图卷积网络 双向长短时记忆网络
下载PDF
一种用于多域对话状态追踪的知识增强与自注意力引导的图神经网络
5
作者 刘漳辉 林宇航 陈羽中 《小型微型计算机系统》 CSCD 北大核心 2024年第1期108-114,共7页
对话状态追踪是对话系统的重要组成部分,旨在从用户与系统的对话中跟踪用户意图,其通常表示为槽位-槽值对序列.近年来,深度神经网络模型在对话状态追踪问题上取得了较大进展.然而,现有模型在槽位相关性建模方面还存在可拓展性差与易引... 对话状态追踪是对话系统的重要组成部分,旨在从用户与系统的对话中跟踪用户意图,其通常表示为槽位-槽值对序列.近年来,深度神经网络模型在对话状态追踪问题上取得了较大进展.然而,现有模型在槽位相关性建模方面还存在可拓展性差与易引入噪声等问题.针对上述问题,本文提出了一种知识增强与自注意力引导的图神经网络KESA-GNN(Knowledge-Enhanced&Self-Attention Guided Graph Neural Network).首先,KESA-GNN通过外部知识嵌入增强槽的语义表征提升多头自注意力机制对槽位间相关性的辨别能力.其次,为了精确建模槽位间的诸如共指、共现等相关性,提出了一种自注意力引导的图神经网络建模槽位相关性.该网络采用多头注意力机制获得槽位间的注意力矩阵以及槽位表征,通过Max-N Relation算法获得注意力矩阵中强相关关系集,将稠密的注意力矩阵稀疏化,从而引导图神经网络中强相关槽位间的信息传播,降低无关槽位的噪声影响.最后,KESA-GNN采用门控融合机制过滤槽位多头注意力和图神经网络输出的槽位表征,从而获取更准确的槽位表征向量,进一步提升了KESA-GNN的鲁棒性.在多域对话数据集上的实验结果表明,KESA-GNN模型的性能优于最新的基线模型. 展开更多
关键词 对话状态追踪 知识图谱 自注意力引导 图神经网络 门控融合
下载PDF
基于专利异构数据融合的技术演化路径识别方法
6
作者 侯艳辉 荆明月 王家坤 《情报杂志》 北大核心 2024年第9期188-195,147,共9页
[研究目的]针对目前技术演化分析中多关注专利文本,忽略专利引文信息的问题,提出一种基于专利异构数据融合的技术演化路径识别方法。[研究方法]首先,使用Sentence-BERT模型提取专利文本语义特征;其次,使用图卷积神经网络模型将文本语义... [研究目的]针对目前技术演化分析中多关注专利文本,忽略专利引文信息的问题,提出一种基于专利异构数据融合的技术演化路径识别方法。[研究方法]首先,使用Sentence-BERT模型提取专利文本语义特征;其次,使用图卷积神经网络模型将文本语义特征与引文结构特征融合,实现异构数据融合构建专利向量;最后,划分时间窗,使用k-means算法对各时间窗进行技术主题聚类,基于相邻时间窗技术主题相似度构建技术演化路径。[研究结论]以人工智能领域为例进行实证研究,共发现4条技术演化路径。与相关权威报告进行比对,结果表明识别结果与人工智能技术领域的发展现状一致,验证了模型的有效性和科学性。 展开更多
关键词 专利 技术演化 技术演化路径识别 异构数据融合 人工智能 Sentence-BERT 图卷积神经网络
下载PDF
融合自注意力和图卷积的多视图群组推荐
7
作者 王永贵 王芯茹 《计算机工程与应用》 CSCD 北大核心 2024年第8期287-295,共9页
为了解决大多数现有的群组推荐仅仅从群组和用户的单一交互中学习群组表示,以及固定融合策略难以动态调整权重的问题。提出了一种融合自注意力和图卷积的多视图群组推荐模型(MVGR),设计了成员级、项目级和组级三个不同的视图,来捕捉群... 为了解决大多数现有的群组推荐仅仅从群组和用户的单一交互中学习群组表示,以及固定融合策略难以动态调整权重的问题。提出了一种融合自注意力和图卷积的多视图群组推荐模型(MVGR),设计了成员级、项目级和组级三个不同的视图,来捕捉群组、用户和项目三者之间的高阶交互信息,缓解数据稀疏问题,增强群组表示建模过程;对于项目级视图,利用基于二分图的图卷积神经网络来学习群组偏好向量以及项目嵌入;进一步提出了自适应融合组件来动态调整不同视图权重,得到最终的群组偏好向量。在两个真实数据集上的实验结果表明,与基线模型相比,MVGR模型的命中率(HR)和归一化折损累计增益(NDCG)在Mafengwo数据集上平均提高了8.89个百分点和1.56个百分点,在CAMRa2011数据集上平均提高了2.79个百分点和2.7个百分点。 展开更多
