In order to solve the shortcomings of current fatigue detection methods such as low accuracy or poor real-time performance,a fatigue detection method based on multi-feature fusion is proposed.Firstly,the HOG face dete...In order to solve the shortcomings of current fatigue detection methods such as low accuracy or poor real-time performance,a fatigue detection method based on multi-feature fusion is proposed.Firstly,the HOG face detection algorithm and KCF target tracking algorithm are integrated and deformable convolutional neural network is introduced to identify the state of extracted eyes and mouth,fast track the detected faces and extract continuous and stable target faces for more efficient extraction.Then the head pose algorithm is introduced to detect the driver’s head in real time and obtain the driver’s head state information.Finally,a multi-feature fusion fatigue detection method is proposed based on the state of the eyes,mouth and head.According to the experimental results,the proposed method can detect the driver’s fatigue state in real time with high accuracy and good robustness compared with the current fatigue detection algorithms.展开更多
In order to improve the accuracy and reliability of the driving fatigue detection based on a single feature, a new detection algorithm based on multiple features is proposed. Two direct driver's facial features refle...In order to improve the accuracy and reliability of the driving fatigue detection based on a single feature, a new detection algorithm based on multiple features is proposed. Two direct driver's facial features reflecting fatigue and one indirect vehicle behavior feature indicating fatigue are considered. Meanwhile, T-S fuzzy neural network(TSFNN)is adopted to recognize the driving fatigue of drivers. For the structure identification of the TSFNN, subtractive clustering(SC) is used to confirm the fuzzy rules and their correlative parameters. Moreover, the particle swarm optimization (PSO)algorithm is improved to train the TSFNN. Simulation results and experiments on vehicles show that the proposed algorithm can effectively improve the convergence speed and the recognition accuracy of the TSFNN, as well as enhance the correct rate of driving fatigue detection.展开更多
Smoke detection is the most commonly used method in early warning of fire and is widely used in forest detection.Most existing smoke detection methods contain empty spaces and obstacles which interfere with detection ...Smoke detection is the most commonly used method in early warning of fire and is widely used in forest detection.Most existing smoke detection methods contain empty spaces and obstacles which interfere with detection and extract false smoke roots.This study developed a new smoke roots search algorithm based on a multi-feature fusion dynamic extraction strategy.This determines smoke origin candidate points and region based on a multi-frame discrete confidence level.The results show that the new method provides a more complete smoke contour with no background interference,compared to the results using existing methods.Unlike video-based methods that rely on continuous frames,an adaptive threshold method was developed to build the judgment image set composed of non-consecutive frames.The smoke roots origin search algorithm increased the detection rate and significantly reduced false detection rate compared to existing methods.展开更多
Fatigue is a state commonly caused by overworked,which seriously affects daily work and life.How to detect mental fatigue has always been a hot spot for researchers to explore.Electroencephalogram(EEG)is considered on...Fatigue is a state commonly caused by overworked,which seriously affects daily work and life.How to detect mental fatigue has always been a hot spot for researchers to explore.Electroencephalogram(EEG)is considered one of the most accurate and objective indicators.This article investigated the devel-opment of classification algorithms applied in EEG-based fatigue detection in recent years.According to the different source of the data,we can divide these classification algorithms into two categories,intra-subject(within the same sub-ject)and cross-subject(across different subjects).In most studies,traditional machine learning algorithms with artificial feature extraction methods were com-monly used for fatigue detection as intra-subject algorithms.Besides,deep learn-ing algorithms have been applied to fatigue detection and could achieve effective result based on large-scale dataset.However,it is difficult to perform long-term calibration training on the subjects in practical applications.With the lack of large samples,transfer learning algorithms as a cross-subject algorithm could promote the practical application of fatigue detection methods.We found that the research based on deep learning and transfer learning has gradually increased in recent years.But as afield with increasing requirements,researchers still need to con-tinue to explore efficient decoding algorithms,design effective experimental para-digms,and collect and accumulate valid standard data,to achieve fast and accurate fatigue detection methods or systems to further widely apply.展开更多
