期刊文献+
共找到424篇文章
< 1 2 22 >
每页显示 20 50 100
Chinese Clinical Named Entity Recognition Using Multi-Feature Fusion and Multi-Scale Local Context Enhancement
1
作者 Meijing Li Runqing Huang Xianxian Qi 《Computers, Materials & Continua》 SCIE EI 2024年第8期2283-2299,共17页
Chinese Clinical Named Entity Recognition(CNER)is a crucial step in extracting medical information and is of great significance in promoting medical informatization.However,CNER poses challenges due to the specificity... Chinese Clinical Named Entity Recognition(CNER)is a crucial step in extracting medical information and is of great significance in promoting medical informatization.However,CNER poses challenges due to the specificity of clinical terminology,the complexity of Chinese text semantics,and the uncertainty of Chinese entity boundaries.To address these issues,we propose an improved CNER model,which is based on multi-feature fusion and multi-scale local context enhancement.The model simultaneously fuses multi-feature representations of pinyin,radical,Part of Speech(POS),word boundary with BERT deep contextual representations to enhance the semantic representation of text for more effective entity recognition.Furthermore,to address the model’s limitation of focusing just on global features,we incorporate Convolutional Neural Networks(CNNs)with various kernel sizes to capture multi-scale local features of the text and enhance the model’s comprehension of the text.Finally,we integrate the obtained global and local features,and employ multi-head attention mechanism(MHA)extraction to enhance the model’s focus on characters associated with medical entities,hence boosting the model’s performance.We obtained 92.74%,and 87.80%F1 scores on the two CNER benchmark datasets,CCKS2017 and CCKS2019,respectively.The results demonstrate that our model outperforms the latest models in CNER,showcasing its outstanding overall performance.It can be seen that the CNER model proposed in this study has an important application value in constructing clinical medical knowledge graph and intelligent Q&A system. 展开更多
关键词 CNER multi-feature fusion BiLSTM CNN MHA
下载PDF
A Review of Research on Handwritten Chinese Character Recognition with Multi-Feature Fusion
2
作者 Peng Deng Guiying Yang 《Journal of Electronic Research and Application》 2024年第5期109-117,共9页
This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chin... This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chinese character recognition is pointed out,including its numerous categories,complex structure,and the problem of similar characters,especially the variability of handwritten Chinese characters.Subsequently,recognition methods based on feature optimization,model optimization,and fusion techniques are highlighted.The fusion studies between feature optimization and model improvement are further explored,and these studies further enhance the recognition effect through complementary advantages.Finally,the article summarizes the current challenges of Chinese character recognition technology,including accuracy improvement,model complexity,and real-time problems,and looks forward to future research directions. 展开更多
关键词 Chinese character recognition multi-feature fusion Machine learning
下载PDF
Identification Method of Gas-Liquid Two-phase Flow Regime Based on Image Multi-feature Fusion and Support Vector Machine 被引量:6
3
作者 周云龙 陈飞 孙斌 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第6期832-840,共9页
The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to ide... The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification. 展开更多
关键词 flow regime identification gas-liquid two-phase flow image processing multi-feature fusion support vector machine
下载PDF
The detection method of low-rate DoS attack based on multi-feature fusion 被引量:3
4
作者 Liang Liu Huaiyuan Wang +1 位作者 Zhijun Wu Meng Yue 《Digital Communications and Networks》 SCIE 2020年第4期504-513,共10页
As a new type of Denial of Service(DoS)attacks,the Low-rate Denial of Service(LDoS)attacks make the traditional method of detecting Distributed Denial of Service Attack(DDoS)attacks useless due to the characteristics ... As a new type of Denial of Service(DoS)attacks,the Low-rate Denial of Service(LDoS)attacks make the traditional method of detecting Distributed Denial of Service Attack(DDoS)attacks useless due to the characteristics of a low average rate and concealment.With features extracted from the network traffic,a new detection approach based on multi-feature fusion is proposed to solve the problem in this paper.An attack feature set containing the Acknowledge character(ACK)sequence number,the packet size,and the queue length is used to classify normal and LDoS attack traffics.Each feature is digitalized and preprocessed to fit the input of the K-Nearest Neighbor(KNN)classifier separately,and to obtain the decision contour matrix.Then a posteriori probability in the matrix is fused,and the fusion decision index D is used as the basis of detecting the LDoS attacks.Experiments proved that the detection rate of the multi-feature fusion algorithm is higher than those of the single-based detection method and other algorithms. 展开更多
