Social influence analysis (SIA) is a vast research field that has attracted research interest in many areas. In this paper, we present a survey of representative and state-of-the-art work in models, methods, and eva...Social influence analysis (SIA) is a vast research field that has attracted research interest in many areas. In this paper, we present a survey of representative and state-of-the-art work in models, methods, and eval- uation aspects related to SIA. We divide SIA models into two types: microscopic and macroscopic models. Microscopic models consider human interactions and the structure of the influence process, whereas macroscopic models consider the same transmission probability and identical influential power for all users. We analyze social influence methods including influence maximization, influence minimization, flow of influence, and individual influence. In social influence evaluation, influence evaluation metrics are introduced and social influence evaluation models are then analyzed. The objectives of this paper are to provide a comprehensive analysis, aid in understanding social behaviors, provide a theoretical basis for influencing public opinion, and unveil future research directions and potential applications.展开更多
The interception probability of a single missile is the basis for combat plan design and weapon performance evaluation,while its influencing factors are complex and mutually coupled.Existing calculation methods have v...The interception probability of a single missile is the basis for combat plan design and weapon performance evaluation,while its influencing factors are complex and mutually coupled.Existing calculation methods have very limited analysis of the influence mechanism of influencing factors,and none of them has analyzed the influence of the guidance law.This paper considers the influencing factors of both the interceptor and the target more comprehensively.Interceptor parameters include speed,guidance law,guidance error,fuze error,and fragment killing ability,while target performance includes speed,maneuverability,and vulnerability.In this paper,an interception model is established,Monte Carlo simulation is carried out,and the influence mechanism of each factor is analyzed based on the model and simulation results.Finally,this paper proposes a classification-regression neural network to quickly estimate the interception probability based on the value of influencing factors.The proposed method reduces the interference of invalid interception data to valid data,so its prediction accuracy is significantly better than that of pure regression neural networks.展开更多
[Objective]The study aimed to analyze the influencing factors of low-carbon economy and its mitigation countermeasures in Sichuan Province.[Method]Taking Sichuan Province as an example,an extended STIRPAT model was es...[Objective]The study aimed to analyze the influencing factors of low-carbon economy and its mitigation countermeasures in Sichuan Province.[Method]Taking Sichuan Province as an example,an extended STIRPAT model was established firstly,then the impacts of population,economy and technology on carbon emissions from 2000 to 2009 were analyzed econometrically by using the principal component analysis method.Finally,some corresponding countermeasures to reduce carbon dioxide emissions were put forward.[Result]At present,population scale had the greatest influence on carbon emissions in Sichuan Province,then energy consumption per industrial added value and the proportion of industrial added value to GDP.In addition,the influence of population scale on carbon emissions was still greater than that of population structure,and technical factor also has certain explanatory power on carbon emissions.Some countermeasures,like controlling population growth,advocating low-carbon life style and consumption model,paying more attention to the strategic adjustment of industrial structure to gradually reduce the proportion of high-carbon industries,encouraging energy consumption and emissions reduction plus scientific and technological innovation in a new energy technology filed,could be adopted to reduce carbon dioxide emissions,so as to adjust to the development of low-carbon economy in Sichuan Province.[Conclusion]The research could provide references for the establishment of policies for reducing carbon emissions.展开更多
The oil-water two-phase flow pressure-transient analysis model for polymer flooding fractured well is established by considering the comprehensive effects of polymer shear thinning,shear thickening,convection,diffusio...The oil-water two-phase flow pressure-transient analysis model for polymer flooding fractured well is established by considering the comprehensive effects of polymer shear thinning,shear thickening,convection,diffusion,adsorption retention,inaccessible pore volume and effective permeability reduction.The finite volume difference and Newton iteration methods are applied to solve the model,and the effects of fracture conductivity coefficient,injected polymer mass concentration,initial polymer mass concentration and water saturation on the well-test type curves of polymer flooding fractured wells are discussed.The results show that with the increase of fracture conductivity coefficient,the pressure conduction becomes faster and the pressure drop becomes smaller,so the pressure