Real-time detection of driver fatigue status is of great significance for road traffic safety.In this paper,a proposed novel driver fatigue detection method is able to detect the driver’s fatigue status around the cl...Real-time detection of driver fatigue status is of great significance for road traffic safety.In this paper,a proposed novel driver fatigue detection method is able to detect the driver’s fatigue status around the clock.The driver’s face images were captured by a camera with a colored lens and an infrared lens mounted above the dashboard.The landmarks of the driver’s face were labeled and the eye-area was segmented.By calculating the aspect ratios of the eyes,the duration of eye closure,frequency of blinks and PERCLOS of both colored and infrared,fatigue can be detected.Based on the change of light intensity detected by a photosensitive device,the weight matrix of the colored features and the infrared features was adjusted adaptively to reduce the impact of lighting on fatigue detection.Video samples of the driver’s face were recorded in the test vehicle.After training the classification model,the results showed that our method has high accuracy on driver fatigue detection in both daytime and nighttime.展开更多
to the chroma distribution diversity (CDD) between lip color and skin color, the lip color area is segmented by the back propagation neural network (BPNN) with three typical color features. Isolated noisy points o...to the chroma distribution diversity (CDD) between lip color and skin color, the lip color area is segmented by the back propagation neural network (BPNN) with three typical color features. Isolated noisy points of the lip color area in binary image are eliminated by a proposed re- gion connecting algorithm. An improved integral projection algorithm is presented to locate the lip boundary. Whether a driver is fatigued is recognized by the ratio of the frame number of the images with mouth opening continuously to the total image frame number in every 20s. The experiments show that the proposed algorithm provides higher correct rate and reliability for fatigue driving detec- tion, and is superior to the single color feature-based method in the lip color segmention. Besides, it improves obviously the accuracy and speed of the lip boundary location compared with the traditional integral projection algrothm.展开更多
Fatigue cracks that develop in civil infrastructure such as steel bridges due to repetitive loads pose a major threat to structural integrity.Despite being the most common practice for fatigue crack detection,human vi...Fatigue cracks that develop in civil infrastructure such as steel bridges due to repetitive loads pose a major threat to structural integrity.Despite being the most common practice for fatigue crack detection,human visual inspection is known to be labor intensive,time-consuming,and prone to error.In this study,a computer vision-based fatigue crack detection approach using a short video recorded under live loads by a moving consumer-grade camera is presented.The method detects fatigue crack by tracking surface motion and identifies the differential motion pattern caused by opening and closing of the fatigue crack.However,the global motion introduced by a moving camera in the recorded video is typically far greater than the actual motion associated with fatigue crack opening/closing,leading to false detection results.To overcome the challenge,global motion compensation(GMC)techniques are introduced to compensate for camera-induced movement.In particular,hierarchical model-based motion estimation is adopted for 2D videos with simple geometry and a new method is developed by extending the bundled camera paths approach for 3D videos with complex geometry.The proposed methodology is validated using two laboratory test setups for both in-plane and out-of-plane fatigue cracks.The results confirm the importance of motion compensation for both 2D and 3D videos and demonstrate the effectiveness of the proposed GMC methods as well as the subsequent crack detection algorithm.展开更多