关键词 Low-rate denial of service attacks Attack features KNN classifier multi-feature fusion
下载PDF
Smoke root detection from video sequences based on multi-feature fusion 被引量:1
5
作者 Liming Lou Feng Chen +1 位作者 Pengle Cheng Ying Huang 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第6期1841-1856,共16页
Smoke detection is the most commonly used method in early warning of fire and is widely used in forest detection.Most existing smoke detection methods contain empty spaces and obstacles which interfere with detection ... Smoke detection is the most commonly used method in early warning of fire and is widely used in forest detection.Most existing smoke detection methods contain empty spaces and obstacles which interfere with detection and extract false smoke roots.This study developed a new smoke roots search algorithm based on a multi-feature fusion dynamic extraction strategy.This determines smoke origin candidate points and region based on a multi-frame discrete confidence level.The results show that the new method provides a more complete smoke contour with no background interference,compared to the results using existing methods.Unlike video-based methods that rely on continuous frames,an adaptive threshold method was developed to build the judgment image set composed of non-consecutive frames.The smoke roots origin search algorithm increased the detection rate and significantly reduced false detection rate compared to existing methods. 展开更多
关键词 Smoke detection multi-feature fusion Search strategy ViBe Choquet
下载PDF
Multi-Feature Fusion-Guided Multiscale Bidirectional Attention Networks for Logistics Pallet Segmentation 被引量:1
6
作者 Weiwei Cai Yaping Song +2 位作者 Huan Duan Zhenwei Xia Zhanguo Wei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第6期1539-1555,共17页
In the smart logistics industry,unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by... In the smart logistics industry,unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by humans.Therefore,they play a critical role in smart warehousing,and semantics segmentation is an effective method to realize the intelligent identification of logistics pallets.However,most current recognition algorithms are ineffective due to the diverse types of pallets,their complex shapes,frequent blockades in production environments,and changing lighting conditions.This paper proposes a novel multi-feature fusion-guided multiscale bidirectional attention(MFMBA)neural network for logistics pallet segmentation.To better predict the foreground category(the pallet)and the background category(the cargo)of a pallet image,our approach extracts three types of features(grayscale,texture,and Hue,Saturation,Value features)and fuses them.The multiscale architecture deals with the problem that the size and shape of the pallet may appear different in the image in the actual,complex environment,which usually makes feature extraction difficult.Our study proposes a multiscale architecture that can extract additional semantic features.Also,since a traditional attention mechanism only assigns attention rights from a single direction,we designed a bidirectional attention mechanism that assigns cross-attention weights to each feature from two directions,horizontally and vertically,significantly improving segmentation.Finally,comparative experimental results show that the precision of the proposed algorithm is 0.53%–8.77%better than that of other methods we compared. 展开更多
关键词 Logistics pallet segmentation image segmentation multi-feature fusion multiscale network bidirectional attention mechanism HSV neural networks deep learning
下载PDF
Hierarchical particle filter tracking algorithm based on multi-feature fusion 被引量:3
7
作者 Minggang Gan Yulong Cheng +1 位作者 Yanan Wang Jie Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期51-62,共12页
A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a ... A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a complicated environment.In this approach,the Harris algorithm is introduced to detect the corner points of the object,and the corner matching algorithm based on singular value decomposition is used to compute the firstorder weights and make particles centralize in the high likelihood area.Then the local binary pattern(LBP) operator is used to build the observation model of the target based on the color and texture features,by which the second-order weights of particles and the accurate location of the target can be obtained.Moreover,a backstepping controller is proposed to complete the whole tracking system.Simulations and experiments are carried out,and the results show that the HPF algorithm with the backstepping controller achieves stable and accurate tracking with good robustness in complex environments. 展开更多
关键词 particle filter corner matching multi-feature fusion local binary patterns(LBP) backstepping.