关键词 群组推荐 自注意力机制 图卷积神经网络 自适应融合
下载PDF
基于依赖类型剪枝的双特征自适应融合网络用于方面级情感分析
8
作者 郑诚 石景伟 +1 位作者 魏素华 程嘉铭 《计算机科学》 CSCD 北大核心 2024年第3期205-213,共9页
现有的模型将基于依赖树的图神经网络用于方面级情感分析,一定程度上提升了模型的分类性能。然而,由于依赖解析技术的限制,语法解析结果的不精确导致依赖树存在大量噪声,使得模型的性能提升有限。此外,一些句子本身并不符合标准的句法... 现有的模型将基于依赖树的图神经网络用于方面级情感分析,一定程度上提升了模型的分类性能。然而,由于依赖解析技术的限制,语法解析结果的不精确导致依赖树存在大量噪声,使得模型的性能提升有限。此外,一些句子本身并不符合标准的句法结构。以往的研究以同样的置信度利用句法信息和语义信息,没有充分考虑它们对于确定方面词极性的贡献的不同,导致模型在相应的数据集上性能较差。为了克服这些困难,文中提出了一种基于依赖类型剪枝的双特征自适应融合网络。具体来说,该模型使用一种新型的混合方法,命名为依赖关系类型剪枝和邻接矩阵平滑,来缓解句法解析产生的噪声。此外,该模型通过双特征自适应融合模块充分考虑句子的句法信息的可用程度,以一种更灵活的方式将句法特征和语义特征结合起来用于方面级情感分析。在5个公开可用的数据集上进行广泛的实验,结果证明了该方法明显优于基线模型。 展开更多
关键词 方面级情感分析 图神经网络 依赖类型剪枝 双特征自适应融合 深度学习 自然语言处理
下载PDF
基于多模态融合的图神经网络推荐算法
9
作者 吴志强 解庆 +1 位作者 李琳 刘永坚 《计算机工程》 CSCD 北大核心 2024年第1期91-100,共10页
已有的图神经网络(GNN)推荐算法大多利用用户-项目交互图的节点编号信息进行训练,学习用户-项目节点的高阶联系去丰富节点表示,但忽略了用户对不同模态信息的偏好,没有利用项目的图片、文本等模态信息,或对于不同模态特征的融合简单相加... 已有的图神经网络(GNN)推荐算法大多利用用户-项目交互图的节点编号信息进行训练,学习用户-项目节点的高阶联系去丰富节点表示,但忽略了用户对不同模态信息的偏好,没有利用项目的图片、文本等模态信息,或对于不同模态特征的融合简单相加,不能区分用户对不同模态信息的偏好。针对上述问题,提出多模态融合的GNN推荐模型。首先针对单个模态,结合用户-项目交互二部图构建单模态图网络,在单模态图中学习用户对此模态信息的偏好;然后利用GAT聚合邻居信息,丰富本节点表示,同时根据门控循环单元决定是否聚合邻居信息,达到去噪效果;最后将各个模态图学习到的用户、项目表示通过注意力机制融合得到最终表示并送入预测模块。在MovieLens-20M、H&M两个数据集上的实验结果表明:多模态信息、注意力融合机制能有效提升推荐的准确度,算法模型在Precision@K、Recall@K和NDCG@K 3个指标上相较于基线最优算法均有显著提升;当评估指标K值选取10时,Precision@10、Recall@10和NDCG@10在两个数据集上分别提升了4.67%、2.42%、2.03%和2.49%、5.24%、2.05%。 展开更多
关键词 多模态推荐 多模态融合 注意力机制 图神经网络 推荐系统 门控图神经网络
下载PDF
融合句法信息的实体关系联合抽取
10
作者 胡翼 于海 +5 位作者 郭鑫 陈千 廖健 郑建兴 李艳红 杨可涵 《计算机技术与发展》 2024年第8期93-100,共8页