curve of transitional flow goes downward,the duration of bilinear flow becomes shorter,and the linear flow appears earlier and lasts longer.As the injected polymer mass concentration increases,the effective water phase viscosity increases,and the pressure loss increases,so the pressure and pressure derivative curves go upward,and the bilinear flow segment becomes shorter.As the initial polymer mass concentration increases,the effective water phase viscosity increases,so the pressure curve after the wellbore storage segment moves upward as a whole.As the water saturation increases,the relative permeability of water increases,the relative permeability of oil decreases,the total oil-water two-phase mobility becomes larger,and the pressure loss is reduced,so the pressure curve after the wellbore storage segment moves downward as a whole.The reliability and practicability of this new model are verified by the comparison of the results from simplified model and commercial well test software,and the actual well test data.展开更多
BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is a cause of acute-onchronic liver failure(ACLF).AIM To investigate the risk factors of ACLF within 1 year after TIPS in patients with cirrhosis and const...BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is a cause of acute-onchronic liver failure(ACLF).AIM To investigate the risk factors of ACLF within 1 year after TIPS in patients with cirrhosis and construct a prediction model.METHODS In total,379 patients with decompensated cirrhosis treated with TIPS at Nanjing Drum Tower Hospital from 2017 to 2020 were selected as the training cohort,and 123 patients from Nanfang Hospital were included in the external validation cohort.Univariate and multivariate logistic regression analyses were performed to identify independent predictors.The prediction model was established based on the Akaike information criterion.Internal and external validation were conducted to assess the performance of the model.RESULTS Age and total bilirubin(TBil)were independent risk factors for the incidence of ACLF within 1 year after TIPS.We developed a prediction model comprising age,TBil,and serum sodium,which demonstrated good discrimination and calibration in both the training cohort and the external validation cohort.CONCLUSION Age and TBil are independent risk factors for the incidence of ACLF within 1 year after TIPS in patients with decompensated cirrhosis.Our model showed satisfying predictive value.展开更多
This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfac...This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfaction. It addresses a significant research gap in understanding metro passengers’ dynamics across cultural and geographical contexts. It employs questionnaires, field observations, and advanced data analysis techniques like association rule mining and neural network modeling. Key findings include a correlation between rainy weather, shorter waiting times, and higher arrival volumes. Neural network models showed high predictive accuracy, with waiting time, metro satisfaction, and weather being significant factors in Lagos Light Rail Blue Line Metro. In contrast, arrival patterns, weather, and time of day were more influential in Wuhan Metro Line 5. Results suggest that improving metro satisfaction and reducing waiting times could increase arrival volumes in Lagos Metro while adjusting schedules for weather and peak times could optimize flow in Wuhan Metro. These insights are valuable for transportation planning, passenger arrival volume management, and enhancing user experiences, potentially benefiting urban transportation sustainability and development goals.展开更多
Purpose:Research dynamics have long been a research interest.It is a macro perspective tool for discovering temporal research trends of a certain discipline or subject.A micro perspective of research dynamics,however,...Purpose:Research dynamics have long been a research interest.It is a macro perspective tool for discovering temporal research trends of a certain discipline or subject.A micro perspective of research dynamics,however,concerning a single researcher or a highly cited paper in terms of their citations and“citations of citations”(forward chaining)remains unexplored.Design/methodology/approach:In this paper,we use a cross-collection topic model to reveal the research dynamics of topic disappearance topic inheritance,and topic innovation in each generation of forward chaining.Findings:For highly cited work,scientific influence exists in indirect citations.Topic modeling can reveal how long this influence exists in forward chaining,as well as its influence.Research limitations:This paper measures scientific influence and indirect scientific influence only if the relevant words or phrases are borrowed or used in direct or indirect citations.Paraphrasing or semantically similar concept may be neglected in this research.Practical implications:This paper demonstrates that a scientific influence exists in indirect citations through its analysis of forward chaining.This can serve as an inspiration on how to adequately evaluate research influence.Originality:The main contributions of this paper are the following three aspects.First,besides research dynamics of topic inheritance and topic innovation,we model topic disappearance by using a cross-collection topic model.Second,we explore the length and character of the research impact through“citations of citations”content analysis.Finally,we analyze the research dynamics of artificial intelligence researcher Geoffrey Hinton’s publications and the topic dynamics of forward chaining.展开更多