A new scheme for driver fatigue detection is presented, which is based on the nonlinear unscented Kalman filter and eye tracking. Assuming a probability distribution than to approximate an arbitrary nonlinear function...A new scheme for driver fatigue detection is presented, which is based on the nonlinear unscented Kalman filter and eye tracking. Assuming a probability distribution than to approximate an arbitrary nonlinear function or transformation, eye nonlinear tracking can be achieved using an unscented transformation (UT), which adopts a set of deterministic sigma points to match the posterior probability density function of the eye movement. Driver fatigue can be detected using the percentage of eye closure (PERCLOS) framework in a realistic driving condition after the eye nonlinear tracking. This system was tested adequately in realistic driving environments with subjects of different genders, with/without glasses, in day/night driving, being commercial/noncommercial drivers, in continuous driving time, and under different road conditions. The last experimental results show that the proposed method not only improves the robustness for nonlinear eye tracking, but also can provide more accurate estimation than the traditional Kalman filter.展开更多
The calibration curves obtained using strain gages are used to predict surface crack length on plate specimen subjected to 4-point bending fatigue loading. The results shows that the proposed procedure is of high prec...The calibration curves obtained using strain gages are used to predict surface crack length on plate specimen subjected to 4-point bending fatigue loading. The results shows that the proposed procedure is of high precision with the maximum error percentage being less than 6%, and it can be easily used to estimate or monitor the surface crack length under fatigue loading both in laboratory and in engineering. It is also quite meanful for nondamage detecting.展开更多
As the significant branch of intelligent vehicle networking technology, the intelligent fatigue driving detection technology has been introduced into the paper in order to recognize the fatigue state of the vehicle dr...As the significant branch of intelligent vehicle networking technology, the intelligent fatigue driving detection technology has been introduced into the paper in order to recognize the fatigue state of the vehicle driver and avoid the traffic accident. The disadvantages of the traditional fatigue driving detection method have been pointed out when we study on the traditional eye tracking technology and traditional artificial neural networks. On the basis of the image topological analysis technology, Haar like features and extreme learning machine algorithm, a new detection method of the intelligent fatigue driving has been proposed in the paper. Besides, the detailed algorithm and realization scheme of the intelligent fatigue driving detection have been put forward as well. Finally, by comparing the results of the simulation experiments, the new method has been verified to have a better robustness, efficiency and accuracy in monitoring and tracking the drivers' fatigue driving by using the human eye tracking technology.展开更多
飞机结构损伤导波在线监测技术作为一种新颖的无损检测手段,为了真正实现该技术在结构运营维护过程中的视情维护,必须明确其结构损伤检出概率(probability of detection,POD),以指导结构检查维修方案的制定。提出了一种基于信号响应分...飞机结构损伤导波在线监测技术作为一种新颖的无损检测手段,为了真正实现该技术在结构运营维护过程中的视情维护,必须明确其结构损伤检出概率(probability of detection,POD),以指导结构检查维修方案的制定。提出了一种基于信号响应分析模型的结构损伤导波POD计算方法,该方法通过构建在线导波监测信号的损伤指数与裂纹长度间的对应关系,得到结构损伤POD的统计计算模型,并分析了拟合参数的不确定性对计算模型的影响,构建了不同置信度下的导波POD计算模型。通过开展金属开孔和搭接结构疲劳裂纹导波监测试验,验证了该方法的有效性。试验结果表明,损伤指数类型、对应关系拟合函数和传感器监测方案均对结构损伤导波POD具有影响,且在95%置信度90%POD下金属开孔和搭接结构的可检裂纹长度分别约为2.6 mm和9.5 mm。展开更多
针对疲劳检测中小尺度检测效果不佳和实时性差等问题,以矿井提升机司机疲劳检测为目标,对YOLOv7的结构进行精简并且基于AIoU(Area Intersection over Union)损失函数优化预测框与验证框的回归过程.在模型中引入双通道注意力机制实现小...针对疲劳检测中小尺度检测效果不佳和实时性差等问题,以矿井提升机司机疲劳检测为目标,对YOLOv7的结构进行精简并且基于AIoU(Area Intersection over Union)损失函数优化预测框与验证框的回归过程.在模型中引入双通道注意力机制实现小尺度特征的信息增强,通过融合眨眼频率、闭眼时长和打哈欠时长来判断司机的状态.实验结果表明,本文方法对疲劳检测精度达到98.85%,检测速度达到70 FPS,与其他算法相比,本文算法具有更好的准确性和实时性.展开更多
针对传统检测方法中摄像头视角受限问题,提出了一种结合面部姿态矫正和改进ViViT的多视角下人脸疲倦检测方法。采用Mediapipe Face Mesh定位面部三维特征点并将其矫正为正面,利用提出的FGR-ViViT模型来捕捉矫正后的眼睛、眉毛、嘴巴线...针对传统检测方法中摄像头视角受限问题,提出了一种结合面部姿态矫正和改进ViViT的多视角下人脸疲倦检测方法。采用Mediapipe Face Mesh定位面部三维特征点并将其矫正为正面,利用提出的FGR-ViViT模型来捕捉矫正后的眼睛、眉毛、嘴巴线条图像帧序列变化。FGR-ViViT通过在ViViT的Temporal Transformer Encoder中添加部件选择模块来捕捉特征在时间维度中的细微差异,同时融合2次dropout和改进的对比损失函数来调整样本的相似性,降低模型过拟合风险并提高泛化能力。实验结果表明,提出的方法在YawDD和DROZY矫正后的线条图像帧的测试集上,F1-分数达到了94.5%和97.6%,相较于原始人脸图像帧分别提高了3.2%和10.4%,其FGR-ViViT相较于原始ViViT分别提高了6.1%和0.7%。所提方法适用于摄像头灵活摆放的多种应用场景,对解决多视角人脸睡意判断具有积极意义。展开更多
文摘In order to solve the shortcomings of current fatigue detection methods such as low accuracy or poor real-time performance,a fatigue detection method based on multi-feature fusion is proposed.Firstly,the HOG face detection algorithm and KCF target tracking algorithm are integrated and deformable convolutional neural network is introduced to identify the state of extracted eyes and mouth,fast track the detected faces and extract continuous and stable target faces for more efficient extraction.Then the head pose algorithm is introduced to detect the driver’s head in real time and obtain the driver’s head state information.Finally,a multi-feature fusion fatigue detection method is proposed based on the state of the eyes,mouth and head.According to the experimental results,the proposed method can detect the driver’s fatigue state in real time with high accuracy and good robustness compared with the current fatigue detection algorithms.