实体关系抽取是自然语言处理领域知识图谱构建的关键技术之一,有助于知识图谱自动化更新和扩充,并为下游任务提供重要的知识库支持。目前实体关系抽取方法大多从单一角度进行特征提取,导致特征表达能力不足,同时级联错误累积现象严重,... 实体关系抽取是自然语言处理领域知识图谱构建的关键技术之一,有助于知识图谱自动化更新和扩充,并为下游任务提供重要的知识库支持。目前实体关系抽取方法大多从单一角度进行特征提取,导致特征表达能力不足,同时级联错误累积现象严重,无法较好针对实体关系重叠、实体嵌套现象进行适配,极大地影响实体关系抽取的精度和效率。为了同时解决这些问题,提出了一种融合语义和依存句法信息的实体关系联合抽取方法。该方法采用预训练语言模型BERT提取语义特征;然后利用句法注意力图卷积神经网络获取依存句法特征;最终,融合语义特征和依存句法特征对句子中多个关系的主客实体位置进行预测标记。实验结果表明,所提模型在NYT和WebNLG公共数据集上的F1值分别达到了92.8%和91.1%,与基线模型和其他深度学习模型相比,模型在重叠实体抽取上取得了较好的效果,验证了模型的有效性。 展开更多
关键词 关系抽取 句法依存分析 图卷积神经网络 特征融合 关系重叠
下载PDF
基于异构图神经网络的半监督网站主题分类
11
作者 王谢中 陈旭 +1 位作者 景永俊 王叔洋 《计算机工程与科学》 CSCD 北大核心 2024年第4期635-646,共12页
互联网网站数量快速增长使现有方法难以准确分类特定网站主题,如基于URL的方法无法处理未反映在URL中的主题信息,基于网页内容的方法受到数据稀疏性和语义关系捕捉的限制。为此,提出一种基于异构图神经网络的半监督网站主题分类方法HGNN... 互联网网站数量快速增长使现有方法难以准确分类特定网站主题,如基于URL的方法无法处理未反映在URL中的主题信息,基于网页内容的方法受到数据稀疏性和语义关系捕捉的限制。为此,提出一种基于异构图神经网络的半监督网站主题分类方法HGNN-SWT。该方法不仅利用网站文本特征来弥补仅使用URL特征的不足,还利用异构图对网站文本和词语的稀疏关系进行建模,通过处理图中的节点和边关系来提高分类性能。同时引入基于随机游走的邻居节点采样方法,考虑节点的局部特征和全局图结构,并提出特征融合策略,捕捉网站文本数据的上下文关系和特征交互。通过在自制的Chinaz Website数据集上的实验,证明了HGNN-SWT方法在网站主题分类任务中相较于现有方法具有更高的准确率。 展开更多
关键词 网站主题 异构图神经网络 半监督 特征融合
下载PDF
基于时空依赖关系和特征融合的弱监督视频异常检测
12
作者 柳德云 李莹 +1 位作者 周震 吉根林 《数据采集与处理》 CSCD 北大核心 2024年第1期204-214,共11页
弱监督视频异常检测由于抗干扰性强、数据标注要求低,成为视频异常事件检测研究的热点。在现有的工作中,大多数弱监督视频异常检测方法认为各个视频段独立同分布,单独判断每个视频段是否异常,忽略了视频段间的时空依赖关系。为此,提出... 弱监督视频异常检测由于抗干扰性强、数据标注要求低,成为视频异常事件检测研究的热点。在现有的工作中,大多数弱监督视频异常检测方法认为各个视频段独立同分布,单独判断每个视频段是否异常,忽略了视频段间的时空依赖关系。为此,提出了一种基于时空依赖关系和特征融合的弱监督视频异常检测方法,在保留视频段原始特征的同时,使用视频段之间的索引距离和特征相似程度拟合视频段的时间和空间依赖关系,构建视频段的关系特征。通过融合原始特征和关系特征,更好地表达视频的动态特性和时序关系。在UCF-Crime和ShanghaiTech两个基准数据集上进行了大量实验,实验结果表明所提方法的AUC指标优于其他方法,AUC值分别达到了80.1%和94.6%。 展开更多
关键词 视频异常事件检测 时空依赖关系 特征融合 图卷积神经网络 注意力机制
下载PDF
基于图形重写和融合探索的张量虚拟机算符融合优化
13
作者 王娜 蒋林 +1 位作者 李远成 朱筠 《计算机应用》 CSCD 北大核心 2024年第9期2802-2809,共8页