BACKGROUND Due to academic pressure,social relations,and the change of adapting to independent life,college students are under high levels of pressure.Therefore,it is very important to study the mental health problems...BACKGROUND Due to academic pressure,social relations,and the change of adapting to independent life,college students are under high levels of pressure.Therefore,it is very important to study the mental health problems of college students.Developing a predictive model that can detect early warning signals of college students’mental health risks can help support early intervention and improve overall well-being.AIM To investigate college students’present psychological well-being,identify the contributing factors to its decline,and construct a predictive nomogram model.METHODS We analyzed the psychological health status of 40874 university students in selected universities in Hubei Province,China from March 1 to 15,2022,using online questionnaires and random sampling.Factors influencing their mental health were also analyzed using the logistic regression approach,and R4.2.3 software was employed to develop a nomogram model for risk prediction.RESULTS We randomly selected 918 valid data and found that 11.3%of college students had psychological problems.The results of the general data survey showed that the mental health problems of doctoral students were more prominent than those of junior college students,and the mental health of students from rural areas was more likely to be abnormal than that of urban students.In addition,students who had experienced significant life events and divorced parents were more likely to have an abnormal status.The abnormal group exhibited significantly higher Patient Health Questionnaire-9(PHQ-9)and Generalized Anxiety Disorder-7 scores than the healthy group,with these differences being statistically significant(P<0.05).The nomogram prediction model drawn by multivariate analysis includ-ed six predictors:The place of origin,whether they were single children,whether there were significant life events,parents’marital status,regular exercise,intimate friends,and the PHQ-9 score.The training set demonstrated an area under the receiver operating characteristic(ROC)curve(AUC)of 0.972[95%confidence interval(CI):0.947-0.997],a specificity of 0.888 and a sensitivity of 0.972.Similarly,the validation set had a ROC AUC of 0.979(95%CI:0.955-1.000),with a specificity of 0.942 and a sensitivity of 0.939.The H-L deviation test result was χ^(2)=32.476,P=0.000007,suggesting that the model calibration was good.CONCLUSION In this study,nearly 11.3%of contemporary college students had psychological problems,the risk factors include students from rural areas,divorced parents,non-single children,infrequent exercise,and significant life events.展开更多
文摘Social influence analysis (SIA) is a vast research field that has attracted research interest in many areas. In this paper, we present a survey of representative and state-of-the-art work in models, methods, and eval- uation aspects related to SIA. We divide SIA models into two types: microscopic and macroscopic models. Microscopic models consider human interactions and the structure of the influence process, whereas macroscopic models consider the same transmission probability and identical influential power for all users. We analyze social influence methods including influence maximization, influence minimization, flow of influence, and individual influence. In social influence evaluation, influence evaluation metrics are introduced and social influence evaluation models are then analyzed. The objectives of this paper are to provide a comprehensive analysis, aid in understanding social behaviors, provide a theoretical basis for influencing public opinion, and unveil future research directions and potential applications.
基金supported by the Foundation Strengthening Program Technology Field Foundation(2020-JCJQ-JJ-132)。
文摘The interception probability of a single missile is the basis for combat plan design and weapon performance evaluation,while its influencing factors are complex and mutually coupled.Existing calculation methods have very limited analysis of the influence mechanism of influencing factors,and none of them has analyzed the influence of the guidance law.This paper considers the influencing factors of both the interceptor and the target more comprehensively.Interceptor parameters include speed,guidance law,guidance error,fuze error,and fragment killing ability,while target performance includes speed,maneuverability,and vulnerability.In this paper,an interception model is established,Monte Carlo simulation is carried out,and the influence mechanism of each factor is analyzed based on the model and simulation results.Finally,this paper proposes a classification-regression neural network to quickly estimate the interception probability based on the value of influencing factors.The proposed method reduces the interference of invalid interception data to valid data,so its prediction accuracy is significantly better than that of pure regression neural networks.
