Chinese Clinical Named Entity Recognition(CNER)is a crucial step in extracting medical information and is of great significance in promoting medical informatization.However,CNER poses challenges due to the specificity...Chinese Clinical Named Entity Recognition(CNER)is a crucial step in extracting medical information and is of great significance in promoting medical informatization.However,CNER poses challenges due to the specificity of clinical terminology,the complexity of Chinese text semantics,and the uncertainty of Chinese entity boundaries.To address these issues,we propose an improved CNER model,which is based on multi-feature fusion and multi-scale local context enhancement.The model simultaneously fuses multi-feature representations of pinyin,radical,Part of Speech(POS),word boundary with BERT deep contextual representations to enhance the semantic representation of text for more effective entity recognition.Furthermore,to address the model’s limitation of focusing just on global features,we incorporate Convolutional Neural Networks(CNNs)with various kernel sizes to capture multi-scale local features of the text and enhance the model’s comprehension of the text.Finally,we integrate the obtained global and local features,and employ multi-head attention mechanism(MHA)extraction to enhance the model’s focus on characters associated with medical entities,hence boosting the model’s performance.We obtained 92.74%,and 87.80%F1 scores on the two CNER benchmark datasets,CCKS2017 and CCKS2019,respectively.The results demonstrate that our model outperforms the latest models in CNER,showcasing its outstanding overall performance.It can be seen that the CNER model proposed in this study has an important application value in constructing clinical medical knowledge graph and intelligent Q&A system.展开更多
This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chin...This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chinese character recognition is pointed out,including its numerous categories,complex structure,and the problem of similar characters,especially the variability of handwritten Chinese characters.Subsequently,recognition methods based on feature optimization,model optimization,and fusion techniques are highlighted.The fusion studies between feature optimization and model improvement are further explored,and these studies further enhance the recognition effect through complementary advantages.Finally,the article summarizes the current challenges of Chinese character recognition technology,including accuracy improvement,model complexity,and real-time problems,and looks forward to future research directions.展开更多
In order to solve the shortcomings of current fatigue detection methods such as low accuracy or poor real-time performance,a fatigue detection method based on multi-feature fusion is proposed.Firstly,the HOG face dete...In order to solve the shortcomings of current fatigue detection methods such as low accuracy or poor real-time performance,a fatigue detection method based on multi-feature fusion is proposed.Firstly,the HOG face detection algorithm and KCF target tracking algorithm are integrated and deformable convolutional neural network is introduced to identify the state of extracted eyes and mouth,fast track the detected faces and extract continuous and stable target faces for more efficient extraction.Then the head pose algorithm is introduced to detect the driver’s head in real time and obtain the driver’s head state information.Finally,a multi-feature fusion fatigue detection method is proposed based on the state of the eyes,mouth and head.According to the experimental results,the proposed method can detect the driver’s fatigue state in real time with high accuracy and good robustness compared with the current fatigue detection algorithms.展开更多
Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing,ancient literature research,etc.However,the existing research on sentiment analysis is relatively small.It...Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing,ancient literature research,etc.However,the existing research on sentiment analysis is relatively small.It does not effectively solve the problems such as the weak feature extraction ability of poetry text,which leads to the low performance of the model on sentiment analysis for Chinese classical poetry.In this research,we offer the SA-Model,a poetic sentiment analysis model.SA-Model firstly extracts text vector information and fuses it through Bidirectional encoder representation from transformers-Whole word masking-extension(BERT-wwmext)and Enhanced representation through knowledge integration(ERNIE)to enrich text vector information;Secondly,it incorporates numerous encoders to remove text features at multiple levels,thereby increasing text feature information,improving text semantics accuracy,and enhancing the model’s learning and generalization capabilities;finally,multi-feature fusion poetry sentiment analysis model is constructed.The feasibility and accuracy of the model are validated through the ancient poetry sentiment corpus.Compared with other baseline models,the experimental findings indicate that SA-Model may increase the accuracy of text semantics and hence improve the capability of poetry sentiment analysis.展开更多
The traditional recommendation algorithm represented by the collaborative filtering algorithm is the most classical and widely recommended algorithm in the practical industry.Most book recommendation systems also use ...The traditional recommendation algorithm represented by the collaborative filtering algorithm is the most classical and widely recommended algorithm in the practical industry.Most book recommendation systems also use this algorithm.However,the traditional recommendation algorithm represented by the collaborative filtering algorithm cannot deal with the data sparsity well.This algorithm only uses the shallow feature design of the interaction between readers and books,so it fails to achieve the high-level abstract learning of the relevant attribute features of readers and books,leading to a decline in recommendation performance.Given the above problems,this study uses deep learning technology to model readers’book borrowing probability.It builds a recommendation system model through themulti-layer neural network and inputs the features extracted from readers and books into the network,and then profoundly integrates the features of readers and books through the multi-layer neural network.The hidden deep interaction between readers and books is explored accordingly.Thus,the quality of book recommendation performance will be significantly improved.In the experiment,the evaluation indexes ofHR@10,MRR,andNDCGof the deep neural network recommendation model constructed in this paper are higher than those of the traditional recommendation algorithm,which verifies the effectiveness of the model in the book recommendation.展开更多