针对计算密集型神经网络在使用张量虚拟机(TVM)算符融合过程中对计算图进行逐层查找导致访问次数过多、内存资源利用率低等问题,提出一种基于图形重写和融合探索的TVM算符融合优化方法。首先,对运算符的映射类型进行分析;其次,基于运算... 针对计算密集型神经网络在使用张量虚拟机(TVM)算符融合过程中对计算图进行逐层查找导致访问次数过多、内存资源利用率低等问题,提出一种基于图形重写和融合探索的TVM算符融合优化方法。首先,对运算符的映射类型进行分析;其次,基于运算定律对计算图进行重写,简化计算图结构以减少中间结果生成,降低内存资源消耗并提升融合效率;再次,采用融合探索算法寻找融合代价较小的算符优先进行融合,避免数据冗余和寄存器溢出;最后,在CPU上实现神经网络算符融合,并测试融合加速性能。实验结果表明,所提方法可有效减少计算图层数和算符个数,降低访存频率和数据传输量。与TVM算符融合方法相比,所提方法在融合过程中的计算图层数平均减少18%,推理速度平均提升23%,验证了该方法在优化计算图融合过程中的有效性。 展开更多
关键词 算符融合 图形重写 张量虚拟机 神经网络 融合探索
下载PDF
HetGNN-3D:基于异构图神经网络的3D目标检测优化模型
14
作者 汪明明 陈庆奎 付直兵 《小型微型计算机系统》 CSCD 北大核心 2024年第2期438-445,共8页
3D感知是自动驾驶场景的核心问题,传感器融合可以综合利用激光雷达和摄像机的优点以达到更高的3D目标检测准确率.传感器融合涉及点云到图像对准问题,预先对传感器标定可以得到点到图像位置的投影关系,然而这种对准方式受传感器相对位置... 3D感知是自动驾驶场景的核心问题,传感器融合可以综合利用激光雷达和摄像机的优点以达到更高的3D目标检测准确率.传感器融合涉及点云到图像对准问题,预先对传感器标定可以得到点到图像位置的投影关系,然而这种对准方式受传感器相对位置偏移与采集时间偏移影响而在干扰下对模型产生负面影响.针对该问题,本文把场景中实体在各个传感器下的不同表达作为不同对象,以对象为节点建立包含两类节点与三类边的异构图描述该场景,并提出了基于该异构图的3D目标检测优化模型HetGNN-3D.该模型通过图结构捕获对象间潜在联系并找到点云对象节点与图像对象节点间对应关系,从而减弱干扰带来的影响.HetGNN-3D包含图初始化、消息传递、图读出三大模块.图初始化模块使用基于点云的3D目标检测模型的输出和基于图像的2D目标检测模型的输出建立对象级异构图.消息传递模块针对异构图特性分类聚合与更新消息.图读出包含用于对象关系预测的边读出与属于同一实体的对象子图读出,然后基于对象子图得到3D目标检测结果.在nuScenes数据集的实验表明,HetGNN-3D有效融合点云信息与图像信息优化了3D目标检测结果,此外,基于对象级异构图的边关系预测使融合过程与预先标定得到的传感器映射矩阵解耦合,从而提升了融合模型的容错性与鲁棒性. 展开更多
关键词 传感器融合 异构图 图神经网络 3D目标检测 自动驾驶
下载PDF
融合知识图谱的时空多图卷积交通流量预测
15
作者 李劲业 李永强 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第7期1366-1376,共11页
现有的交通流量预测方法关注交通信息的时空相关性,未充分考虑外部因素对交通的影响,为此提出融合静态和动态知识图谱的时空多图卷积交通流量预测模型.基于道路交通信息和外部因素,构建城市交通知识图谱和4个不同语义的路网拓扑图,将城... 现有的交通流量预测方法关注交通信息的时空相关性,未充分考虑外部因素对交通的影响,为此提出融合静态和动态知识图谱的时空多图卷积交通流量预测模型.基于道路交通信息和外部因素,构建城市交通知识图谱和4个不同语义的路网拓扑图,将城市交通知识图谱输入关系演化图卷积神经网络,实现知识嵌入;使用知识融合模块将车流量矩阵与知识嵌入融合;将4个路网拓扑图和融合知识的车流量矩阵输入时空多图卷积模块,提取时空特征,通过全连接层输出交通流量预测值.在杭州交通数据集上评估模型性能,与先进的基线模型对比,所提模型的性能提高了5.76%~10.71%.鲁棒性实验结果表明,所提模型具有较强的抗干扰能力. 展开更多
