期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Chinese Clinical Named Entity Recognition Using Multi-Feature Fusion and Multi-Scale Local Context Enhancement
1
作者 Meijing Li Runqing Huang Xianxian Qi 《Computers, Materials & Continua》 SCIE EI 2024年第8期2283-2299,共17页
Chinese Clinical Named Entity Recognition(CNER)is a crucial step in extracting medical information and is of great significance in promoting medical informatization.However,CNER poses challenges due to the specificity... Chinese Clinical Named Entity Recognition(CNER)is a crucial step in extracting medical information and is of great significance in promoting medical informatization.However,CNER poses challenges due to the specificity of clinical terminology,the complexity of Chinese text semantics,and the uncertainty of Chinese entity boundaries.To address these issues,we propose an improved CNER model,which is based on multi-feature fusion and multi-scale local context enhancement.The model simultaneously fuses multi-feature representations of pinyin,radical,Part of Speech(POS),word boundary with BERT deep contextual representations to enhance the semantic representation of text for more effective entity recognition.Furthermore,to address the model’s limitation of focusing just on global features,we incorporate Convolutional Neural Networks(CNNs)with various kernel sizes to capture multi-scale local features of the text and enhance the model’s comprehension of the text.Finally,we integrate the obtained global and local features,and employ multi-head attention mechanism(MHA)extraction to enhance the model’s focus on characters associated with medical entities,hence boosting the model’s performance.We obtained 92.74%,and 87.80%F1 scores on the two CNER benchmark datasets,CCKS2017 and CCKS2019,respectively.The results demonstrate that our model outperforms the latest models in CNER,showcasing its outstanding overall performance.It can be seen that the CNER model proposed in this study has an important application value in constructing clinical medical knowledge graph and intelligent Q&A system. 展开更多
关键词 CNER multi-feature fusion BiLSTM CNN MHA
下载PDF
A Review of Research on Handwritten Chinese Character Recognition with Multi-Feature Fusion
2
作者 Peng Deng Guiying Yang 《Journal of Electronic Research and Application》 2024年第5期109-117,共9页
This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chin... This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chinese character recognition is pointed out,including its numerous categories,complex structure,and the problem of similar characters,especially the variability of handwritten Chinese characters.Subsequently,recognition methods based on feature optimization,model optimization,and fusion techniques are highlighted.The fusion studies between feature optimization and model improvement are further explored,and these studies further enhance the recognition effect through complementary advantages.Finally,the article summarizes the current challenges of Chinese character recognition technology,including accuracy improvement,model complexity,and real-time problems,and looks forward to future research directions. 展开更多
关键词 Chinese character recognition multi-feature fusion Machine learning
下载PDF
Research on Facial Fatigue Detection of Drivers with Multi-feature Fusion 被引量:1
3
作者 YE Yuxuan ZHOU Xianchun +2 位作者 WANG Wenyan YANG Chuanbin ZOU Qingyu 《Instrumentation》 2023年第1期23-31,共9页
In order to solve the shortcomings of current fatigue detection methods such as low accuracy or poor real-time performance,a fatigue detection method based on multi-feature fusion is proposed.Firstly,the HOG face dete... In order to solve the shortcomings of current fatigue detection methods such as low accuracy or poor real-time performance,a fatigue detection method based on multi-feature fusion is proposed.Firstly,the HOG face detection algorithm and KCF target tracking algorithm are integrated and deformable convolutional neural network is introduced to identify the state of extracted eyes and mouth,fast track the detected faces and extract continuous and stable target faces for more efficient extraction.Then the head pose algorithm is introduced to detect the driver’s head in real time and obtain the driver’s head state information.Finally,a multi-feature fusion fatigue detection method is proposed based on the state of the eyes,mouth and head.According to the experimental results,the proposed method can detect the driver’s fatigue state in real time with high accuracy and good robustness compared with the current fatigue detection algorithms. 展开更多
关键词 HOG Face Posture Detection Deformable Convolution multi-feature fusion Fatigue Detection
下载PDF
SA-Model:Multi-Feature Fusion Poetic Sentiment Analysis Based on a Hybrid Word Vector Model
4
作者 Lingli Zhang Yadong Wu +5 位作者 Qikai Chu Pan Li Guijuan Wang Weihan Zhang Yu Qiu Yi Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期631-645,共15页
Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing,ancient literature research,etc.However,the existing research on sentiment analysis is relatively small.It... Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing,ancient literature research,etc.However,the existing research on sentiment analysis is relatively small.It does not effectively solve the problems such as the weak feature extraction ability of poetry text,which leads to the low performance of the model on sentiment analysis for Chinese classical poetry.In this research,we offer the SA-Model,a poetic sentiment analysis model.SA-Model firstly extracts text vector information and fuses it through Bidirectional encoder representation from transformers-Whole word masking-extension(BERT-wwmext)and Enhanced representation through knowledge integration(ERNIE)to enrich text vector information;Secondly,it incorporates numerous encoders to remove text features at multiple levels,thereby increasing text feature information,improving text semantics accuracy,and enhancing the model’s learning and generalization capabilities;finally,multi-feature fusion poetry sentiment analysis model is constructed.The feasibility and accuracy of the model are validated through the ancient poetry sentiment corpus.Compared with other baseline models,the experimental findings indicate that SA-Model may increase the accuracy of text semantics and hence improve the capability of poetry sentiment analysis. 展开更多
关键词 Sentiment analysis Chinese classical poetry natural language processing BERT-wwm-ext ERNIE multi-feature fusion
下载PDF
Multi-Feature Fusion Book Recommendation Model Based on Deep Neural Network
5
作者 Zhaomin Liang Tingting Liang 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期205-219,共15页
The traditional recommendation algorithm represented by the collaborative filtering algorithm is the most classical and widely recommended algorithm in the practical industry.Most book recommendation systems also use ... The traditional recommendation algorithm represented by the collaborative filtering algorithm is the most classical and widely recommended algorithm in the practical industry.Most book recommendation systems also use this algorithm.However,the traditional recommendation algorithm represented by the collaborative filtering algorithm cannot deal with the data sparsity well.This algorithm only uses the shallow feature design of the interaction between readers and books,so it fails to achieve the high-level abstract learning of the relevant attribute features of readers and books,leading to a decline in recommendation performance.Given the above problems,this study uses deep learning technology to model readers’book borrowing probability.It builds a recommendation system model through themulti-layer neural network and inputs the features extracted from readers and books into the network,and then profoundly integrates the features of readers and books through the multi-layer neural network.The hidden deep interaction between readers and books is explored accordingly.Thus,the quality of book recommendation performance will be significantly improved.In the experiment,the evaluation indexes ofHR@10,MRR,andNDCGof the deep neural network recommendation model constructed in this paper are higher than those of the traditional recommendation algorithm,which verifies the effectiveness of the model in the book recommendation. 展开更多
关键词 Book recommendation deep learning neural network multi-feature fusion personalized prediction
下载PDF
Identification Method of Gas-Liquid Two-phase Flow Regime Based on Image Multi-feature Fusion and Support Vector Machine 被引量:6
6
作者 周云龙 陈飞 孙斌 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第6期832-840,共9页
The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to ide... The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification. 展开更多
关键词 flow regime identification gas-liquid two-phase flow image processing multi-feature fusion support vector machine
下载PDF
The detection method of low-rate DoS attack based on multi-feature fusion 被引量:3
7
作者 Liang Liu Huaiyuan Wang +1 位作者 Zhijun Wu Meng Yue 《Digital Communications and Networks》 SCIE 2020年第4期504-513,共10页
As a new type of Denial of Service(DoS)attacks,the Low-rate Denial of Service(LDoS)attacks make the traditional method of detecting Distributed Denial of Service Attack(DDoS)attacks useless due to the characteristics ... As a new type of Denial of Service(DoS)attacks,the Low-rate Denial of Service(LDoS)attacks make the traditional method of detecting Distributed Denial of Service Attack(DDoS)attacks useless due to the characteristics of a low average rate and concealment.With features extracted from the network traffic,a new detection approach based on multi-feature fusion is proposed to solve the problem in this paper.An attack feature set containing the Acknowledge character(ACK)sequence number,the packet size,and the queue length is used to classify normal and LDoS attack traffics.Each feature is digitalized and preprocessed to fit the input of the K-Nearest Neighbor(KNN)classifier separately,and to obtain the decision contour matrix.Then a posteriori probability in the matrix is fused,and the fusion decision index D is used as the basis of detecting the LDoS attacks.Experiments proved that the detection rate of the multi-feature fusion algorithm is higher than those of the single-based detection method and other algorithms. 展开更多