Credit Card Fraud Detection(CCFD)is an essential technology for banking institutions to control fraud risks and safeguard their reputation.Class imbalance and insufficient representation of feature data relating to cr...Credit Card Fraud Detection(CCFD)is an essential technology for banking institutions to control fraud risks and safeguard their reputation.Class imbalance and insufficient representation of feature data relating to credit card transactions are two prevalent issues in the current study field of CCFD,which significantly impact classification models’performance.To address these issues,this research proposes a novel CCFD model based on Multifeature Fusion and Generative Adversarial Networks(MFGAN).The MFGAN model consists of two modules:a multi-feature fusion module for integrating static and dynamic behavior data of cardholders into a unified highdimensional feature space,and a balance module based on the generative adversarial network to decrease the class imbalance ratio.The effectiveness of theMFGAN model is validated on two actual credit card datasets.The impacts of different class balance ratios on the performance of the four resamplingmodels are analyzed,and the contribution of the two different modules to the performance of the MFGAN model is investigated via ablation experiments.Experimental results demonstrate that the proposed model does better than state-of-the-art models in terms of recall,F1,and Area Under the Curve(AUC)metrics,which means that the MFGAN model can help banks find more fraudulent transactions and reduce fraud losses.展开更多
The deployment of vehicle micro-motors has witnessed an expansion owing to the progression in electrification and intelligent technologies.However,some micro-motors may exhibit design deficiencies,component wear,assem...The deployment of vehicle micro-motors has witnessed an expansion owing to the progression in electrification and intelligent technologies.However,some micro-motors may exhibit design deficiencies,component wear,assembly errors,and other imperfections that may arise during the design or manufacturing phases.Conse-quently,these micro-motors might generate anomalous noises during their operation,consequently exerting a substantial adverse influence on the overall comfort of drivers and passengers.Automobile micro-motors exhibit a diverse array of structural variations,consequently leading to the manifestation of a multitude of distinctive auditory irregularities.To address the identification of diverse forms of abnormal noise,this research presents a novel approach rooted in the utilization of vibro-acoustic fusion-convolutional neural network(VAF-CNN).This method entails the deployment of distinct network branches,each serving to capture disparate features from the multi-sensor data,all the while considering the auditory perception traits inherent in the human auditory sys-tem.The intermediary layer integrates the concept of adaptive weighting of multi-sensor features,thus affording a calibration mechanism for the features hailing from multiple sensors,thereby enabling a further refinement of features within the branch network.For optimal model efficacy,a feature fusion mechanism is implemented in the concluding layer.To substantiate the efficacy of the proposed approach,this paper initially employs an augmented data methodology inspired by modified SpecAugment,applied to the dataset of abnormal noise sam-ples,encompassing scenarios both with and without in-vehicle interior noise.This serves to mitigate the issue of limited sample availability.Subsequent comparative evaluations are executed,contrasting the performance of the model founded upon single-sensor data against other feature fusion models reliant on multi-sensor data.The experimental results substantiate that the suggested methodology yields heightened recognition accuracy and greater resilience against interference.Moreover,it holds notable practical significance in the engineering domain,as it furnishes valuable support for the targeted management of noise emanating from vehicle micro-motors.展开更多
The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to ide...The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification.展开更多
As a new type of Denial of Service(DoS)attacks,the Low-rate Denial of Service(LDoS)attacks make the traditional method of detecting Distributed Denial of Service Attack(DDoS)attacks useless due to the characteristics ...As a new type of Denial of Service(DoS)attacks,the Low-rate Denial of Service(LDoS)attacks make the traditional method of detecting Distributed Denial of Service Attack(DDoS)attacks useless due to the characteristics of a low average rate and concealment.With features extracted from the network traffic,a new detection approach based on multi-feature fusion is proposed to solve the problem in this paper.An attack feature set containing the Acknowledge character(ACK)sequence number,the packet size,and the queue length is used to classify normal and LDoS attack traffics.Each feature is digitalized and preprocessed to fit the input of the K-Nearest Neighbor(KNN)classifier separately,and to obtain the decision contour matrix.Then a posteriori probability in the matrix is fused,and the fusion decision index D is used as the basis of detecting the LDoS attacks.Experiments proved that the detection rate of the multi-feature fusion algorithm is higher than those of the single-based detection method and other algorithms.展开更多
