Rock block removal is the prevalent physical mechanism for rock erosion and could affect the stability of dam foundations and spillways.Despite this,understanding of block removal is still inadequate because of the co...Rock block removal is the prevalent physical mechanism for rock erosion and could affect the stability of dam foundations and spillways.Despite this,understanding of block removal is still inadequate because of the complex interactions among block characteristics,hydraulic forces,and erosive processes acting on the block.Herein,based on a previously conducted physical experiment of erosion of a single rock block,the removal processes of two different protruding blocks are represented by a coupled computational fluid dynamics-discrete element model(CFD-DEM)approach under varied flow conditions.Additionally,the blocks could be rotated with respect to the flow direction to consider the effect of the discontinuity orientation on the block removal process.Simulation results visualize the entire block removal process.The simulations reproduce the effects of the discontinuity orientation on the critical flow velocity inducing block incipient motion and the trajectory of the block motion observed in the physical experiments.The numerical results present a similar tendency of the critical velocities at different discontinuity orientations but have slightly lower values.The trajectory of the block in the simulations fits well with the experimental measurements.The relationship between the dimensionless critical shear stress and discontinuity orientation observed from the simulations shows that the effect of block protrusion becomes more dominant on the block incipient motion with the increase of relative protrusion height.To our knowledge,this present study is the first attempt to use the coupled finite volume method(FVM)-DEM approach for modelling the interaction behavior between the block and the flowing water so that the block removal process can be reproduced and analyzed.展开更多
This paper presents an overview of the recent progress of potential theory method in the analysis of mixed boundary value problems mainly stemming from three-dimensional crack or contact problems of multi-field couple...This paper presents an overview of the recent progress of potential theory method in the analysis of mixed boundary value problems mainly stemming from three-dimensional crack or contact problems of multi-field coupled media. This method was used to derive a series of exact three dimensional solutions which should be of great theoretical significance because most of them usually cannot be derived by other methods such as the transform method and the trial-and-error method. Further, many solutions are obtained in terms of elementary functions that enable us to treat more complicated problems easily. It is pointed out here that the method is usually only applicable to media characterizing transverse isotropy, from which, however, the results for the isotropic case can be readily obtained.展开更多
A complex interface exists between waterflow and solid particles during hydraulic soil erosion.In this study,the particle discrete element method(DEM)has been used to simulate the hydraulic erosion of a granular soil ...A complex interface exists between waterflow and solid particles during hydraulic soil erosion.In this study,the particle discrete element method(DEM)has been used to simulate the hydraulic erosion of a granular soil under moving bed conditions and surrounding terrain changes.Moreover,the weakly compressible smoothed particle hydrodynamics(WCSPH)approach has been exploited to simulate the instability process of the free surfacefluid and its propagation characteristics at the solid–liquid interface.The influence of a suspended medium on the waterflow dynamics has been characterized using the mixed viscosity concept accounting for the solid–liquid mixed particle volume ratio.Numerical simulations of wall-jet scouring and reservoir sedimentflushing on a mobile bed were performed and validated with experiments.The results show that the proposed WCSPH–DEM coupling model is highly suitable for determining parameters,such as the local maximum scour depth,the scour pit width,and the sand bed profile.The effects on the hydraulic erosion process of two important para-meters of the mixed viscosity coefficient(initial solid volume concentration and initial viscosity coefficient)are also discussed to a certain extent in this study.展开更多
