Wave Iterative Method (WIM) is a numerical modeling for electromagnetic field analysis of microwave circuits. Theories of transmission line, four terminal network and boundary condition are applied to developing WIM s...Wave Iterative Method (WIM) is a numerical modeling for electromagnetic field analysis of microwave circuits. Theories of transmission line, four terminal network and boundary condition are applied to developing WIM simulation that the physical electromagnetic wave is described to a mathematical model using GUI function of MATLAB. In applying, the microstrip patch antenna was analyzed and implemented. The research result shows that the WIM simulation can be used correctly to analyze the electric field, magnetic field theory and return lose of sample patch antenna. The comparison of the WIM calculation agrees well with the measurement and the classical simulation.展开更多
There is a common difficulty in elastic-plastic impact codes such as EPIC[2,3] NONSAP[4], etc.. Most of these codes use the simple linear functions usually taken from static problem to represent the displacement compo...There is a common difficulty in elastic-plastic impact codes such as EPIC[2,3] NONSAP[4], etc.. Most of these codes use the simple linear functions usually taken from static problem to represent the displacement components. In such finite element formulation, the stress components are constant in each element and they are discontinuous in any two neighboring elements. Therefore, the bases of using the virtual work principle in such elements are unreliable. In this paper, we introduce a new method, namely, the compatible stress iterative method, to eliminate the above-said difficulty. The calculated examples show that the calculation using the new method in dynamic finite element analysis of high velocity impact is valid and stable, and the element stiffness can be somewhat reduced.展开更多
For solving nonlinear and transcendental equation f(x)=0 , a singnificant improvement on Newton's method is proposed in this paper. New “Newton Like” methods are founded on the basis of Liapunov's methods...For solving nonlinear and transcendental equation f(x)=0 , a singnificant improvement on Newton's method is proposed in this paper. New “Newton Like” methods are founded on the basis of Liapunov's methods of dynamic system. These new methods preserve quadratic convergence and computational efficiency of Newton's method, and remove the monotoneity condition imposed on f(x):f′(x)≠0 .展开更多
This paper proposes a sensitivity analysis method for engineering parameters using interval analyses.This method substantially extends the application of interval analysis method.In this scheme,parameter intervals and...This paper proposes a sensitivity analysis method for engineering parameters using interval analyses.This method substantially extends the application of interval analysis method.In this scheme,parameter intervals and decision-making target intervals are determined using the interval analysis method.As an example,an inverse analysis method for uncertainty is presented.The intervals of unknown parameters can be obtained by sampling measured data.Even for limited measured data,robust results can also be obtained with the inverse analysis method,which can be intuitively evaluated by the uncertainty expressed in terms of an interval.For complex nonlinear problems,an iteratively optimized inverse analysis model is proposed.In a given set of loose parameter intervals,all the unknown parameter intervals that satisfy the measured information can be obtained by an iteratively optimized inverse analysis model.The influences of measured precisions and the number of parameters on the results of the inverse analysis are evaluated.Finally,the uniqueness of the interval inverse analysis method is discussed.展开更多
The neutron shielding component of ITER (International Thermonuclear Experimental Reactor) vacuum vessel is a kind of structure resembling a wall in appearance. A FE (finite element) model is set up by using ANSYS...The neutron shielding component of ITER (International Thermonuclear Experimental Reactor) vacuum vessel is a kind of structure resembling a wall in appearance. A FE (finite element) model is set up by using ANSYS code in terms of its structural features. Static analysis, thermal expansion analysis and dynamic analysis are performed. The static results show that the stress and displacement distribution are allowable, but the high stress appears in the junction between the upper and lower parts. The modal analysis indicates that the biggest deformation exists in the port area. Through modal superposition, the single-point response has been found with the lower rank frequency of the acceleration seismic response spectrum. But the deformation and the stress values are within the permissible limit. The analysis results would benefit the work in the next step and provide some reference for the implementation of the engineering plan in the future.展开更多
Explicit Exact and Approximate Inverse Preconditioners for solving complex linear systems are introduced. A class of general iterative methods of second order is presented and the selection of iterative parameters is ...Explicit Exact and Approximate Inverse Preconditioners for solving complex linear systems are introduced. A class of general iterative methods of second order is presented and the selection of iterative parameters is discussed. The second order iterative methods behave quite similar to first order methods and the development of efficient preconditioners for solving the original linear system is a decisive factor for making the second order iterative methods superior to the first order iterative methods. Adaptive preconditioned Conjugate Gradient methods using explicit approximate preconditioners for solving efficiently large sparse systems of algebraic equations are also presented. The generalized Approximate Inverse Matrix techniques can be efficiently used in conjunction with explicit iterative schemes leading to effective composite semi-direct solution methods for solving large linear systems of algebraic equations.展开更多