Smoke detection is the most commonly used method in early warning of fire and is widely used in forest detection.Most existing smoke detection methods contain empty spaces and obstacles which interfere with detection ...Smoke detection is the most commonly used method in early warning of fire and is widely used in forest detection.Most existing smoke detection methods contain empty spaces and obstacles which interfere with detection and extract false smoke roots.This study developed a new smoke roots search algorithm based on a multi-feature fusion dynamic extraction strategy.This determines smoke origin candidate points and region based on a multi-frame discrete confidence level.The results show that the new method provides a more complete smoke contour with no background interference,compared to the results using existing methods.Unlike video-based methods that rely on continuous frames,an adaptive threshold method was developed to build the judgment image set composed of non-consecutive frames.The smoke roots origin search algorithm increased the detection rate and significantly reduced false detection rate compared to existing methods.展开更多
In the smart logistics industry,unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by...In the smart logistics industry,unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by humans.Therefore,they play a critical role in smart warehousing,and semantics segmentation is an effective method to realize the intelligent identification of logistics pallets.However,most current recognition algorithms are ineffective due to the diverse types of pallets,their complex shapes,frequent blockades in production environments,and changing lighting conditions.This paper proposes a novel multi-feature fusion-guided multiscale bidirectional attention(MFMBA)neural network for logistics pallet segmentation.To better predict the foreground category(the pallet)and the background category(the cargo)of a pallet image,our approach extracts three types of features(grayscale,texture,and Hue,Saturation,Value features)and fuses them.The multiscale architecture deals with the problem that the size and shape of the pallet may appear different in the image in the actual,complex environment,which usually makes feature extraction difficult.Our study proposes a multiscale architecture that can extract additional semantic features.Also,since a traditional attention mechanism only assigns attention rights from a single direction,we designed a bidirectional attention mechanism that assigns cross-attention weights to each feature from two directions,horizontally and vertically,significantly improving segmentation.Finally,comparative experimental results show that the precision of the proposed algorithm is 0.53%–8.77%better than that of other methods we compared.展开更多
A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a ...A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a complicated environment.In this approach,the Harris algorithm is introduced to detect the corner points of the object,and the corner matching algorithm based on singular value decomposition is used to compute the firstorder weights and make particles centralize in the high likelihood area.Then the local binary pattern(LBP) operator is used to build the observation model of the target based on the color and texture features,by which the second-order weights of particles and the accurate location of the target can be obtained.Moreover,a backstepping controller is proposed to complete the whole tracking system.Simulations and experiments are carried out,and the results show that the HPF algorithm with the backstepping controller achieves stable and accurate tracking with good robustness in complex environments.展开更多
On-orbit servicing, such as spacecraft maintenance, on-orbit assembly, refueling, and de-orbiting, can reduce the cost of space missions, improve the performance of spacecraft, and extend its life span. The relative s...On-orbit servicing, such as spacecraft maintenance, on-orbit assembly, refueling, and de-orbiting, can reduce the cost of space missions, improve the performance of spacecraft, and extend its life span. The relative state between the servicing and target spacecraft is vital for on-orbit servicing missions, especially the final approaching stage. The major challenge of this stage is that the observed features of the target are incomplete or are constantly changing due to the short distance and limited Field of View (FOV) of camera. Different from cooperative spacecraft, non-cooperative target does not have artificial feature markers. Therefore, contour features, including triangle supports of solar array, docking ring, and corner points of the spacecraft body, are used as the measuring features. To overcome the drawback of FOV limitation and imaging ambiguity of the camera, a "selfie stick" structure and a self-calibration strategy were implemented, ensuring that part of the contour features could be observed precisely when the two spacecraft approached each other. The observed features were constantly changing as the relative distance shortened. It was difficult to build a unified measurement model for different types of features, including points, line segments, and circle. Therefore, dual quaternion was implemented to model the relative dynamics and measuring features. With the consideration of state uncertainty of the target, a fuzzy adaptive strong tracking filter( FASTF) combining fuzzy logic adaptive controller (FLAC) with strong tracking filter(STF) was designed to robustly estimate the relative states between the servicing spacecraft and the target. Finally, the effectiveness of the strategy was verified by mathematical simulation. The achievement of this research provides a theoretical and technical foundation for future on-orbit servicing missions.展开更多
In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in thi...In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in this paper.Three identification approaches of remote sensing images are integrated in this method:object-oriented,texture feature,and digital elevation based on DSM and DEM.So RGB threshold classification method is used to classify the identification results.The accuracy of building structure classification based on each feature and the multi-feature fusion are compared and analyzed.The results show that the building structure classification method is feasible and can accurately identify the structures in large-area remote sensing images.展开更多