文摘[Objective]The study aimed to analyze the influencing factors of low-carbon economy and its mitigation countermeasures in Sichuan Province.[Method]Taking Sichuan Province as an example,an extended STIRPAT model was established firstly,then the impacts of population,economy and technology on carbon emissions from 2000 to 2009 were analyzed econometrically by using the principal component analysis method.Finally,some corresponding countermeasures to reduce carbon dioxide emissions were put forward.[Result]At present,population scale had the greatest influence on carbon emissions in Sichuan Province,then energy consumption per industrial added value and the proportion of industrial added value to GDP.In addition,the influence of population scale on carbon emissions was still greater than that of population structure,and technical factor also has certain explanatory power on carbon emissions.Some countermeasures,like controlling population growth,advocating low-carbon life style and consumption model,paying more attention to the strategic adjustment of industrial structure to gradually reduce the proportion of high-carbon industries,encouraging energy consumption and emissions reduction plus scientific and technological innovation in a new energy technology filed,could be adopted to reduce carbon dioxide emissions,so as to adjust to the development of low-carbon economy in Sichuan Province.[Conclusion]The research could provide references for the establishment of policies for reducing carbon emissions.
基金Supported by the National Natural Science Foundation of China(52104049)Science Foundation of China University of Petroleum,Beijing(2462022BJRC004)。
文摘The oil-water two-phase flow pressure-transient analysis model for polymer flooding fractured well is established by considering the comprehensive effects of polymer shear thinning,shear thickening,convection,diffusion,adsorption retention,inaccessible pore volume and effective permeability reduction.The finite volume difference and Newton iteration methods are applied to solve the model,and the effects of fracture conductivity coefficient,injected polymer mass concentration,initial polymer mass concentration and water saturation on the well-test type curves of polymer flooding fractured wells are discussed.The results show that with the increase of fracture conductivity coefficient,the pressure conduction becomes faster and the pressure drop becomes smaller,so the pressure curve of transitional flow goes downward,the duration of bilinear flow becomes shorter,and the linear flow appears earlier and lasts longer.As the injected polymer mass concentration increases,the effective water phase viscosity increases,and the pressure loss increases,so the pressure and pressure derivative curves go upward,and the bilinear flow segment becomes shorter.As the initial polymer mass concentration increases,the effective water phase viscosity increases,so the pressure curve after the wellbore storage segment moves upward as a whole.As the water saturation increases,the relative permeability of water increases,the relative permeability of oil decreases,the total oil-water two-phase mobility becomes larger,and the pressure loss is reduced,so the pressure curve after the wellbore storage segment moves downward as a whole.The reliability and practicability of this new model are verified by the comparison of the results from simplified model and commercial well test software,and the actual well test data.
基金the Special Fund for Clinical Research of Nanjing Drum Tower Hospital,No.2021-LCYJ-PY-01.
文摘BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is a cause of acute-onchronic liver failure(ACLF).AIM To investigate the risk factors of ACLF within 1 year after TIPS in patients with cirrhosis and construct a prediction model.METHODS In total,379 patients with decompensated cirrhosis treated with TIPS at Nanjing Drum Tower Hospital from 2017 to 2020 were selected as the training cohort,and 123 patients from Nanfang Hospital were included in the external validation cohort.Univariate and multivariate logistic regression analyses were performed to identify independent predictors.The prediction model was established based on the Akaike information criterion.Internal and external validation were conducted to assess the performance of the model.RESULTS Age and total bilirubin(TBil)were independent risk factors for the incidence of ACLF within 1 year after TIPS.We developed a prediction model comprising age,TBil,and serum sodium,which demonstrated good discrimination and calibration in both the training cohort and the external validation cohort.CONCLUSION Age and TBil are independent risk factors for the incidence of ACLF within 1 year after TIPS in patients with decompensated cirrhosis.Our model showed satisfying predictive value.