关键词 Low-rate denial of service attacks Attack features KNN classifier multi-feature fusion
下载PDF
Smoke root detection from video sequences based on multi-feature fusion 被引量:1
8
作者 Liming Lou Feng Chen +1 位作者 Pengle Cheng Ying Huang 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第6期1841-1856,共16页
Smoke detection is the most commonly used method in early warning of fire and is widely used in forest detection.Most existing smoke detection methods contain empty spaces and obstacles which interfere with detection ... Smoke detection is the most commonly used method in early warning of fire and is widely used in forest detection.Most existing smoke detection methods contain empty spaces and obstacles which interfere with detection and extract false smoke roots.This study developed a new smoke roots search algorithm based on a multi-feature fusion dynamic extraction strategy.This determines smoke origin candidate points and region based on a multi-frame discrete confidence level.The results show that the new method provides a more complete smoke contour with no background interference,compared to the results using existing methods.Unlike video-based methods that rely on continuous frames,an adaptive threshold method was developed to build the judgment image set composed of non-consecutive frames.The smoke roots origin search algorithm increased the detection rate and significantly reduced false detection rate compared to existing methods. 展开更多
关键词 Smoke detection multi-feature fusion Search strategy ViBe Choquet
下载PDF
Multi-Feature Fusion-Guided Multiscale Bidirectional Attention Networks for Logistics Pallet Segmentation 被引量:1
9
作者 Weiwei Cai Yaping Song +2 位作者 Huan Duan Zhenwei Xia Zhanguo Wei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第6期1539-1555,共17页
In the smart logistics industry,unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by... In the smart logistics industry,unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by humans.Therefore,they play a critical role in smart warehousing,and semantics segmentation is an effective method to realize the intelligent identification of logistics pallets.However,most current recognition algorithms are ineffective due to the diverse types of pallets,their complex shapes,frequent blockades in production environments,and changing lighting conditions.This paper proposes a novel multi-feature fusion-guided multiscale bidirectional attention(MFMBA)neural network for logistics pallet segmentation.To better predict the foreground category(the pallet)and the background category(the cargo)of a pallet image,our approach extracts three types of features(grayscale,texture,and Hue,Saturation,Value features)and fuses them.The multiscale architecture deals with the problem that the size and shape of the pallet may appear different in the image in the actual,complex environment,which usually makes feature extraction difficult.Our study proposes a multiscale architecture that can extract additional semantic features.Also,since a traditional attention mechanism only assigns attention rights from a single direction,we designed a bidirectional attention mechanism that assigns cross-attention weights to each feature from two directions,horizontally and vertically,significantly improving segmentation.Finally,comparative experimental results show that the precision of the proposed algorithm is 0.53%–8.77%better than that of other methods we compared. 展开更多
关键词 Logistics pallet segmentation image segmentation multi-feature fusion multiscale network bidirectional attention mechanism HSV neural networks deep learning
下载PDF
Hierarchical particle filter tracking algorithm based on multi-feature fusion 被引量:3
10
作者 Minggang Gan Yulong Cheng +1 位作者 Yanan Wang Jie Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期51-62,共12页
A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a ... A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a complicated environment.In this approach,the Harris algorithm is introduced to detect the corner points of the object,and the corner matching algorithm based on singular value decomposition is used to compute the firstorder weights and make particles centralize in the high likelihood area.Then the local binary pattern(LBP) operator is used to build the observation model of the target based on the color and texture features,by which the second-order weights of particles and the accurate location of the target can be obtained.Moreover,a backstepping controller is proposed to complete the whole tracking system.Simulations and experiments are carried out,and the results show that the HPF algorithm with the backstepping controller achieves stable and accurate tracking with good robustness in complex environments. 展开更多
关键词 particle filter corner matching multi-feature fusion local binary patterns(LBP) backstepping.