In order to achieve accurate classification of apple, a multi-feature fusion classification method based on image processing and improved SVM was proposed in this paper. The method was mainly divided into four parts, ...In order to achieve accurate classification of apple, a multi-feature fusion classification method based on image processing and improved SVM was proposed in this paper. The method was mainly divided into four parts, including image preprocessing, background segmentation, feature extraction and multi-feature fusion classification with improved SVM. Firstly, the homomorphic filtering algorithm was used to improve the quality of apple images. Secondly, the images were converted to HLS space. The background was segmented by the QTSU algorithm. Morphological processing was employed to remove fruit stem and surface defect areas. And apple contours were extracted with the Canny algorithm. Then, apples’ size, shape, color, defect and texture features were extracted. Finally, the cross verification method was used to optimize the penalty factor in SVM. A multi-feature fusion classification model was established. And the weight of each index was calculated by Fisher. In this study, 146 apple samples were selected for training and 61 apple samples were selected for testing. The test results showed that the accuracy of the classification method proposed in this paper was 96.72%, which can provide a reference for apple automatic classification.展开更多
In order to take advantage of the logical structure of video sequences and improve the recognition accuracy of the human action, a novel hybrid human action detection method based on three descriptors and decision lev...In order to take advantage of the logical structure of video sequences and improve the recognition accuracy of the human action, a novel hybrid human action detection method based on three descriptors and decision level fusion is proposed. Firstly, the minimal 3D space region of human action region is detected by combining frame difference method and Vi BE algorithm, and the three-dimensional histogram of oriented gradient(HOG3D) is extracted. At the same time, the characteristics of global descriptors based on frequency domain filtering(FDF) and the local descriptors based on spatial-temporal interest points(STIP) are extracted. Principal component analysis(PCA) is implemented to reduce the dimension of the gradient histogram and the global descriptor, and bag of words(BoW) model is applied to describe the local descriptors based on STIP. Finally, a linear support vector machine(SVM) is used to create a new decision level fusion classifier. Some experiments are done to verify the performance of the multi-features, and the results show that they have good representation ability and generalization ability. Otherwise, the proposed scheme obtains very competitive results on the well-known datasets in terms of mean average precision.展开更多
Edge detection is one of the core steps of image processing and computer vision.Accurate and fine image edge will make further target detection and semantic segmentation more effective.Holistically-Nested edge detecti...Edge detection is one of the core steps of image processing and computer vision.Accurate and fine image edge will make further target detection and semantic segmentation more effective.Holistically-Nested edge detection(HED)edge detection network has been proved to be a deep-learning network with better performance for edge detection.However,it is found that when the HED network is used in overlapping complex multi-edge scenarios for automatic object identification.There will be detected edge incomplete,not smooth and other problems.To solve these problems,an image edge detection algorithm based on improved HED and feature fusion is proposed.On the one hand,features are extracted using the improved HED network:the HED convolution layer is improved.The residual variable convolution block is used to replace the normal convolution enhancement model to extract features from edges of different sizes and shapes.Meanwhile,the empty convolution is used to replace the original pooling layer to expand the receptive field and retain more global information to obtain comprehensive feature information.On the other hand,edges are extracted using Otsu algorithm:Otsu-Canny algorithm is used to adaptively adjust the threshold value in the global scene to achieve the edge detection under the optimal threshold value.Finally,the edge extracted by improved HED network and Otsu-Canny algorithm is fused to obtain the final edge.Experimental results show that on the Berkeley University Data Set(BSDS500)the optimal data set size(ODS)F-measure of the proposed algorithm is 0.793;the average precision(AP)of the algorithm is 0.849;detection speed can reach more than 25 frames per second(FPS),which confirms the effectiveness of the proposed method.展开更多
A comprehensive quantification method of fatigue degree is proposed concerning subjective and objective quantifications.Using the fatigue degree test software,fatigue degree is objectively quantified by analyzing the ...A comprehensive quantification method of fatigue degree is proposed concerning subjective and objective quantifications.Using the fatigue degree test software,fatigue degree is objectively quantified by analyzing the reaction and operation abilities of drivers about traffic signals.By comparison experiment with that EEG signal based,multivariate statistical analysis and fusion identification based on BP neural network(BPNN) results show that the experimental procedure is simple and practical,and the proposed method can reveal the correlation between fatigue feature parameters and fatigue degree in theory,and also can achieve accurate and reliable quantification of fatigue degree,especially under the associated action of multiple fatigue feature parameters.展开更多
A hierarchical retrieval scheme of the accessory image database is proposed based on textile industrial accessory contour feature and region feature. At first smallest enclosed rectangle[1] feature (degree of accessor...A hierarchical retrieval scheme of the accessory image database is proposed based on textile industrial accessory contour feature and region feature. At first smallest enclosed rectangle[1] feature (degree of accessory coordination) is used to filter the image database to decouple the image search scope. After the accessory contour information and region information are extracted, the fusion multi-feature of the centroid distance Fourier descriptor and distance distribution histogram is adopted to finish image retrieval accurately. All the features above are invariable under translation, scaling and rotation. Results from the test on the image database including 1,000 accessory images demonstrate that the method is effective and practical with high accuracy and fast speed.展开更多
基金This study was supported by the National Natural Science Foundation of China(61911540482 and 61702324).