下载PDF
Medical image fusion based on pulse coupled neural networks and multi-feature fuzzy clustering 被引量:1
8
作者 Xiaoqing Luo Xiaojun Wu 《Journal of Biomedical Science and Engineering》 2012年第12期878-883,共6页
Medical image fusion plays an important role in clinical applications such as image-guided surgery, image-guided radiotherapy, noninvasive diagnosis, and treatment planning. In order to retain useful information and g... Medical image fusion plays an important role in clinical applications such as image-guided surgery, image-guided radiotherapy, noninvasive diagnosis, and treatment planning. In order to retain useful information and get more reliable results, a novel medical image fusion algorithm based on pulse coupled neural networks (PCNN) and multi-feature fuzzy clustering is proposed, which makes use of the multi-feature of image and combines the advantages of the local entropy and variance of local entropy based PCNN. The results of experiments indicate that the proposed image fusion method can better preserve the image details and robustness and significantly improve the image visual effect than the other fusion methods with less information distortion. 展开更多
关键词 PCNN multi-feature MEDICAL IMAGE IMAGE fusion LOCAL ENTROPY
下载PDF
Research on Facial Fatigue Detection of Drivers with Multi-feature Fusion 被引量:1
9
作者 YE Yuxuan ZHOU Xianchun +2 位作者 WANG Wenyan YANG Chuanbin ZOU Qingyu 《Instrumentation》 2023年第1期23-31,共9页
In order to solve the shortcomings of current fatigue detection methods such as low accuracy or poor real-time performance,a fatigue detection method based on multi-feature fusion is proposed.Firstly,the HOG face dete... In order to solve the shortcomings of current fatigue detection methods such as low accuracy or poor real-time performance,a fatigue detection method based on multi-feature fusion is proposed.Firstly,the HOG face detection algorithm and KCF target tracking algorithm are integrated and deformable convolutional neural network is introduced to identify the state of extracted eyes and mouth,fast track the detected faces and extract continuous and stable target faces for more efficient extraction.Then the head pose algorithm is introduced to detect the driver’s head in real time and obtain the driver’s head state information.Finally,a multi-feature fusion fatigue detection method is proposed based on the state of the eyes,mouth and head.According to the experimental results,the proposed method can detect the driver’s fatigue state in real time with high accuracy and good robustness compared with the current fatigue detection algorithms. 展开更多
关键词 HOG Face Posture Detection Deformable Convolution multi-feature fusion Fatigue Detection
下载PDF
SA-Model:Multi-Feature Fusion Poetic Sentiment Analysis Based on a Hybrid Word Vector Model
10
作者 Lingli Zhang Yadong Wu +5 位作者 Qikai Chu Pan Li Guijuan Wang Weihan Zhang Yu Qiu Yi Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期631-645,共15页
Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing,ancient literature research,etc.However,the existing research on sentiment analysis is relatively small.It... Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing,ancient literature research,etc.However,the existing research on sentiment analysis is relatively small.It does not effectively solve the problems such as the weak feature extraction ability of poetry text,which leads to the low performance of the model on sentiment analysis for Chinese classical poetry.In this research,we offer the SA-Model,a poetic sentiment analysis model.SA-Model firstly extracts text vector information and fuses it through Bidirectional encoder representation from transformers-Whole word masking-extension(BERT-wwmext)and Enhanced representation through knowledge integration(ERNIE)to enrich text vector information;Secondly,it incorporates numerous encoders to remove text features at multiple levels,thereby increasing text feature information,improving text semantics accuracy,and enhancing the model’s learning and generalization capabilities;finally,multi-feature fusion poetry sentiment analysis model is constructed.The feasibility and accuracy of the model are validated through the ancient poetry sentiment corpus.Compared with other baseline models,the experimental findings indicate that SA-Model may increase the accuracy of text semantics and hence improve the capability of poetry sentiment analysis. 展开更多
关键词 Sentiment analysis Chinese classical poetry natural language processing BERT-wwm-ext ERNIE multi-feature fusion
下载PDF
Multi-Feature Fusion Based Relative Pose Adaptive Estimation for On-Orbit Servicing of Non-Cooperative Spacecraft
11