基金The National Key Technologies R & D Program during the 11th Five-Year Plan Period(No.2009BAG13A04)the Ph.D.Programs Foundation of Ministry of Education of China(No.200802861061)the Transportation Science Research Project of Jiangsu Province(No.08X09)
文摘In order to improve the accuracy and reliability of the driving fatigue detection based on a single feature, a new detection algorithm based on multiple features is proposed. Two direct driver's facial features reflecting fatigue and one indirect vehicle behavior feature indicating fatigue are considered. Meanwhile, T-S fuzzy neural network(TSFNN)is adopted to recognize the driving fatigue of drivers. For the structure identification of the TSFNN, subtractive clustering(SC) is used to confirm the fuzzy rules and their correlative parameters. Moreover, the particle swarm optimization (PSO)algorithm is improved to train the TSFNN. Simulation results and experiments on vehicles show that the proposed algorithm can effectively improve the convergence speed and the recognition accuracy of the TSFNN, as well as enhance the correct rate of driving fatigue detection.
基金supported by the National Natural Science Foundation of China(grants no.32171797 and 31800549)。
文摘Smoke detection is the most commonly used method in early warning of fire and is widely used in forest detection.Most existing smoke detection methods contain empty spaces and obstacles which interfere with detection and extract false smoke roots.This study developed a new smoke roots search algorithm based on a multi-feature fusion dynamic extraction strategy.This determines smoke origin candidate points and region based on a multi-frame discrete confidence level.The results show that the new method provides a more complete smoke contour with no background interference,compared to the results using existing methods.Unlike video-based methods that rely on continuous frames,an adaptive threshold method was developed to build the judgment image set composed of non-consecutive frames.The smoke roots origin search algorithm increased the detection rate and significantly reduced false detection rate compared to existing methods.
基金funded by the National Natural Science Foundation of China(Grant Nos.61906019,62006082 and 62076103)the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2021A1515011853,2021A1515011600 and 2020A1515110294)+1 种基金Guangzhou Science and Technology Plan Project(Grant No.202102020877)the Guangzhou Science and Technology Plan Project Key Field R&D Project(202007030005).
文摘Fatigue is a state commonly caused by overworked,which seriously affects daily work and life.How to detect mental fatigue has always been a hot spot for researchers to explore.Electroencephalogram(EEG)is considered one of the most accurate and objective indicators.This article investigated the devel-opment of classification algorithms applied in EEG-based fatigue detection in recent years.According to the different source of the data,we can divide these classification algorithms into two categories,intra-subject(within the same sub-ject)and cross-subject(across different subjects).In most studies,traditional machine learning algorithms with artificial feature extraction methods were com-monly used for fatigue detection as intra-subject algorithms.Besides,deep learn-ing algorithms have been applied to fatigue detection and could achieve effective result based on large-scale dataset.However,it is difficult to perform long-term calibration training on the subjects in practical applications.With the lack of large samples,transfer learning algorithms as a cross-subject algorithm could promote the practical application of fatigue detection methods.We found that the research based on deep learning and transfer learning has gradually increased in recent years.But as afield with increasing requirements,researchers still need to con-tinue to explore efficient decoding algorithms,design effective experimental para-digms,and collect and accumulate valid standard data,to achieve fast and accurate fatigue detection methods or systems to further widely apply.