文摘Chinese Clinical Named Entity Recognition(CNER)is a crucial step in extracting medical information and is of great significance in promoting medical informatization.However,CNER poses challenges due to the specificity of clinical terminology,the complexity of Chinese text semantics,and the uncertainty of Chinese entity boundaries.To address these issues,we propose an improved CNER model,which is based on multi-feature fusion and multi-scale local context enhancement.The model simultaneously fuses multi-feature representations of pinyin,radical,Part of Speech(POS),word boundary with BERT deep contextual representations to enhance the semantic representation of text for more effective entity recognition.Furthermore,to address the model’s limitation of focusing just on global features,we incorporate Convolutional Neural Networks(CNNs)with various kernel sizes to capture multi-scale local features of the text and enhance the model’s comprehension of the text.Finally,we integrate the obtained global and local features,and employ multi-head attention mechanism(MHA)extraction to enhance the model’s focus on characters associated with medical entities,hence boosting the model’s performance.We obtained 92.74%,and 87.80%F1 scores on the two CNER benchmark datasets,CCKS2017 and CCKS2019,respectively.The results demonstrate that our model outperforms the latest models in CNER,showcasing its outstanding overall performance.It can be seen that the CNER model proposed in this study has an important application value in constructing clinical medical knowledge graph and intelligent Q&A system.
文摘This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chinese character recognition is pointed out,including its numerous categories,complex structure,and the problem of similar characters,especially the variability of handwritten Chinese characters.Subsequently,recognition methods based on feature optimization,model optimization,and fusion techniques are highlighted.The fusion studies between feature optimization and model improvement are further explored,and these studies further enhance the recognition effect through complementary advantages.Finally,the article summarizes the current challenges of Chinese character recognition technology,including accuracy improvement,model complexity,and real-time problems,and looks forward to future research directions.
文摘In order to solve the shortcomings of current fatigue detection methods such as low accuracy or poor real-time performance,a fatigue detection method based on multi-feature fusion is proposed.Firstly,the HOG face detection algorithm and KCF target tracking algorithm are integrated and deformable convolutional neural network is introduced to identify the state of extracted eyes and mouth,fast track the detected faces and extract continuous and stable target faces for more efficient extraction.Then the head pose algorithm is introduced to detect the driver’s head in real time and obtain the driver’s head state information.Finally,a multi-feature fusion fatigue detection method is proposed based on the state of the eyes,mouth and head.According to the experimental results,the proposed method can detect the driver’s fatigue state in real time with high accuracy and good robustness compared with the current fatigue detection algorithms.
文摘Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing,ancient literature research,etc.However,the existing research on sentiment analysis is relatively small.It does not effectively solve the problems such as the weak feature extraction ability of poetry text,which leads to the low performance of the model on sentiment analysis for Chinese classical poetry.In this research,we offer the SA-Model,a poetic sentiment analysis model.SA-Model firstly extracts text vector information and fuses it through Bidirectional encoder representation from transformers-Whole word masking-extension(BERT-wwmext)and Enhanced representation through knowledge integration(ERNIE)to enrich text vector information;Secondly,it incorporates numerous encoders to remove text features at multiple levels,thereby increasing text feature information,improving text semantics accuracy,and enhancing the model’s learning and generalization capabilities;finally,multi-feature fusion poetry sentiment analysis model is constructed.The feasibility and accuracy of the model are validated through the ancient poetry sentiment corpus.Compared with other baseline models,the experimental findings indicate that SA-Model may increase the accuracy of text semantics and hence improve the capability of poetry sentiment analysis.
基金This work was partly supported by the Basic Ability Improvement Project for Young andMiddle-aged Teachers in Guangxi Colleges andUniversities(2021KY1800,2021KY1804).
文摘The traditional recommendation algorithm represented by the collaborative filtering algorithm is the most classical and widely recommended algorithm in the practical industry.Most book recommendation systems also use this algorithm.However,the traditional recommendation algorithm represented by the collaborative filtering algorithm cannot deal with the data sparsity well.This algorithm only uses the shallow feature design of the interaction between readers and books,so it fails to achieve the high-level abstract learning of the relevant attribute features of readers and books,leading to a decline in recommendation performance.Given the above problems,this study uses deep learning technology to model readers’book borrowing probability.It builds a recommendation system model through themulti-layer neural network and inputs the features extracted from readers and books into the network,and then profoundly integrates the features of readers and books through the multi-layer neural network.The hidden deep interaction between readers and books is explored accordingly.Thus,the quality of book recommendation performance will be significantly improved.In the experiment,the evaluation indexes ofHR@10,MRR,andNDCGof the deep neural network recommendation model constructed in this paper are higher than those of the traditional recommendation algorithm,which verifies the effectiveness of the model in the book recommendation.
基金supported by the National Key R&D Program of China(Nos.2022YFB3104103,and 2019QY1406)the National Natural Science Foundation of China(Nos.61732022,61732004,61672020,and 62072131).