下载PDF
Medical image fusion based on pulse coupled neural networks and multi-feature fuzzy clustering 被引量:1
11
作者 Xiaoqing Luo Xiaojun Wu 《Journal of Biomedical Science and Engineering》 2012年第12期878-883,共6页
Medical image fusion plays an important role in clinical applications such as image-guided surgery, image-guided radiotherapy, noninvasive diagnosis, and treatment planning. In order to retain useful information and g... Medical image fusion plays an important role in clinical applications such as image-guided surgery, image-guided radiotherapy, noninvasive diagnosis, and treatment planning. In order to retain useful information and get more reliable results, a novel medical image fusion algorithm based on pulse coupled neural networks (PCNN) and multi-feature fuzzy clustering is proposed, which makes use of the multi-feature of image and combines the advantages of the local entropy and variance of local entropy based PCNN. The results of experiments indicate that the proposed image fusion method can better preserve the image details and robustness and significantly improve the image visual effect than the other fusion methods with less information distortion. 展开更多
关键词 PCNN multi-feature MEDICAL IMAGE IMAGE fusion LOCAL ENTROPY
下载PDF
Multi-Feature Fusion Based Relative Pose Adaptive Estimation for On-Orbit Servicing of Non-Cooperative Spacecraft
12
作者 Yunhua Wu Nan Yang +1 位作者 Zhiming Chen Bing Hua 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第6期19-30,共12页
On-orbit servicing, such as spacecraft maintenance, on-orbit assembly, refueling, and de-orbiting, can reduce the cost of space missions, improve the performance of spacecraft, and extend its life span. The relative s... On-orbit servicing, such as spacecraft maintenance, on-orbit assembly, refueling, and de-orbiting, can reduce the cost of space missions, improve the performance of spacecraft, and extend its life span. The relative state between the servicing and target spacecraft is vital for on-orbit servicing missions, especially the final approaching stage. The major challenge of this stage is that the observed features of the target are incomplete or are constantly changing due to the short distance and limited Field of View (FOV) of camera. Different from cooperative spacecraft, non-cooperative target does not have artificial feature markers. Therefore, contour features, including triangle supports of solar array, docking ring, and corner points of the spacecraft body, are used as the measuring features. To overcome the drawback of FOV limitation and imaging ambiguity of the camera, a "selfie stick" structure and a self-calibration strategy were implemented, ensuring that part of the contour features could be observed precisely when the two spacecraft approached each other. The observed features were constantly changing as the relative distance shortened. It was difficult to build a unified measurement model for different types of features, including points, line segments, and circle. Therefore, dual quaternion was implemented to model the relative dynamics and measuring features. With the consideration of state uncertainty of the target, a fuzzy adaptive strong tracking filter( FASTF) combining fuzzy logic adaptive controller (FLAC) with strong tracking filter(STF) was designed to robustly estimate the relative states between the servicing spacecraft and the target. Finally, the effectiveness of the strategy was verified by mathematical simulation. The achievement of this research provides a theoretical and technical foundation for future on-orbit servicing missions. 展开更多