How to deal with colored noises of GOCE (Gravity field and steady - state Ocean Circulation Explorer) satellite has been the key to data processing. This paper focused on colored noises of GOCE gradient data and the...How to deal with colored noises of GOCE (Gravity field and steady - state Ocean Circulation Explorer) satellite has been the key to data processing. This paper focused on colored noises of GOCE gradient data and the frequency spectrum analysis. According to the analysis results, gravity field model of the optima] degrees 90-240 is given, which is recovered by COCE gradient data. This paper presents an iterative Wiener filtering method based on the gravity gradient invariants. By this method a degree-220 model was calculated from GOCE SGG (Satellite Gravity Gradient) data. The degrees above 90 of ITG2010 were taken as the prior gravity field model, replacing the low degree gravity field model calculated by GOCE orbit data. GOCE gradient colored noises was processed by Wiener filtering. Finally by Wiener filtering iterative calculation, the gravity field model was restored by space-wise harmonic analysis method. The results show that the model's accuracy matched well with the ESA's (European Space Agency) results by using the same data,展开更多
A new iterating method based on homotopy function is developed in this paper. All solutions can be found easily without the need of choosing proper initial values. Compared to the homotopy continuation method, the sol...A new iterating method based on homotopy function is developed in this paper. All solutions can be found easily without the need of choosing proper initial values. Compared to the homotopy continuation method, the solution process of the present method is simplified, and the computation efficiency as well as the reliability for obtaining all solutions is also improved. By application of the method to the mechanisms problems, the results are satisfactory.展开更多
The parallel algorithms of iterated defect correction methods (PIDeCM’s) are constructed, which are of efficiency and high order B-convergence for general nonlinear stiff systems in ODE’S. As the basis of constructi...The parallel algorithms of iterated defect correction methods (PIDeCM’s) are constructed, which are of efficiency and high order B-convergence for general nonlinear stiff systems in ODE’S. As the basis of constructing and discussing PIDeCM’s. a class of parallel one-leg methods is also investigated, which are of particular efficiency for linear systems.展开更多
A detailed fracture mechanics analysis of bridge-toughening in a fiber reinforced composite is presented in this paper. The integral equation governing bridge-toughening as well as crack opening displacement (COD) for...A detailed fracture mechanics analysis of bridge-toughening in a fiber reinforced composite is presented in this paper. The integral equation governing bridge-toughening as well as crack opening displacement (COD) for the composite with interfacial layer is derived from the Castigliano's theorem and interface shear-lag model. A numerical result of the COD equation is obtained using the iteration solution of the second Fredholm integral equation. In order to investigate the effect of various parameters on the toughening, an approximate analytical solution of the equation is present and its error analysis is performed, which demonstrates the approximate solution to be appropriate. A parametric study of the influence of the crack length, interfacial shear modules, thickness of the interphase, fiber radius, fiber volume fraction and properties of materials on composite toughening is therefore carried out. The results are useful for experimental demonstration and toughening design including the fabrication process of the composite.展开更多
Independent component analysis (ICA) is the primary statistical method for solving the problems of blind source separation. The fast ICA is a famous and excellent algorithm and its contrast function is optimized by ...Independent component analysis (ICA) is the primary statistical method for solving the problems of blind source separation. The fast ICA is a famous and excellent algorithm and its contrast function is optimized by the quadratic convergence of Newton iteration method. In order to improve the convergence speed and the separation precision of the fast ICA, an improved fast ICA algorithm is presented. The algorithm introduces an efficient Newton's iterative method with fifth-order convergence for optimizing the contrast function and gives the detail derivation process and the corresponding condition. The experimental results demonstrate that the convergence speed and the separation precision of the improved algorithm are better than that of the fast ICA.展开更多
An iteration method similar to the thin-wing-expansion method for the compressible flow has been proposed to solve the boundary layer flow past a flat plate. Using such an iteration, the first step of which is Oseen’...An iteration method similar to the thin-wing-expansion method for the compressible flow has been proposed to solve the boundary layer flow past a flat plate. Using such an iteration, the first step of which is Oseen’s approximation, the boundary layer past a flat plate is studied. As proceeding from the first approximation to the second and third approximations, it is realized that our solution approaches to a well known Howarth’s bench mark one gradually. Hence, it is concluded that the usefulness of the present method has been confirmed.展开更多