文摘Credit Card Fraud Detection(CCFD)is an essential technology for banking institutions to control fraud risks and safeguard their reputation.Class imbalance and insufficient representation of feature data relating to credit card transactions are two prevalent issues in the current study field of CCFD,which significantly impact classification models’performance.To address these issues,this research proposes a novel CCFD model based on Multifeature Fusion and Generative Adversarial Networks(MFGAN).The MFGAN model consists of two modules:a multi-feature fusion module for integrating static and dynamic behavior data of cardholders into a unified highdimensional feature space,and a balance module based on the generative adversarial network to decrease the class imbalance ratio.The effectiveness of theMFGAN model is validated on two actual credit card datasets.The impacts of different class balance ratios on the performance of the four resamplingmodels are analyzed,and the contribution of the two different modules to the performance of the MFGAN model is investigated via ablation experiments.Experimental results demonstrate that the proposed model does better than state-of-the-art models in terms of recall,F1,and Area Under the Curve(AUC)metrics,which means that the MFGAN model can help banks find more fraudulent transactions and reduce fraud losses.
基金The author received the funding from Sichuan Natural Science Foundation(2022NSFSC1892).
文摘The deployment of vehicle micro-motors has witnessed an expansion owing to the progression in electrification and intelligent technologies.However,some micro-motors may exhibit design deficiencies,component wear,assembly errors,and other imperfections that may arise during the design or manufacturing phases.Conse-quently,these micro-motors might generate anomalous noises during their operation,consequently exerting a substantial adverse influence on the overall comfort of drivers and passengers.Automobile micro-motors exhibit a diverse array of structural variations,consequently leading to the manifestation of a multitude of distinctive auditory irregularities.To address the identification of diverse forms of abnormal noise,this research presents a novel approach rooted in the utilization of vibro-acoustic fusion-convolutional neural network(VAF-CNN).This method entails the deployment of distinct network branches,each serving to capture disparate features from the multi-sensor data,all the while considering the auditory perception traits inherent in the human auditory sys-tem.The intermediary layer integrates the concept of adaptive weighting of multi-sensor features,thus affording a calibration mechanism for the features hailing from multiple sensors,thereby enabling a further refinement of features within the branch network.For optimal model efficacy,a feature fusion mechanism is implemented in the concluding layer.To substantiate the efficacy of the proposed approach,this paper initially employs an augmented data methodology inspired by modified SpecAugment,applied to the dataset of abnormal noise sam-ples,encompassing scenarios both with and without in-vehicle interior noise.This serves to mitigate the issue of limited sample availability.Subsequent comparative evaluations are executed,contrasting the performance of the model founded upon single-sensor data against other feature fusion models reliant on multi-sensor data.The experimental results substantiate that the suggested methodology yields heightened recognition accuracy and greater resilience against interference.Moreover,it holds notable practical significance in the engineering domain,as it furnishes valuable support for the targeted management of noise emanating from vehicle micro-motors.
基金Supported by the National Natural Science Foundation of China (50706006) and the Science and Technology Development Program of Jilin Province (20040513).
文摘The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification.
基金the National Natural Science Foundation of China-Civil Aviation joint fund(U1933108)the Fundamental Research Funds for the Central Universities of China(3122019051).
文摘As a new type of Denial of Service(DoS)attacks,the Low-rate Denial of Service(LDoS)attacks make the traditional method of detecting Distributed Denial of Service Attack(DDoS)attacks useless due to the characteristics of a low average rate and concealment.With features extracted from the network traffic,a new detection approach based on multi-feature fusion is proposed to solve the problem in this paper.An attack feature set containing the Acknowledge character(ACK)sequence number,the packet size,and the queue length is used to classify normal and LDoS attack traffics.Each feature is digitalized and preprocessed to fit the input of the K-Nearest Neighbor(KNN)classifier separately,and to obtain the decision contour matrix.Then a posteriori probability in the matrix is fused,and the fusion decision index D is used as the basis of detecting the LDoS attacks.Experiments proved that the detection rate of the multi-feature fusion algorithm is higher than those of the single-based detection method and other algorithms.
基金supported by the National Natural Science Foundation of China(grants no.32171797 and 31800549)。
文摘Smoke detection is the most commonly used method in early warning of fire and is widely used in forest detection.Most existing smoke detection methods contain empty spaces and obstacles which interfere with detection and extract false smoke roots.This study developed a new smoke roots search algorithm based on a multi-feature fusion dynamic extraction strategy.This determines smoke origin candidate points and region based on a multi-frame discrete confidence level.The results show that the new method provides a more complete smoke contour with no background interference,compared to the results using existing methods.Unlike video-based methods that rely on continuous frames,an adaptive threshold method was developed to build the judgment image set composed of non-consecutive frames.The smoke roots origin search algorithm increased the detection rate and significantly reduced false detection rate compared to existing methods.
基金supported by the Postgraduate Scientific Research Innovation Project of Hunan Province under Grant QL20210212the Scientific Innovation Fund for Postgraduates of Central South University of Forestry and Technology under Grant CX202102043.