关键词 智能交通 交通流量预测 城市交通知识图谱 多图卷积神经网络 知识融合模块 路网拓扑图
下载PDF
用于未对齐多模态语言序列情感分析的多交互感知网络 被引量:1
16
作者 罗俊豪 朱焱 《计算机应用》 CSCD 北大核心 2024年第1期79-85,共7页
针对现有对齐多模态语言序列情感分析方法常用的单词对齐方法缺乏可解释性的问题,提出了一种用于未对齐多模态语言序列情感分析的多交互感知网络(MultiDAN)。MultiDAN的核心是多层的、多角度的交互信息提取。首先使用循环神经网络(RNN)... 针对现有对齐多模态语言序列情感分析方法常用的单词对齐方法缺乏可解释性的问题,提出了一种用于未对齐多模态语言序列情感分析的多交互感知网络(MultiDAN)。MultiDAN的核心是多层的、多角度的交互信息提取。首先使用循环神经网络(RNN)和注意力机制捕捉模态内的交互信息;然后,使用图注意力网络(GAT)一次性提取模态内及模态间的、长短期的交互信息;最后,使用特殊的图读出方法,再次提取图中节点的模态内及模态间交互信息,得到多模态语言序列的唯一表征,并应用多层感知机(MLP)分类获得序列的情感分数。在两个常用公开数据集CMU-MOSI和CMU-MOSEI上的实验结果表明,MultiDAN能充分提取交互信息,在未对齐的两个数据集上MultiDAN的F1值比对比方法中最优的模态时空注意图(MTAG)分别提高了0.49个和0.72个百分点,具有较高的稳定性。MultiDAN可以提高多模态语言序列的情感分析性能,且图神经网络(GNN)能有效提取模态内、模态间的交互信息。 展开更多
关键词 情感分析 多模态语言序列 多模态融合 图神经网络 注意力机制
下载PDF
基于潜在特征增强网络的视频描述生成方法
17
作者 李伟健 胡慧君 《计算机工程》 CAS CSCD 北大核心 2024年第2期266-272,共7页
视频描述生成旨在用自然语言描述视频中的物体及其相互作用。现有方法未充分利用视频中的时空语义信息,限制了模型生成准确描述语句的能力。为此,提出一种用于视频描述生成的潜在特征增强网络(LFAN)模型。利用不同的特征提取器提取外观... 视频描述生成旨在用自然语言描述视频中的物体及其相互作用。现有方法未充分利用视频中的时空语义信息,限制了模型生成准确描述语句的能力。为此,提出一种用于视频描述生成的潜在特征增强网络(LFAN)模型。利用不同的特征提取器提取外观特征、运动特征和目标特征,将对象级的目标特征分别和帧级的外观特征与运动特征融合,同时对融合后的不同特征进行增强,在生成描述前利用图神经网络和长短时记忆网络推理对象之间的时空关系,从而得到具有时空信息和语义信息的潜在特征,同时使用长短时记忆网络和门控循环单元的解码器生成视频的描述语句。该网络模型能够准确地学习到对象特征,进而引导生成更准确的词汇及与对象之间的关系。在MSVD和MSR-VTT数据集上的实验结果表明,LFAN模型可以显著提高生成描述语句的准确性,并与视频中的内容呈现出更好的语义一致性,在MSVD数据集上的BLEU@4和ROUGE-L分数分别为57.0和74.1,在MSRVTT数据集上分别为43.8和62.1。 展开更多
关键词 视频描述生成 潜在特征增强网络 时空语义信息 图神经网络 特征融合
下载PDF
基于多视图融合跨层对比学习的推荐算法
18
作者 顾嘉静 杨丹 +1 位作者 聂铁铮 寇月 《计算机工程》 CSCD 北大核心 2024年第1期120-128,共9页