作者 Yunhua Wu Nan Yang +1 位作者 Zhiming Chen Bing Hua 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第6期19-30,共12页
On-orbit servicing, such as spacecraft maintenance, on-orbit assembly, refueling, and de-orbiting, can reduce the cost of space missions, improve the performance of spacecraft, and extend its life span. The relative s... On-orbit servicing, such as spacecraft maintenance, on-orbit assembly, refueling, and de-orbiting, can reduce the cost of space missions, improve the performance of spacecraft, and extend its life span. The relative state between the servicing and target spacecraft is vital for on-orbit servicing missions, especially the final approaching stage. The major challenge of this stage is that the observed features of the target are incomplete or are constantly changing due to the short distance and limited Field of View (FOV) of camera. Different from cooperative spacecraft, non-cooperative target does not have artificial feature markers. Therefore, contour features, including triangle supports of solar array, docking ring, and corner points of the spacecraft body, are used as the measuring features. To overcome the drawback of FOV limitation and imaging ambiguity of the camera, a "selfie stick" structure and a self-calibration strategy were implemented, ensuring that part of the contour features could be observed precisely when the two spacecraft approached each other. The observed features were constantly changing as the relative distance shortened. It was difficult to build a unified measurement model for different types of features, including points, line segments, and circle. Therefore, dual quaternion was implemented to model the relative dynamics and measuring features. With the consideration of state uncertainty of the target, a fuzzy adaptive strong tracking filter( FASTF) combining fuzzy logic adaptive controller (FLAC) with strong tracking filter(STF) was designed to robustly estimate the relative states between the servicing spacecraft and the target. Finally, the effectiveness of the strategy was verified by mathematical simulation. The achievement of this research provides a theoretical and technical foundation for future on-orbit servicing missions. 展开更多
关键词 on-orbit servicing non-cooperative spacecraft multi-feature fusion fuzzy adaptive filter dual quaternion
下载PDF
Multi-Feature Fusion Book Recommendation Model Based on Deep Neural Network
12
作者 Zhaomin Liang Tingting Liang 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期205-219,共15页
The traditional recommendation algorithm represented by the collaborative filtering algorithm is the most classical and widely recommended algorithm in the practical industry.Most book recommendation systems also use ... The traditional recommendation algorithm represented by the collaborative filtering algorithm is the most classical and widely recommended algorithm in the practical industry.Most book recommendation systems also use this algorithm.However,the traditional recommendation algorithm represented by the collaborative filtering algorithm cannot deal with the data sparsity well.This algorithm only uses the shallow feature design of the interaction between readers and books,so it fails to achieve the high-level abstract learning of the relevant attribute features of readers and books,leading to a decline in recommendation performance.Given the above problems,this study uses deep learning technology to model readers’book borrowing probability.It builds a recommendation system model through themulti-layer neural network and inputs the features extracted from readers and books into the network,and then profoundly integrates the features of readers and books through the multi-layer neural network.The hidden deep interaction between readers and books is explored accordingly.Thus,the quality of book recommendation performance will be significantly improved.In the experiment,the evaluation indexes ofHR@10,MRR,andNDCGof the deep neural network recommendation model constructed in this paper are higher than those of the traditional recommendation algorithm,which verifies the effectiveness of the model in the book recommendation. 展开更多
关键词 Book recommendation deep learning neural network multi-feature fusion personalized prediction
下载PDF
A Multi-feature Fusion Apple Classification Method Based on Image Processing and Improved SVM
13
作者 Haibo LIN Yuandong LU +1 位作者 Rongcheng DING Yufeng XIU 《Agricultural Biotechnology》 CAS 2022年第5期84-91,共8页