文摘In the smart logistics industry,unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by humans.Therefore,they play a critical role in smart warehousing,and semantics segmentation is an effective method to realize the intelligent identification of logistics pallets.However,most current recognition algorithms are ineffective due to the diverse types of pallets,their complex shapes,frequent blockades in production environments,and changing lighting conditions.This paper proposes a novel multi-feature fusion-guided multiscale bidirectional attention(MFMBA)neural network for logistics pallet segmentation.To better predict the foreground category(the pallet)and the background category(the cargo)of a pallet image,our approach extracts three types of features(grayscale,texture,and Hue,Saturation,Value features)and fuses them.The multiscale architecture deals with the problem that the size and shape of the pallet may appear different in the image in the actual,complex environment,which usually makes feature extraction difficult.Our study proposes a multiscale architecture that can extract additional semantic features.Also,since a traditional attention mechanism only assigns attention rights from a single direction,we designed a bidirectional attention mechanism that assigns cross-attention weights to each feature from two directions,horizontally and vertically,significantly improving segmentation.Finally,comparative experimental results show that the precision of the proposed algorithm is 0.53%–8.77%better than that of other methods we compared.
基金supported by the National Natural Science Foundation of China(61304097)the Projects of Major International(Regional)Joint Research Program NSFC(61120106010)the Foundation for Innovation Research Groups of the National National Natural Science Foundation of China(61321002)
文摘A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a complicated environment.In this approach,the Harris algorithm is introduced to detect the corner points of the object,and the corner matching algorithm based on singular value decomposition is used to compute the firstorder weights and make particles centralize in the high likelihood area.Then the local binary pattern(LBP) operator is used to build the observation model of the target based on the color and texture features,by which the second-order weights of particles and the accurate location of the target can be obtained.Moreover,a backstepping controller is proposed to complete the whole tracking system.Simulations and experiments are carried out,and the results show that the HPF algorithm with the backstepping controller achieves stable and accurate tracking with good robustness in complex environments.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61973153)
文摘On-orbit servicing, such as spacecraft maintenance, on-orbit assembly, refueling, and de-orbiting, can reduce the cost of space missions, improve the performance of spacecraft, and extend its life span. The relative state between the servicing and target spacecraft is vital for on-orbit servicing missions, especially the final approaching stage. The major challenge of this stage is that the observed features of the target are incomplete or are constantly changing due to the short distance and limited Field of View (FOV) of camera. Different from cooperative spacecraft, non-cooperative target does not have artificial feature markers. Therefore, contour features, including triangle supports of solar array, docking ring, and corner points of the spacecraft body, are used as the measuring features. To overcome the drawback of FOV limitation and imaging ambiguity of the camera, a "selfie stick" structure and a self-calibration strategy were implemented, ensuring that part of the contour features could be observed precisely when the two spacecraft approached each other. The observed features were constantly changing as the relative distance shortened. It was difficult to build a unified measurement model for different types of features, including points, line segments, and circle. Therefore, dual quaternion was implemented to model the relative dynamics and measuring features. With the consideration of state uncertainty of the target, a fuzzy adaptive strong tracking filter( FASTF) combining fuzzy logic adaptive controller (FLAC) with strong tracking filter(STF) was designed to robustly estimate the relative states between the servicing spacecraft and the target. Finally, the effectiveness of the strategy was verified by mathematical simulation. The achievement of this research provides a theoretical and technical foundation for future on-orbit servicing missions.
基金sponsored by National Key R&D Program of China(2018YFC1504504)Youth Foundation of Yunnan Earthquake Agency(2021K01)Project of Yunnan Earthquake Agency“Chuan bang dai”(CQ3-2021001).
文摘In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in this paper.Three identification approaches of remote sensing images are integrated in this method:object-oriented,texture feature,and digital elevation based on DSM and DEM.So RGB threshold classification method is used to classify the identification results.The accuracy of building structure classification based on each feature and the multi-feature fusion are compared and analyzed.The results show that the building structure classification method is feasible and can accurately identify the structures in large-area remote sensing images.
基金Supported by Natural Science Foundation of Shandong Province(ZR2021MF096)Shandong Agricultural Machinery Equipment R&D Innovation Planning Project (2018YF009)。
文摘In order to achieve accurate classification of apple, a multi-feature fusion classification method based on image processing and improved SVM was proposed in this paper. The method was mainly divided into four parts, including image preprocessing, background segmentation, feature extraction and multi-feature fusion classification with improved SVM. Firstly, the homomorphic filtering algorithm was used to improve the quality of apple images. Secondly, the images were converted to HLS space. The background was segmented by the QTSU algorithm. Morphological processing was employed to remove fruit stem and surface defect areas. And apple contours were extracted with the Canny algorithm. Then, apples’ size, shape, color, defect and texture features were extracted. Finally, the cross verification method was used to optimize the penalty factor in SVM. A multi-feature fusion classification model was established. And the weight of each index was calculated by Fisher. In this study, 146 apple samples were selected for training and 61 apple samples were selected for testing. The test results showed that the accuracy of the classification method proposed in this paper was 96.72%, which can provide a reference for apple automatic classification.