文摘This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfaction. It addresses a significant research gap in understanding metro passengers’ dynamics across cultural and geographical contexts. It employs questionnaires, field observations, and advanced data analysis techniques like association rule mining and neural network modeling. Key findings include a correlation between rainy weather, shorter waiting times, and higher arrival volumes. Neural network models showed high predictive accuracy, with waiting time, metro satisfaction, and weather being significant factors in Lagos Light Rail Blue Line Metro. In contrast, arrival patterns, weather, and time of day were more influential in Wuhan Metro Line 5. Results suggest that improving metro satisfaction and reducing waiting times could increase arrival volumes in Lagos Metro while adjusting schedules for weather and peak times could optimize flow in Wuhan Metro. These insights are valuable for transportation planning, passenger arrival volume management, and enhancing user experiences, potentially benefiting urban transportation sustainability and development goals.
基金This work is supported by the Programs for the Young Talents of National Science Library,Chinese Academy of Sciences(Grant No.2019QNGR003).
文摘Purpose:Research dynamics have long been a research interest.It is a macro perspective tool for discovering temporal research trends of a certain discipline or subject.A micro perspective of research dynamics,however,concerning a single researcher or a highly cited paper in terms of their citations and“citations of citations”(forward chaining)remains unexplored.Design/methodology/approach:In this paper,we use a cross-collection topic model to reveal the research dynamics of topic disappearance topic inheritance,and topic innovation in each generation of forward chaining.Findings:For highly cited work,scientific influence exists in indirect citations.Topic modeling can reveal how long this influence exists in forward chaining,as well as its influence.Research limitations:This paper measures scientific influence and indirect scientific influence only if the relevant words or phrases are borrowed or used in direct or indirect citations.Paraphrasing or semantically similar concept may be neglected in this research.Practical implications:This paper demonstrates that a scientific influence exists in indirect citations through its analysis of forward chaining.This can serve as an inspiration on how to adequately evaluate research influence.Originality:The main contributions of this paper are the following three aspects.First,besides research dynamics of topic inheritance and topic innovation,we model topic disappearance by using a cross-collection topic model.Second,we explore the length and character of the research impact through“citations of citations”content analysis.Finally,we analyze the research dynamics of artificial intelligence researcher Geoffrey Hinton’s publications and the topic dynamics of forward chaining.
基金Supported by Hubei Province Education Science Planning Project,No.2020GB132。
文摘BACKGROUND Due to academic pressure,social relations,and the change of adapting to independent life,college students are under high levels of pressure.Therefore,it is very important to study the mental health problems of college students.Developing a predictive model that can detect early warning signals of college students’mental health risks can help support early intervention and improve overall well-being.AIM To investigate college students’present psychological well-being,identify the contributing factors to its decline,and construct a predictive nomogram model.METHODS We analyzed the psychological health status of 40874 university students in selected universities in Hubei Province,China from March 1 to 15,2022,using online questionnaires and random sampling.Factors influencing their mental health were also analyzed using the logistic regression approach,and R4.2.3 software was employed to develop a nomogram model for risk prediction.RESULTS We randomly selected 918 valid data and found that 11.3%of college students had psychological problems.The results of the general data survey showed that the mental health problems of doctoral students were more prominent than those of junior college students,and the mental health of students from rural areas was more likely to be abnormal than that of urban students.In addition,students who had experienced significant life events and divorced parents were more likely to have an abnormal status.The abnormal group exhibited significantly higher Patient Health Questionnaire-9(PHQ-9)and Generalized Anxiety Disorder-7 scores than the healthy group,with these differences being statistically significant(P<0.05).The nomogram prediction model drawn by multivariate analysis includ-ed six predictors:The place of origin,whether they were single children,whether there were significant life events,parents’marital status,regular exercise,intimate friends,and the PHQ-9 score.The training set demonstrated an area under the receiver operating characteristic(ROC)curve(AUC)of 0.972[95%confidence interval(CI):0.947-0.997],a specificity of 0.888 and a sensitivity of 0.972.Similarly,the validation set had a ROC AUC of 0.979(95%CI:0.955-1.000),with a specificity of 0.942 and a sensitivity of 0.939.The H-L deviation test result was χ^(2)=32.476,P=0.000007,suggesting that the model calibration was good.CONCLUSION In this study,nearly 11.3%of contemporary college students had psychological problems,the risk factors include students from rural areas,divorced parents,non-single children,infrequent exercise,and significant life events.