关键词 on-orbit servicing non-cooperative spacecraft multi-feature fusion fuzzy adaptive filter dual quaternion
下载PDF
A Multi-feature Fusion Apple Classification Method Based on Image Processing and Improved SVM
13
作者 Haibo LIN Yuandong LU +1 位作者 Rongcheng DING Yufeng XIU 《Agricultural Biotechnology》 CAS 2022年第5期84-91,共8页
In order to achieve accurate classification of apple, a multi-feature fusion classification method based on image processing and improved SVM was proposed in this paper. The method was mainly divided into four parts, ... In order to achieve accurate classification of apple, a multi-feature fusion classification method based on image processing and improved SVM was proposed in this paper. The method was mainly divided into four parts, including image preprocessing, background segmentation, feature extraction and multi-feature fusion classification with improved SVM. Firstly, the homomorphic filtering algorithm was used to improve the quality of apple images. Secondly, the images were converted to HLS space. The background was segmented by the QTSU algorithm. Morphological processing was employed to remove fruit stem and surface defect areas. And apple contours were extracted with the Canny algorithm. Then, apples’ size, shape, color, defect and texture features were extracted. Finally, the cross verification method was used to optimize the penalty factor in SVM. A multi-feature fusion classification model was established. And the weight of each index was calculated by Fisher. In this study, 146 apple samples were selected for training and 61 apple samples were selected for testing. The test results showed that the accuracy of the classification method proposed in this paper was 96.72%, which can provide a reference for apple automatic classification. 展开更多
关键词 Apple classification Image processing Improved SVM multi-feature fusion
下载PDF
A classification method of building structures based on multi-feature fusion of UAV remote sensing images
14
作者 Haoguo Du Yanbo Cao +6 位作者 Fanghao Zhang Jiangli Lv Shurong Deng Yongkun Lu Shifang He Yuanshuo Zhang Qinkun Yu 《Earthquake Research Advances》 CSCD 2021年第4期38-47,共10页
In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in thi... In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in this paper.Three identification approaches of remote sensing images are integrated in this method:object-oriented,texture feature,and digital elevation based on DSM and DEM.So RGB threshold classification method is used to classify the identification results.The accuracy of building structure classification based on each feature and the multi-feature fusion are compared and analyzed.The results show that the building structure classification method is feasible and can accurately identify the structures in large-area remote sensing images. 展开更多
关键词 Remote sensing image Building structure classification multi-feature fusion Object-oriented classification method Texture feature classification method DSM and DEM elevation classification method RGB threshold classification method
下载PDF
基于MFF与IWOA-LSSVM的电机轴承故障诊断研究 被引量:4
15
作者 董程阳 《机电工程》 CAS 北大核心 2022年第6期806-812,共7页