In order to achieve accurate classification of apple, a multi-feature fusion classification method based on image processing and improved SVM was proposed in this paper. The method was mainly divided into four parts, ... In order to achieve accurate classification of apple, a multi-feature fusion classification method based on image processing and improved SVM was proposed in this paper. The method was mainly divided into four parts, including image preprocessing, background segmentation, feature extraction and multi-feature fusion classification with improved SVM. Firstly, the homomorphic filtering algorithm was used to improve the quality of apple images. Secondly, the images were converted to HLS space. The background was segmented by the QTSU algorithm. Morphological processing was employed to remove fruit stem and surface defect areas. And apple contours were extracted with the Canny algorithm. Then, apples’ size, shape, color, defect and texture features were extracted. Finally, the cross verification method was used to optimize the penalty factor in SVM. A multi-feature fusion classification model was established. And the weight of each index was calculated by Fisher. In this study, 146 apple samples were selected for training and 61 apple samples were selected for testing. The test results showed that the accuracy of the classification method proposed in this paper was 96.72%, which can provide a reference for apple automatic classification. 展开更多
关键词 Apple classification Image processing Improved SVM multi-feature fusion
下载PDF
A classification method of building structures based on multi-feature fusion of UAV remote sensing images
14
作者 Haoguo Du Yanbo Cao +6 位作者 Fanghao Zhang Jiangli Lv Shurong Deng Yongkun Lu Shifang He Yuanshuo Zhang Qinkun Yu 《Earthquake Research Advances》 CSCD 2021年第4期38-47,共10页
In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in thi... In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in this paper.Three identification approaches of remote sensing images are integrated in this method:object-oriented,texture feature,and digital elevation based on DSM and DEM.So RGB threshold classification method is used to classify the identification results.The accuracy of building structure classification based on each feature and the multi-feature fusion are compared and analyzed.The results show that the building structure classification method is feasible and can accurately identify the structures in large-area remote sensing images. 展开更多
关键词 Remote sensing image Building structure classification multi-feature fusion Object-oriented classification method Texture feature classification method DSM and DEM elevation classification method RGB threshold classification method
下载PDF
Application of Dual-Energy CT Non-Linear Fusion Technology in Improving CTA Image Quality of Renal Cancer 被引量:1
15
作者 Shuiqing Zhuo Xiaoling Chen +2 位作者 Jingping Yu Sihui Zeng Lizhi Liu 《Open Journal of Medical Imaging》 2018年第3期73-80,共8页
Objective: To explore the significance of dual-energy CT non-linear fusion technique in improving the quality of CTA image of renal cancer. Methods: The CTA images of 100 patients who had been confirmed by pathology a... Objective: To explore the significance of dual-energy CT non-linear fusion technique in improving the quality of CTA image of renal cancer. Methods: The CTA images of 100 patients who had been confirmed by pathology as renal cancer were collected and were randomly divided into experimental group and control group with 50 cases respectively. The two groups of patients were treated with iodine concentration of 300 mg/ml and 350 mg/ml non-ionic contrast agent, with a dosage of 1.5 ml/kg and an injection rate of 4 ml/s. The contrast agent intelligently tracking method was adopted bolus. The control group used the conventional CTA scanning, with a reference tube voltage/tube current of 100 kv/ref150 mas. The experimental group adopted the double energy scanning, with ball tube A and ball tube B. The reference tube voltage/tube current was 100 kv/ref250 mas and sn150 kv/ref125 mas respectively. The images of the experimental group were non-linear fused to obtain the Mono+ 55 kev single-energy images. The CT value, SNR contrast ratio of the abdominal aorta, renal artery and tumor tissue of the experimental group images and the 100 KV images and the Mono+ 55 kev images of the control group were compared. The objective evaluation and subjective evaluation of the image quality of the three groups of images was performed. Results: The results showed that the 100 kV images of the experimental group were statistically different from those of the control group (P05) in CT value, SNR and CNR (P 0.05). And there was no statistically significant difference between the non-linear fusion single-energy Mono+ 55 kev images and the control group images in CT value, SNR and CNR (P > 0.05). The subjective evaluation of image quality showed that there was no significant difference between Mono+ 55 kev images and control group images, and the quality of Mono+ 55 kev images was higher than that of experimental group 100 kV images. Conclusion: The dual-energy CT non-linear fusion technique can improve the quality of CTA image in patients with renal cancer, and it is possible to obtain high quality CTA images with low iodine concentration contrast agent. 展开更多