Purpose of present work is to develop a reliable and simple method for structural analysis of RC Shear Walls. The shear wall is simulated by a truss model as the bar of a truss is the simplest finite element. An itera...Purpose of present work is to develop a reliable and simple method for structural analysis of RC Shear Walls. The shear wall is simulated by a truss model as the bar of a truss is the simplest finite element. An iterative method is used. Initially, there are only concrete bars. Repeated structural analyses are performed. After each structural analysis, every concrete bar exceeding tensile strength is replaced by a steel bar. For every concrete bar exceeding compressive strength, first its section area is increased. If this is not enough, a steel bar is placed at the side of it. For every steel bar exceeding tensile or compressive strength, its section area is increased. After the end of every structural analysis, if all concrete and steel bars fall within tensile and compressive strengths, the output data are written and the analysis is terminated. Otherwise, the structural analysis is repeated. As all the necessary conditions (static, elastic, linearized geometric) are satisfied and the stresses of ALL concrete and steel bars fall within the tensile and compressive strengths, the results are acceptable. Usually, the proposed method exhibits a fast convergence in 4 - 5 repeats of structural analysis of the RC Shear Wall.展开更多
文摘Wave Iterative Method (WIM) is a numerical modeling for electromagnetic field analysis of microwave circuits. Theories of transmission line, four terminal network and boundary condition are applied to developing WIM simulation that the physical electromagnetic wave is described to a mathematical model using GUI function of MATLAB. In applying, the microstrip patch antenna was analyzed and implemented. The research result shows that the WIM simulation can be used correctly to analyze the electric field, magnetic field theory and return lose of sample patch antenna. The comparison of the WIM calculation agrees well with the measurement and the classical simulation.
文摘There is a common difficulty in elastic-plastic impact codes such as EPIC[2,3] NONSAP[4], etc.. Most of these codes use the simple linear functions usually taken from static problem to represent the displacement components. In such finite element formulation, the stress components are constant in each element and they are discontinuous in any two neighboring elements. Therefore, the bases of using the virtual work principle in such elements are unreliable. In this paper, we introduce a new method, namely, the compatible stress iterative method, to eliminate the above-said difficulty. The calculated examples show that the calculation using the new method in dynamic finite element analysis of high velocity impact is valid and stable, and the element stiffness can be somewhat reduced.
文摘For solving nonlinear and transcendental equation f(x)=0 , a singnificant improvement on Newton's method is proposed in this paper. New “Newton Like” methods are founded on the basis of Liapunov's methods of dynamic system. These new methods preserve quadratic convergence and computational efficiency of Newton's method, and remove the monotoneity condition imposed on f(x):f′(x)≠0 .
基金Supported by the National Natural Science Foundation of China(50978083)the Fundamental Research Funds for the Central Universities(2010B02814)
文摘This paper proposes a sensitivity analysis method for engineering parameters using interval analyses.This method substantially extends the application of interval analysis method.In this scheme,parameter intervals and decision-making target intervals are determined using the interval analysis method.As an example,an inverse analysis method for uncertainty is presented.The intervals of unknown parameters can be obtained by sampling measured data.Even for limited measured data,robust results can also be obtained with the inverse analysis method,which can be intuitively evaluated by the uncertainty expressed in terms of an interval.For complex nonlinear problems,an iteratively optimized inverse analysis model is proposed.In a given set of loose parameter intervals,all the unknown parameter intervals that satisfy the measured information can be obtained by an iteratively optimized inverse analysis model.The influences of measured precisions and the number of parameters on the results of the inverse analysis are evaluated.Finally,the uniqueness of the interval inverse analysis method is discussed.
基金the National 973 program of China(No.2004CB720704)
文摘The neutron shielding component of ITER (International Thermonuclear Experimental Reactor) vacuum vessel is a kind of structure resembling a wall in appearance. A FE (finite element) model is set up by using ANSYS code in terms of its structural features. Static analysis, thermal expansion analysis and dynamic analysis are performed. The static results show that the stress and displacement distribution are allowable, but the high stress appears in the junction between the upper and lower parts. The modal analysis indicates that the biggest deformation exists in the port area. Through modal superposition, the single-point response has been found with the lower rank frequency of the acceleration seismic response spectrum. But the deformation and the stress values are within the permissible limit. The analysis results would benefit the work in the next step and provide some reference for the implementation of the engineering plan in the future.
文摘Explicit Exact and Approximate Inverse Preconditioners for solving complex linear systems are introduced. A class of general iterative methods of second order is presented and the selection of iterative parameters is discussed. The second order iterative methods behave quite similar to first order methods and the development of efficient preconditioners for solving the original linear system is a decisive factor for making the second order iterative methods superior to the first order iterative methods. Adaptive preconditioned Conjugate Gradient methods using explicit approximate preconditioners for solving efficiently large sparse systems of algebraic equations are also presented. The generalized Approximate Inverse Matrix techniques can be efficiently used in conjunction with explicit iterative schemes leading to effective composite semi-direct solution methods for solving large linear systems of algebraic equations.