针对电机轴承故障诊断过程中,存在种种困难的问题,提出了一种基于多特征融合(MFF)与改进鲸鱼优化算法(IWOA)优化最小二乘支持向量机(LSSVM)的电机轴承状态诊断方法。首先,利用Sobol序列去初始化算法种群,在算法种群搜索过程中加入了莱... 针对电机轴承故障诊断过程中,存在种种困难的问题,提出了一种基于多特征融合(MFF)与改进鲸鱼优化算法(IWOA)优化最小二乘支持向量机(LSSVM)的电机轴承状态诊断方法。首先,利用Sobol序列去初始化算法种群,在算法种群搜索过程中加入了莱维飞行策略,并在WOA算法位置更新公式中添加了惯性权重;然后,提取了电机轴承振动信号的小波包能量特征、平均值和峭度,并将以上电机轴承振动信号特征作为算法的输入;最后,为了验证基于MFF与IWOA-LSSVM的电机轴承诊断方法的有效性,分别以单独使用小波包能量特征作为算法输入,以及小波包能量特征和时域特征共同作为算法输入,进行了两组相关的电机轴承状态识别对比实验。研究结果表明:相比于单一小波包能量特征,采用多特征融合能更全面地反映电机轴承真实运行状态;相比于PSO、GA算法,基于WOA算法可以更有效地避免局部最优;相比于基本WOA算法,改进后的WOA算法可以更有效地避免局部最优;相比于其他电机轴承状态识别算法,IWOA-LSSVM算法的分类性能更优,对电机轴承状态识别率达到99.5%。 展开更多
关键词 电机轴承 故障诊断 多特征融合 改进鲸鱼优化算法 最小二乘支持向量机
下载PDF
Research on Feature Fusion Technology of Fruit and Vegetable Image Recognition Based on SVM
16
作者 Yanqing Wang Yipu Wang +1 位作者 Chaoxia Shi Hui Shi 《国际计算机前沿大会会议论文集》 2016年第1期150-152,共3页
In order to improve the accuracy and stability of fruit and vegetable image recognition by single feature, this project proposed multi-feature fusion algorithms and SVM classification algorithms. This project not only... In order to improve the accuracy and stability of fruit and vegetable image recognition by single feature, this project proposed multi-feature fusion algorithms and SVM classification algorithms. This project not only introduces the Reproducing Kernel Hilbert space to improve the multi-feature compatibility and improve multi-feature fusion algorithm, but also introduces TPS transformation model in SVM classifier to improve the classification accuracy, real-time and robustness of integration feature. By using multi-feature fusion algorithms and SVM classification algorithms, experimental results show that we can recognize the common fruit and vegetable images efficiently and accurately. 展开更多
关键词 FEATURE extraction multi-feature fusion Support VECTOR machine FRUIT and VEGETABLE image RECOGNITION
下载PDF
基于多特征融合的Chirp扩频通信调制样式分类识别方法 被引量:1
17
作者 王翔 宋川江 杨战鹏 《电子与信息学报》 EI CSCD 北大核心 2023年第11期4003-4015,共13页
自动调制分类(AMC)在频谱监测和认知无线电中具有重要意义。近年来,Chirp扩频通信(CSS)由于其良好的抗干扰能力和稳健性得到了较大发展,但是对CSS信号的AMC方法却鲜有研究。针对这种情况,该文提出了一种基于多特征融合(MFF)的CSS信号调... 自动调制分类(AMC)在频谱监测和认知无线电中具有重要意义。近年来,Chirp扩频通信(CSS)由于其良好的抗干扰能力和稳健性得到了较大发展,但是对CSS信号的AMC方法却鲜有研究。针对这种情况,该文提出了一种基于多特征融合(MFF)的CSS信号调制分类方法,利用频谱和时频图特征融合学习并引入注意力模块来实现CSS信号调制识别。对11类CSS信号调制样式的仿真实验结果表明,该方法有优越的识别性能。 展开更多
关键词 CHIRP信号 CSS信号 自动调制分类 多特征融合
下载PDF
Recognition of weeds at asparagus fields using multi-feature fusion and backpropagation neural network 被引量:1
18
作者 Yafei Wang Xiaodong Zhang +3 位作者 Guoxin Ma Xiaoxue Du Naila Shaheen Hanping Mao 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2021年第4期190-198,共9页
In order to solve the problem of low recognition rates of weeds by a single feature,a method was proposed in this study to identify weeds in Asparagus(Asparagus officinalis L.)field using multi-feature fusion and back... In order to solve the problem of low recognition rates of weeds by a single feature,a method was proposed in this study to identify weeds in Asparagus(Asparagus officinalis L.)field using multi-feature fusion and backpropagation neural network(BPNN).A total of 382 images of weeds competing with asparagus growth were collected,including 135 of Cirsium arvense(L.)Scop.,138 of Conyza sumatrensis(Retz.)E.Walker,and 109 of Calystegia hederacea Wall.The grayscale images were extracted from the RGB images of weeds using the 2G-R-B factor.Threshold segmentation of the grayscale image of weeds was applied using Otsu method.Then the internal holes of the leaves were filled through the expansion and corrosion morphological operations,and other interference targets were removed to obtain the binary image.The foreground image was obtained by masking the binary image and the RGB image.Then,the