关键词 Dual-Source CT NON-linear fusion Technology RENAL Cancer COMPUTED Tomographic ANGIOGRAPHY Image Quality
下载PDF
UV,five wavelengths fusion and electrochemical fingerprints combined with antioxidant activity for quality control of antiviral mixture
16
作者 Kaining Zhou Zini Tang +2 位作者 Guoxiang Sun Ping Guo Lili Lan 《Asian Journal of Traditional Medicines》 2024年第3期119-136,151,共19页
Aiming to ensure the consistency of quality control of Traditional Chinese Medicines(TCMs),a combination method of high-performance liquid chromatography(HPLC),ultraviolet(UV),electrochemical(EC)was developed in this ... Aiming to ensure the consistency of quality control of Traditional Chinese Medicines(TCMs),a combination method of high-performance liquid chromatography(HPLC),ultraviolet(UV),electrochemical(EC)was developed in this study to comprehensively evaluate the quality of Antiviral Mixture(AM),and Comprehensive Linear Quantification Fingerprint Method(CLQFM)was used to process the data.Quantitative analysis of three active substances in TCM was conducted.A fivewavelength fusion fingerprint(FWFF)was developed,using second-order derivatives of UV spectral data to differentiate sample levels effectively.The combination of HPLC and UV spectrophotometry,along with electrochemical fingerprinting(ECFP),successfully evaluated total active substances.Ultimately,a multidimensional profiling analytical system for TCM was developed. 展开更多
关键词 TCM antiviral mixture five-wavelength fusion fingerprint(FWFF) Comprehensive linear Quantification Fingerprint Method(CLQFM) quantization fingerprint antioxidant activity profilling
下载PDF
A BLIND AUDIO STEGANALYSIS BASED ON FEATURE FUSION 被引量:1
17
作者 Wei Yifang Guo Li Wang Yujie Wang Cuiping 《Journal of Electronics(China)》 2011年第3期265-276,共12页
In this paper, we present a blind steganalysis based on feature fusion. Features based on Short Time Fourier Transform (STFT), which consists of second-order derivative spectrum features of audio and Mel-frequency cep... In this paper, we present a blind steganalysis based on feature fusion. Features based on Short Time Fourier Transform (STFT), which consists of second-order derivative spectrum features of audio and Mel-frequency cepstrum coefficients, audio quality metrics and features on linear prediction residue are extracted separately. Then feature fusion is conducted. The performance of the proposed steganalysis is evaluated against 4 steganographic schemes: Direct Sequence Spread Spectrum (DSSS), Quantization Index Modulation (QIM), ECHO embedding (ECHO), and Least Significant Bit em-bedding (LSB). Experiment results show that the classifying performance of the proposed detector is much superior to the previous work. Even more exciting is that the proposed methodology could detect the four steganography, with 85%+ classification accuracy achieved in all the detections, which makes the proposed steganalysis methodology capable of being regarded as a blind steganalysis, and especially useful when the steganalyzer are without the knowledge of the steganographic scheme employed in data embedding. 展开更多
关键词 Feature fusion STEGANALYSIS Mel-cepstrum Second-order derivative Audio quality metrics linear prediction
下载PDF
MRF-Based Multispectral Image Fusion Using an Adaptive Approach Based on Edge-Guided Interpolation 被引量:1
18
作者 Mohammad Reza Khosravi Mohammad Sharif-Yazd +3 位作者 Mohammad Kazem Moghimi Ahmad Keshavarz Habib Rostami Suleiman Mansouri 《Journal of Geographic Information System》 2017年第2期114-125,共12页