现有基于图对比学习的推荐模型在图数据增强方面通常只采用一种视图增强方法,忽略了单一方法存在的局限性,在对比学习方面通常只对比同一节点的一对视图,未充分利用各个视图不同的层嵌入。为此,提出一种基于多视图融合跨层对比学习的推... 现有基于图对比学习的推荐模型在图数据增强方面通常只采用一种视图增强方法,忽略了单一方法存在的局限性,在对比学习方面通常只对比同一节点的一对视图,未充分利用各个视图不同的层嵌入。为此,提出一种基于多视图融合跨层对比学习的推荐算法框架(MFCCL)。MFCCL分别使用随机边丢弃和随机添加噪声的增强方法构建2个全局视图,使用奇异值分解的方法构建局部视图,通过3种不同的视图增强方法构造全局和局部共3个视图,以实现有效的用户表示。同时,提出一种新的多视图融合跨层对比学习方法,该方法将2个全局视图不同的层嵌入通过平行和交叉2种方式进行融合后作对比,以获取更多的特征信息。将多视图融合跨层对比学习与全局-局部视图对比学习相结合,联合优化模型,从而提升推荐性能。在Yelp、Tmall和Amazon-book这3个公开数据集上进行实验,结果表明,MFCCL在推荐任务中具有有效性和可行性,相较于对比模型中性能最优的基线模型SimGCL,MFCCL在3个数据集中的Recall@20增益分别达到15.0%、13.3%和28.7%,NDCG@20值分别提升14.3%、13.2%和29.6%。 展开更多
关键词 图神经网络 对比学习 视图增强 多视图融合 推荐算法
下载PDF
基于图神经网络和注意力机制的点云分类模型
19
作者 徐海涛 郝晓萍 +2 位作者 晁欣 董少锋 李祥 《激光与红外》 CAS CSCD 北大核心 2024年第8期1216-1220,共5页
为了增强基于深度学习的三维点云分类模型对全局特征的建模能力,提高模型的泛化性能,在PointNet的基础上,提出了基于图神经网络和注意力机制融合的点云分类模型。首先,将提取的特征分别通过增加通道注意力模块和空间注意力模块,使模型... 为了增强基于深度学习的三维点云分类模型对全局特征的建模能力,提高模型的泛化性能,在PointNet的基础上,提出了基于图神经网络和注意力机制融合的点云分类模型。首先,将提取的特征分别通过增加通道注意力模块和空间注意力模块,使模型更加关注全局上下文信息,抑制噪声信息,减少冗余参数,增强对全局特征的建模能力;其次,通过在多尺度球半径内进行不同K值最近邻搜索对编码的输入特征进行构图,既减小了图的规模,降低训练开销,又使模型学习不同层级的特征表示;最后,通过图卷积神经网络汇聚邻域信息,更新节点特征,并将不同图卷积神经网络层输出特征进行相加,融合多层级特征,提高分类准确率。本文在公用数据集ModelNet40上进行训练与测试,其总体分类准确为88.6%,优于通用的3DShapeNets、VoxNet、ECC、PointNet模型,证明了模型在点云分类上的优越性。 展开更多
关键词 三维点云 注意力机制 图神经网络 多尺度特征融合
下载PDF
基于GCN和微调BERT的作文自动评分方法
20
作者 马钰 杨勇 +1 位作者 任鸽 帕力旦·吐尔逊 《计算机与现代化》 2024年第9期33-37,44,共6页
作文自动评分是智慧教育领域的重要研究方向之一。它具有提高评分效率、降低人工成本以及确保评分客观性和一致性的优势,因此在教育领域有着广泛的应用前景。尽管句法特征在作文自动评分中扮演着重要角色,但目前仍缺乏关于如何更好地利... 作文自动评分是智慧教育领域的重要研究方向之一。它具有提高评分效率、降低人工成本以及确保评分客观性和一致性的优势,因此在教育领域有着广泛的应用前景。尽管句法特征在作文自动评分中扮演着重要角色,但目前仍缺乏关于如何更好地利用这些特征进行作文自动评分的研究。本文提出一种基于GCN和微调BERT的作文自动评分方法GFTB。该模型采用图卷积网络提取作文的句法特征,采用BERT和Adapter的训练方式提取作文的深层语义特征,同时采用门控机制进一步捕捉二者融合后的语义特征。实验结果表明,本文提出的GFTB模型在公共数据集ASAP的8个子集上取得了较好的平均性能,相比于通义千问等基线模型,能够有效提升作文自动评分的性能。 展开更多
关键词 作文自动评分 图神经网络 微调BERT 特征融合
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部