The increasing severity of ground subsidence,ground fissure and other disasters caused by the excessive exploitation of deep underground resources has highlighted the pressing need for effective management.A significa...The increasing severity of ground subsidence,ground fissure and other disasters caused by the excessive exploitation of deep underground resources has highlighted the pressing need for effective management.A significant contributing factor to the challenges faced is the inadequacy of existing soil mechanics experimental instruments in providing effective indicators,creating a bottleneck in comprehensively understanding the mechanisms of land subsidence.It is urgent to develop a multi-field and multi-functional soil mechanics experimental system to address this issue.Based soil mechanics theories,the existing manufacturing capabilities of triaxial apparatus and the practical demands of the test system,a set of multi-field coupled high-pressure triaxial system is developed tailored for testing deep soils(at depths of approximately 3000 m)and soft rock.This system incorporates specialized design elements such as high-pressure chamber and horizontal deformation testing devices.In addition to the conventional triaxial tester functions,its distinctive feature encompass a horizontal deformation tracking measuring device,a water release testing device and temperature control device for the sample.This ensemble facilitates testing of horizontal and vertical deformation water release and other parameters of samples under a specified stress conditions,at constant or varying temperature ranging from-40℃–90℃.The accuracy of the tested parameters meets the requirements of relevant current specifications.The test system not only provides scientifically robust data for revealing the deformation and failure mechanism of soil subjected to extreme temperature,but also offers critical data support for major engineering projects,deep exploration and mitigation efforts related to soil deformation-induced disaster.展开更多
Minin-induced water inrush from a confined aquifer due to subsided floor karst collapse column(SKCC)is a type of serious disaster in the underground coal extraction.Karst collapse column(KCC)developed in a confined aq...Minin-induced water inrush from a confined aquifer due to subsided floor karst collapse column(SKCC)is a type of serious disaster in the underground coal extraction.Karst collapse column(KCC)developed in a confined aquifer occurs widely throughout northern China.A water inrush disaster from SKCC occurred in Taoyuan coal mine on February 3,2013.In order to analyze the effect of the KCC influence zone’s(KCCIZ)width and the entry driving distance of the water inrush through the fractured channels of the SKCC,the stress,seepage,and impact dynamics coupling equations were used tomodel the seepage rule,and a numerical FLAC3D model was created to determine the plastic zones,the vertical displacement development of the rockmass surrounding the entry driving working face(EDWF),and the seepage vector and water inflow development of the seepage field.The hysteretic mechanism of water inrush due to SKCC in Taoyuan coal mine was investigated.The results indicate that a water inrush disaster will occur when the width of the KCCIZ exceeds 16 m under a driving,which leads to the aquifer connecting with the fractured zones of the entry floor.Hysteretic water inrush disasters are related to the stress release rate of the surrounding rocks under the entry driving.When the entry driving exceeds about 10 m from the water inrush point,the stress release rate reaches about 100%,and a water inrush disaster occurs.展开更多
There were differences between real boundary and blast hole controlling boundary of irregular mined-out area in underground metal mines. There were errors in numerical analysis of stability for goaf, if it was analyze...There were differences between real boundary and blast hole controlling boundary of irregular mined-out area in underground metal mines. There were errors in numerical analysis of stability for goaf, if it was analyzed as regular 3D mined-out area and the influence of coupling stress-seepage-disturbance was not considered adequately. Taking a lead zinc mine as the background, the model was built by the coupling of Surpac and Midas-Gts based on the goaf model precisely measured by CMS.According to seepage stress fundamental equations based on the equivalent continuum mechanical and the theory about equivalent load of dynamic disturbance in deep-hole blasting, the stability of mined-out area under multi-field coupling of stress-seepage-dynamic disturbance was numerically analyzed. The results show that it is more consistent between the numerical analysis model based on the real model of irregular 3D shape goaf and the real situation, which could faithfully reappear the change rule of stress–strain about the surrounding rock under synthetic action of blasting dynamic loading and the seepage pressure. The mined-out area multi-field coupling formed by blasting excavation is stable. Based on combination of the advantages of the CMS,Surpac and Midas-Gts, and fully consideration of the effects of multi-field coupling, the accurate and effective way could be provided for numerical analysis of stability for mined-out area.展开更多