In interpretation of remote sensing images, it is possible that some images which are supplied by different sensors become incomprehensible. For better visual perception of these images, it is essential to operate ser... In interpretation of remote sensing images, it is possible that some images which are supplied by different sensors become incomprehensible. For better visual perception of these images, it is essential to operate series of pre-processing and elementary corrections and then operate a series of main processing steps for more precise analysis on the images. There are several approaches for processing which are depended on the type of remote sensing images. The discussed approach in this article, i.e. image fusion, is the use of natural colors of an optical image for adding color to a grayscale satellite image which gives us the ability for better observation of the HR image of OLI sensor of Landsat-8. This process with emphasis on details of fusion technique has previously been performed;however, we are going to apply the concept of the interpolation process. In fact, we see many important software tools such as ENVI and ERDAS as the most famous remote sensing image processing tools have only classical interpolation techniques (such as bi-linear (BL) and bi-cubic/cubic convolution (CC)). Therefore, ENVI- and ERDAS-based researches in image fusion area and even other fusion researches often don’t use new and better interpolators and are mainly concentrated on the fusion algorithm’s details for achieving a better quality, so we only focus on the interpolation impact on fusion quality in Landsat-8 multispectral images. The important feature of this approach is to use a statistical, adaptive, and edge-guided interpolation method for improving the color quality in the images in practice. Numerical simulations show selecting the suitable interpolation techniques in MRF-based images creates better quality than the classical interpolators. 展开更多
关键词 Satellite IMAGE fusion Statistical INTERPOLATION MULTISPECTRAL Images Markov Random Field (MRF) Intensity-Hue-Saturation (IHS) IMAGE fusion Technique Natural Sense Statistics (NSS) linear Minimum Mean Square Error-Estimation (LMMSE)
下载PDF
HIGH RESOLUTION RANGE PROFILE FORMATION BASED ON LFM SIGNAL FUSION OF MULTIPLE RADARS 被引量:2
19
作者 Wang Cheng Hu Weidong Du Xiaoyong Yu Wenxian 《Journal of Electronics(China)》 2007年第1期75-82,共8页
This paper presents a new method of High Resolution Range (HRR) profile formation based on Linear Frequency Modulation (LFM) signal fusion of multiple radars with multiple frequency bands. The principle of the multipl... This paper presents a new method of High Resolution Range (HRR) profile formation based on Linear Frequency Modulation (LFM) signal fusion of multiple radars with multiple frequency bands. The principle of the multiple radars signal fusion improving the range resolution is analyzed. With the analysis of return signals received by two radars,it is derived that the phase difference between the echoes varies almost linearly with respect to the frequency if the distance between two radars is neg-ligible compared with the radar observation distance. To compensate the phase difference,an en-tropy-minimization principle based compensation algorithm is proposed. During the fusion process,the B-splines interpolation method is applied to resample the signals for Fourier transform imaging. The theoretical analysis and simulations results show the proposed method can effectively increase signal bandwidth and provide a high resolution range profile. 展开更多
关键词 linear Frequency Modulation (LFM) Inverse Synthetic Aperture Radar (ISAR) Signal fusion High Resolution Range (HRR) profile
下载PDF
Non-linear characteristics of Rayleigh-Taylor instable perturbations 被引量:2
20
作者 Zhengfeng Fan Jisheng Luo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第2期143-149,共7页
The direct numerical simulation method is adopted to study the non-linear characteristics of Rayleigh-Taylor instable perturbations at the ablation front of a 200 μm planar CH ablation target. In the simulation, the ... The direct numerical simulation method is adopted to study the non-linear characteristics of Rayleigh-Taylor instable perturbations at the ablation front of a 200 μm planar CH ablation target. In the simulation, the classical electrical thermal conductivity is included, and NND difference scheme is used. The linear growth rates obtained from the simulation agree with the Takabe formula. The ampli- tude distribution of the density perturbation at the ablation front is obtained for the linear growth case. The non-linear characteristics of Rayleigh-Taylor instable perturbations are analyzed and the numerical results show that the amplitude distributions of the compulsive harmonics are very different from that of the fundamental perturbation. The characteristics of the amplitude distributions of the harmonics and their fast growth explain why spikes occur at the ablation front. The numerical results also show that non-linear effects have relations with the phase differences of double mode initial perturbations, and different phase differences lead to varied spikes. 展开更多
关键词 Inertial confinement fusion Rayleigh-Taylorinstability Non-linear characteristics Direct numerical simulation
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部