color moment algorithm was used to extract weeds color feature,the gray level co-occurrence matrix and the Local Binary Pattern(LBP)algorithm was used to extract weeds texture features,and seven Hu invariant moment features and the roundness and slenderness ratio of weeds were extracted as their shape features.According to the shape,color,texture,and fusion features of the test samples,a weed identification model was built.The test results showed that the recognition rate of Cirsium arvense(L.)Scop.,Calystegia hederacea Wall.and Conyza sumatrensis(Retz.)E.Walker were 82.72%(color feature),72.41%(shape feature),86.73%(texture feature)and 93.51%(fusion feature),respectively.Therefore,this method can provide a reference for the study of weeds identification in the asparagus field. 展开更多
关键词 weeds recognition image processing feature extraction multi-feature fusion BP neural network asparagus field
原文传递
复杂场景下基于改进YOLOv4的小型舰船目标检测
19
作者 吴维林 方健 +2 位作者 屈毅 张宁 高洁 《传感器与微系统》 CSCD 北大核心 2023年第12期119-122,共4页
针对日益复杂的海洋环境对舰船目标检测更高识别率、实时性、智能化的需求,提出了一种基于改进YOLOv4的舰船目标检测算法。算法将新设计的多层特征融合(MFF)模块和多层接收域块(M-RFB)模块集成到YOLOv4的颈部,改进了网络特征提取的能力... 针对日益复杂的海洋环境对舰船目标检测更高识别率、实时性、智能化的需求,提出了一种基于改进YOLOv4的舰船目标检测算法。算法将新设计的多层特征融合(MFF)模块和多层接收域块(M-RFB)模块集成到YOLOv4的颈部,改进了网络特征提取的能力,解决了海洋环境中小型舰船的检测和分类问题,模型训练过程中引入迁移学习的策略防止模型过拟合并加速模型训练的参数。实验结果表明:该算法能有效解决小型舰船在复杂海洋环境下检测困难、识别率低的问题。与现有算法相比,该算法能够在复杂的海洋导航条件下获得更高的精度,特别是与YOLOv4相比,准确率提高了约11%。 展开更多
关键词 舰船目标检测 改进的YOLOv4 多层特征融合 多层接收域块
下载PDF
Multi-Scale Feature Fusion Model for Bridge Appearance Defect Detection
20
作者 Rong Pang Yan Yang +3 位作者 Aiguo Huang Yan Liu Peng Zhang Guangwu Tang 《Big Data Mining and Analytics》 EI CSCD 2024年第1期1-11,共11页
Although the Faster Region-based Convolutional Neural Network(Faster R-CNN)model has obvious advantages in defect recognition,it still cannot overcome challenging problems,such as time-consuming,small targets,irregula... Although the Faster Region-based Convolutional Neural Network(Faster R-CNN)model has obvious advantages in defect recognition,it still cannot overcome challenging problems,such as time-consuming,small targets,irregular shapes,and strong noise interference in bridge defect detection.To deal with these issues,this paper proposes a novel Multi-scale Feature Fusion(MFF)model for bridge appearance disease detection.First,the Faster R-CNN model adopts Region Of Interest(ROl)pooling,which omits the edge information of the target area,resulting in some missed detections and inaccuracies in both detecting and localizing bridge defects.Therefore,this paper proposes an MFF based on regional feature Aggregation(MFF-A),which reduces the missed detection rate of bridge defect detection and improves the positioning accuracy of the target area.Second,the Faster R-CNN model is insensitive to small targets,irregular shapes,and strong noises in bridge defect detection,which results in a long training time and low recognition accuracy.Accordingly,a novel Lightweight MFF(namely MFF-L)model for bridge appearance defect detection using a lightweight network EfficientNetV2 and a feature pyramid network is proposed,which fuses multi-scale features to shorten the training speed and improve recognition accuracy.Finally,the effectiveness of the proposed method is evaluated on the bridge disease dataset and public computational fluid dynamic dataset. 展开更多
关键词 defect detection Multi-scale Feature fusion(mff) Region Of Interest(ROl)alignment lightweight network
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部