基金supported by the National Natural Science Foundation of China(41404020)
文摘How to deal with colored noises of GOCE (Gravity field and steady - state Ocean Circulation Explorer) satellite has been the key to data processing. This paper focused on colored noises of GOCE gradient data and the frequency spectrum analysis. According to the analysis results, gravity field model of the optima] degrees 90-240 is given, which is recovered by COCE gradient data. This paper presents an iterative Wiener filtering method based on the gravity gradient invariants. By this method a degree-220 model was calculated from GOCE SGG (Satellite Gravity Gradient) data. The degrees above 90 of ITG2010 were taken as the prior gravity field model, replacing the low degree gravity field model calculated by GOCE orbit data. GOCE gradient colored noises was processed by Wiener filtering. Finally by Wiener filtering iterative calculation, the gravity field model was restored by space-wise harmonic analysis method. The results show that the model's accuracy matched well with the ESA's (European Space Agency) results by using the same data,
文摘A new iterating method based on homotopy function is developed in this paper. All solutions can be found easily without the need of choosing proper initial values. Compared to the homotopy continuation method, the solution process of the present method is simplified, and the computation efficiency as well as the reliability for obtaining all solutions is also improved. By application of the method to the mechanisms problems, the results are satisfactory.
文摘The parallel algorithms of iterated defect correction methods (PIDeCM’s) are constructed, which are of efficiency and high order B-convergence for general nonlinear stiff systems in ODE’S. As the basis of constructing and discussing PIDeCM’s. a class of parallel one-leg methods is also investigated, which are of particular efficiency for linear systems.
基金National Natural Science Foundatjon and China Postdoctoral Scjence Fbundation
文摘A detailed fracture mechanics analysis of bridge-toughening in a fiber reinforced composite is presented in this paper. The integral equation governing bridge-toughening as well as crack opening displacement (COD) for the composite with interfacial layer is derived from the Castigliano's theorem and interface shear-lag model. A numerical result of the COD equation is obtained using the iteration solution of the second Fredholm integral equation. In order to investigate the effect of various parameters on the toughening, an approximate analytical solution of the equation is present and its error analysis is performed, which demonstrates the approximate solution to be appropriate. A parametric study of the influence of the crack length, interfacial shear modules, thickness of the interphase, fiber radius, fiber volume fraction and properties of materials on composite toughening is therefore carried out. The results are useful for experimental demonstration and toughening design including the fabrication process of the composite.
文摘Independent component analysis (ICA) is the primary statistical method for solving the problems of blind source separation. The fast ICA is a famous and excellent algorithm and its contrast function is optimized by the quadratic convergence of Newton iteration method. In order to improve the convergence speed and the separation precision of the fast ICA, an improved fast ICA algorithm is presented. The algorithm introduces an efficient Newton's iterative method with fifth-order convergence for optimizing the contrast function and gives the detail derivation process and the corresponding condition. The experimental results demonstrate that the convergence speed and the separation precision of the improved algorithm are better than that of the fast ICA.
文摘An iteration method similar to the thin-wing-expansion method for the compressible flow has been proposed to solve the boundary layer flow past a flat plate. Using such an iteration, the first step of which is Oseen’s approximation, the boundary layer past a flat plate is studied. As proceeding from the first approximation to the second and third approximations, it is realized that our solution approaches to a well known Howarth’s bench mark one gradually. Hence, it is concluded that the usefulness of the present method has been confirmed.
文摘Purpose of present work is to develop a reliable and simple method for structural analysis of RC Shear Walls. The shear wall is simulated by a truss model as the bar of a truss is the simplest finite element. An iterative method is used. Initially, there are only concrete bars. Repeated structural analyses are performed. After each structural analysis, every concrete bar exceeding tensile strength is replaced by a steel bar. For every concrete bar exceeding compressive strength, first its section area is increased. If this is not enough, a steel bar is placed at the side of it. For every steel bar exceeding tensile or compressive strength, its section area is increased. After the end of every structural analysis, if all concrete and steel bars fall within tensile and compressive strengths, the output data are written and the analysis is terminated. Otherwise, the structural analysis is repeated. As all the necessary conditions (static, elastic, linearized geometric) are satisfied and the stresses of ALL concrete and steel bars fall within the tensile and compressive strengths, the results are acceptable. Usually, the proposed method exhibits a fast convergence in 4 - 5 repeats of structural analysis of the RC Shear Wall.