基金supported by the National Natural Science Foundation of China under Grant No. 61503424the Research Project by The State Ethnic Affairs Commission under Grant No. 14ZYZ017+2 种基金the Jiangsu Future Networks Innovation Institute-Prospective Research Project on Future Networks under Grant No. BY2013095-2-14the Fundamental Research Funds for the Central Universities No. FRF-TP-14-046A2the first-class discipline construction transitional funds of Minzu University of China
文摘In order to take advantage of the logical structure of video sequences and improve the recognition accuracy of the human action, a novel hybrid human action detection method based on three descriptors and decision level fusion is proposed. Firstly, the minimal 3D space region of human action region is detected by combining frame difference method and Vi BE algorithm, and the three-dimensional histogram of oriented gradient(HOG3D) is extracted. At the same time, the characteristics of global descriptors based on frequency domain filtering(FDF) and the local descriptors based on spatial-temporal interest points(STIP) are extracted. Principal component analysis(PCA) is implemented to reduce the dimension of the gradient histogram and the global descriptor, and bag of words(BoW) model is applied to describe the local descriptors based on STIP. Finally, a linear support vector machine(SVM) is used to create a new decision level fusion classifier. Some experiments are done to verify the performance of the multi-features, and the results show that they have good representation ability and generalization ability. Otherwise, the proposed scheme obtains very competitive results on the well-known datasets in terms of mean average precision.
基金This research was funded by College Student Innovation and Entrepreneurship Training Program,Grant Numbers 2021055Z and S202110082031the Special Project for Cultivating Scientific and Technological Innovation Ability of College and Middle School Students in Hebei Province,Grant Numbers 2021H011404 and 2021H010203.
文摘Edge detection is one of the core steps of image processing and computer vision.Accurate and fine image edge will make further target detection and semantic segmentation more effective.Holistically-Nested edge detection(HED)edge detection network has been proved to be a deep-learning network with better performance for edge detection.However,it is found that when the HED network is used in overlapping complex multi-edge scenarios for automatic object identification.There will be detected edge incomplete,not smooth and other problems.To solve these problems,an image edge detection algorithm based on improved HED and feature fusion is proposed.On the one hand,features are extracted using the improved HED network:the HED convolution layer is improved.The residual variable convolution block is used to replace the normal convolution enhancement model to extract features from edges of different sizes and shapes.Meanwhile,the empty convolution is used to replace the original pooling layer to expand the receptive field and retain more global information to obtain comprehensive feature information.On the other hand,edges are extracted using Otsu algorithm:Otsu-Canny algorithm is used to adaptively adjust the threshold value in the global scene to achieve the edge detection under the optimal threshold value.Finally,the edge extracted by improved HED network and Otsu-Canny algorithm is fused to obtain the final edge.Experimental results show that on the Berkeley University Data Set(BSDS500)the optimal data set size(ODS)F-measure of the proposed algorithm is 0.793;the average precision(AP)of the algorithm is 0.849;detection speed can reach more than 25 frames per second(FPS),which confirms the effectiveness of the proposed method.
基金Supported by the National Nature Science Foundation of China(No.61304205,61203273,61103086,41301037)the Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems,Beihang University(No.BUAA-VR-13KF-04)+1 种基金Jiangsu Ordinary University Science Research Project(No.13KJB120007)Innovation and Entrepreneurship Training Project of College Students(No.201410300153,201410300165)
文摘A comprehensive quantification method of fatigue degree is proposed concerning subjective and objective quantifications.Using the fatigue degree test software,fatigue degree is objectively quantified by analyzing the reaction and operation abilities of drivers about traffic signals.By comparison experiment with that EEG signal based,multivariate statistical analysis and fusion identification based on BP neural network(BPNN) results show that the experimental procedure is simple and practical,and the proposed method can reveal the correlation between fatigue feature parameters and fatigue degree in theory,and also can achieve accurate and reliable quantification of fatigue degree,especially under the associated action of multiple fatigue feature parameters.
文摘A hierarchical retrieval scheme of the accessory image database is proposed based on textile industrial accessory contour feature and region feature. At first smallest enclosed rectangle[1] feature (degree of accessory coordination) is used to filter the image database to decouple the image search scope. After the accessory contour information and region information are extracted, the fusion multi-feature of the centroid distance Fourier descriptor and distance distribution histogram is adopted to finish image retrieval accurately. All the features above are invariable under translation, scaling and rotation. Results from the test on the image database including 1,000 accessory images demonstrate that the method is effective and practical with high accuracy and fast speed.
基金This paper is supported by National Natural Science Foundation of China (No. 61074078) and Fundamental Research Funds for the Central Universities (No. 12MS121).