基金The work of this paper was supported by the National Natural Science Foundation of China under grant numbers 61572038 received by J.Z.in 2015.URL:https://isisn.nsfc.gov.cn/egrantindex/funcindex/prjsearch-list。
文摘Real-time detection of driver fatigue status is of great significance for road traffic safety.In this paper,a proposed novel driver fatigue detection method is able to detect the driver’s fatigue status around the clock.The driver’s face images were captured by a camera with a colored lens and an infrared lens mounted above the dashboard.The landmarks of the driver’s face were labeled and the eye-area was segmented.By calculating the aspect ratios of the eyes,the duration of eye closure,frequency of blinks and PERCLOS of both colored and infrared,fatigue can be detected.Based on the change of light intensity detected by a photosensitive device,the weight matrix of the colored features and the infrared features was adjusted adaptively to reduce the impact of lighting on fatigue detection.Video samples of the driver’s face were recorded in the test vehicle.After training the classification model,the results showed that our method has high accuracy on driver fatigue detection in both daytime and nighttime.
基金Supported by the National High Technology Research and Development Programme of China (No. 2009AA01 Z311,2009AA01 Z314), the Na- tional Natural Science Foundation of China (No. 60905045, 60775057) , and College Student' s Practice and Innovation Trainning Project of Jiangsu Province (No. N1885012112, N1885012152).
文摘to the chroma distribution diversity (CDD) between lip color and skin color, the lip color area is segmented by the back propagation neural network (BPNN) with three typical color features. Isolated noisy points of the lip color area in binary image are eliminated by a proposed re- gion connecting algorithm. An improved integral projection algorithm is presented to locate the lip boundary. Whether a driver is fatigued is recognized by the ratio of the frame number of the images with mouth opening continuously to the total image frame number in every 20s. The experiments show that the proposed algorithm provides higher correct rate and reliability for fatigue driving detec- tion, and is superior to the single color feature-based method in the lip color segmention. Besides, it improves obviously the accuracy and speed of the lip boundary location compared with the traditional integral projection algrothm.
基金NCHRP Project,IDEA 223:Fatigue Crack Inspection using Computer Vision and Augmented Reality。
文摘Fatigue cracks that develop in civil infrastructure such as steel bridges due to repetitive loads pose a major threat to structural integrity.Despite being the most common practice for fatigue crack detection,human visual inspection is known to be labor intensive,time-consuming,and prone to error.In this study,a computer vision-based fatigue crack detection approach using a short video recorded under live loads by a moving consumer-grade camera is presented.The method detects fatigue crack by tracking surface motion and identifies the differential motion pattern caused by opening and closing of the fatigue crack.However,the global motion introduced by a moving camera in the recorded video is typically far greater than the actual motion associated with fatigue crack opening/closing,leading to false detection results.To overcome the challenge,global motion compensation(GMC)techniques are introduced to compensate for camera-induced movement.In particular,hierarchical model-based motion estimation is adopted for 2D videos with simple geometry and a new method is developed by extending the bundled camera paths approach for 3D videos with complex geometry.The proposed methodology is validated using two laboratory test setups for both in-plane and out-of-plane fatigue cracks.The results confirm the importance of motion compensation for both 2D and 3D videos and demonstrate the effectiveness of the proposed GMC methods as well as the subsequent crack detection algorithm.
基金supported by the National Natural Science Foundation of China (No.60971104)the Program for New Century Excellent Talents inUniversity of China (No.NCET-05-0794)the Young Teacher Scientific Research Foundation of Southwest Jiaotong University (No.2009Q032)
文摘A new scheme for driver fatigue detection is presented, which is based on the nonlinear unscented Kalman filter and eye tracking. Assuming a probability distribution than to approximate an arbitrary nonlinear function or transformation, eye nonlinear tracking can be achieved using an unscented transformation (UT), which adopts a set of deterministic sigma points to match the posterior probability density function of the eye movement. Driver fatigue can be detected using the percentage of eye closure (PERCLOS) framework in a realistic driving condition after the eye nonlinear tracking. This system was tested adequately in realistic driving environments with subjects of different genders, with/without glasses, in day/night driving, being commercial/noncommercial drivers, in continuous driving time, and under different road conditions. The last experimental results show that the proposed method not only improves the robustness for nonlinear eye tracking, but also can provide more accurate estimation than the traditional Kalman filter.
