The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred s...The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred simultaneously compared with pure water.A three-dimensional finite element numerical model of multi-feed microwave heating industrial liquids continuously flowing in a meter-scale circular tube is presented.The temperature field inside the applicator tube in the cavity is solved by COMSOL Multiphysics and professional programming to describe the momentum,energy and Maxwell's equations.The evaluations of the electromagnetic field,the temperature distribution and the velocity field are simulated for the fluids dynamically heated by singleand multi-feed microwave system,respectively.Both the pilot experimental investigations and numerical results of microwave with single-feed heating for fluids with different effective permittivity and flow rates show that the presented numerical modeling makes it possible to analyze dynamic process of multi-feed microwave heating the industrial liquid.The study aids in enhancing the understanding and optimizing of dynamic process in the use of multi-feed microwave heating industrial continuous flow for a variety of material properties and technical parameters.展开更多
The wavefront control of spin or orbital angular momentum(OAM)is widely applied in the optical and radio fields.However,most passive metasurfaces provide limited manipulations,such as the spin-locked wavefront,a stati...The wavefront control of spin or orbital angular momentum(OAM)is widely applied in the optical and radio fields.However,most passive metasurfaces provide limited manipulations,such as the spin-locked wavefront,a static OAM combination,or an uncontrollable OAM energy distribution.We propose a reflection-type multi-feed metasurface to independently generate multi-mode OAM beams with dynamically switchable OAM combinations and spin states,while simultaneously,the energy distribution of carrying OAM modes is controllable.Specifically,four elements are proposed to overcome the spin-locked phase limitation by combining propagation and geometric phases.The robustness of these elements is analyzed.By involving the amplitude term and multi-feed technology in the design process,the proposed metasurface can generate OAM beams with a controllable energy distribution over modes and switchable mode combinations.OAM-based radio communication with four independent channels is experimentally demonstrated at 14 GHz by employing a pair of the proposed metasurfaces.The powers of different channels are adjustable by the provided amplitude term,and the maximum crosstalk is−9 dB,proving the effectiveness and practicability of the proposed method.展开更多
基金Project(KKSY201503006)supported by Scientific Research Foundation of Kunming University of Science and Technology,ChinaProject(2014FD009)supported by the Applied Basic Research Foundation(Youth Program)of ChinaProject(51090385)supported by the National Natural Science Foundation of China
文摘The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred simultaneously compared with pure water.A three-dimensional finite element numerical model of multi-feed microwave heating industrial liquids continuously flowing in a meter-scale circular tube is presented.The temperature field inside the applicator tube in the cavity is solved by COMSOL Multiphysics and professional programming to describe the momentum,energy and Maxwell's equations.The evaluations of the electromagnetic field,the temperature distribution and the velocity field are simulated for the fluids dynamically heated by singleand multi-feed microwave system,respectively.Both the pilot experimental investigations and numerical results of microwave with single-feed heating for fluids with different effective permittivity and flow rates show that the presented numerical modeling makes it possible to analyze dynamic process of multi-feed microwave heating the industrial liquid.The study aids in enhancing the understanding and optimizing of dynamic process in the use of multi-feed microwave heating industrial continuous flow for a variety of material properties and technical parameters.
基金Project supported by the National Natural Science Foundation of China(Nos.61971115,61721001,61975177,61971099)。
文摘The wavefront control of spin or orbital angular momentum(OAM)is widely applied in the optical and radio fields.However,most passive metasurfaces provide limited manipulations,such as the spin-locked wavefront,a static OAM combination,or an uncontrollable OAM energy distribution.We propose a reflection-type multi-feed metasurface to independently generate multi-mode OAM beams with dynamically switchable OAM combinations and spin states,while simultaneously,the energy distribution of carrying OAM modes is controllable.Specifically,four elements are proposed to overcome the spin-locked phase limitation by combining propagation and geometric phases.The robustness of these elements is analyzed.By involving the amplitude term and multi-feed technology in the design process,the proposed metasurface can generate OAM beams with a controllable energy distribution over modes and switchable mode combinations.OAM-based radio communication with four independent channels is experimentally demonstrated at 14 GHz by employing a pair of the proposed metasurfaces.The powers of different channels are adjustable by the provided amplitude term,and the maximum crosstalk is−9 dB,proving the effectiveness and practicability of the proposed method.