文摘The calibration curves obtained using strain gages are used to predict surface crack length on plate specimen subjected to 4-point bending fatigue loading. The results shows that the proposed procedure is of high precision with the maximum error percentage being less than 6%, and it can be easily used to estimate or monitor the surface crack length under fatigue loading both in laboratory and in engineering. It is also quite meanful for nondamage detecting.
基金supported by the National Natural Science Foundation of China(61272357,61300074,61572075)
文摘As the significant branch of intelligent vehicle networking technology, the intelligent fatigue driving detection technology has been introduced into the paper in order to recognize the fatigue state of the vehicle driver and avoid the traffic accident. The disadvantages of the traditional fatigue driving detection method have been pointed out when we study on the traditional eye tracking technology and traditional artificial neural networks. On the basis of the image topological analysis technology, Haar like features and extreme learning machine algorithm, a new detection method of the intelligent fatigue driving has been proposed in the paper. Besides, the detailed algorithm and realization scheme of the intelligent fatigue driving detection have been put forward as well. Finally, by comparing the results of the simulation experiments, the new method has been verified to have a better robustness, efficiency and accuracy in monitoring and tracking the drivers' fatigue driving by using the human eye tracking technology.
文摘飞机结构损伤导波在线监测技术作为一种新颖的无损检测手段,为了真正实现该技术在结构运营维护过程中的视情维护,必须明确其结构损伤检出概率(probability of detection,POD),以指导结构检查维修方案的制定。提出了一种基于信号响应分析模型的结构损伤导波POD计算方法,该方法通过构建在线导波监测信号的损伤指数与裂纹长度间的对应关系,得到结构损伤POD的统计计算模型,并分析了拟合参数的不确定性对计算模型的影响,构建了不同置信度下的导波POD计算模型。通过开展金属开孔和搭接结构疲劳裂纹导波监测试验,验证了该方法的有效性。试验结果表明,损伤指数类型、对应关系拟合函数和传感器监测方案均对结构损伤导波POD具有影响,且在95%置信度90%POD下金属开孔和搭接结构的可检裂纹长度分别约为2.6 mm和9.5 mm。
文摘针对疲劳检测中小尺度检测效果不佳和实时性差等问题,以矿井提升机司机疲劳检测为目标,对YOLOv7的结构进行精简并且基于AIoU(Area Intersection over Union)损失函数优化预测框与验证框的回归过程.在模型中引入双通道注意力机制实现小尺度特征的信息增强,通过融合眨眼频率、闭眼时长和打哈欠时长来判断司机的状态.实验结果表明,本文方法对疲劳检测精度达到98.85%,检测速度达到70 FPS,与其他算法相比,本文算法具有更好的准确性和实时性.
文摘针对传统检测方法中摄像头视角受限问题,提出了一种结合面部姿态矫正和改进ViViT的多视角下人脸疲倦检测方法。采用Mediapipe Face Mesh定位面部三维特征点并将其矫正为正面,利用提出的FGR-ViViT模型来捕捉矫正后的眼睛、眉毛、嘴巴线条图像帧序列变化。FGR-ViViT通过在ViViT的Temporal Transformer Encoder中添加部件选择模块来捕捉特征在时间维度中的细微差异,同时融合2次dropout和改进的对比损失函数来调整样本的相似性,降低模型过拟合风险并提高泛化能力。实验结果表明,提出的方法在YawDD和DROZY矫正后的线条图像帧的测试集上,F1-分数达到了94.5%和97.6%,相较于原始人脸图像帧分别提高了3.2%和10.4%,其FGR-ViViT相较于原始ViViT分别提高了6.1%和0.7%。所提方法适用于摄像头灵活摆放的多种应用场景,对解决多视角人脸睡意判断具有积极意义。