Human activities, such as blasting excavation, bolting, grouting and impounding of reservoirs, will lead to disturbances to rock masses and variations in their structural features and material properties. These engine...Human activities, such as blasting excavation, bolting, grouting and impounding of reservoirs, will lead to disturbances to rock masses and variations in their structural features and material properties. These engineering disturbances are important factors that would alter the natural evolutionary processes or change the multi-field interactions in the rock masses from their initial equilibrium states. The concept of generalized multi-field couplings was proposed by placing particular emphasis on the role of engineering disturbances in traditional multi-field couplings in rock masses. A mathematical model was then developed, in which the effects of engineering disturbances on the coupling-processes were described with changes in boundary conditions and evolutions in thermo-hydro-mechanical (THM) properties of the rocks. A parameter, d, which is similar to damage variables but has a broader physical meaning, was conceptually introduced to represent the degree of engineering disturbances and the couplings among the material properties. The effects of blasting excavation, bolting and grouting in rock engineering were illustrated with various field observations or theoretical results, on which the degree of disturbances and the variations in elastic moduli and permeabilities were particularly focused. The influences of excavation and groundwater drainage on the seepage flow and stability of the slopes were demonstrated with numerical simulations. The proposed approach was further employed to investigate the coupled hydro-mechanical responses of a high rock slope to excavation, bolting and impounding of the reservoir in the dam left abutment of Jinping I hydropower station. The impacts of engineering disturbances on the deformation and stability of the slope during construction and operation were demonstrated.展开更多
In order to study the multi-field coupling mechanical behavior of the simply-supported conductive rectangular thin plate under the condition of an externally lateral strong impulsive magnetic field, that is the dynami...In order to study the multi-field coupling mechanical behavior of the simply-supported conductive rectangular thin plate under the condition of an externally lateral strong impulsive magnetic field, that is the dynamic buckling phenomenon of the thin plates in the effect of the magnetic volume forces produced by the interaction between the eddy current and the magnetic fields, a FEM analysis program is developed to characterize the phenomena of magnetoelastic buckling and instability of the plates. The critical values of magnetic field for the three different initial vibrating modes are obtained, with a detailed discussion made on the effects of the lengththickness ratio a/h of the plate and the length-width ratio a/b as well as the impulse parameter on the critical value BOcr of the applied magnetic field.展开更多
Sandwiched functionally-graded piezoelectric semiconductor(FGPS)plates possess high strength and excellent piezoelectric and semiconductor properties,and have significant potential applications in micro-electro-mechan...Sandwiched functionally-graded piezoelectric semiconductor(FGPS)plates possess high strength and excellent piezoelectric and semiconductor properties,and have significant potential applications in micro-electro-mechanical systems.The multi-field coupling and free vibration of a sandwiched FGPS plate are studied,and the governing equation and natural frequency are derived with the consideration of electron movement.The material properties in the functionally-graded layers are assumed to vary smoothly,and the first-order shear deformation theory is introduced to derive the multi-field coupling in the plate.The total strain energy of the plate is obtained,and the governing equations are presented by using Hamilton’s principle.By introducing the boundary conditions,the coupling physical fields are solved.In numerical examples,the natural frequencies of sandwiched FGPS plates under different geometrical and physical parameters are discussed.It is found that the initial electron density can be used to modulate the natural frequencies and vibrational displacement of sandwiched FGPS plates in the case of nano-size.The effects of the material properties of FGPS layers on the natural frequencies are also examined in detail.展开更多
The fault caused by a pantograph-catenary arc is the main factor that threatens the stability of high-speed railway energy transmission.Pantograph-catenary arc vertical drift is more severe than the case under normal ...The fault caused by a pantograph-catenary arc is the main factor that threatens the stability of high-speed railway energy transmission.Pantograph-catenary arc vertical drift is more severe than the case under normal pressure,as it is easy to develop the rigid busbar,which may lead to the flashover occurring around the support insulators.We establish a pantograph-catenary arc experiment and diagnosis platform to simulate low pressure and strong airflow environment.Meanwhile,the variation law of arc drift height with time under different air pressures and airflow velocities is analyzed.Moreover,arc drift characteristics and influencing factors are explored.The physical process of the arc column drifting to the rigid busbar with the jumping mechanism of the arc root on the rigid busbar is summarized.In order to further explore the mechanism of the above physical process,a multi-field stress coupling model is built,as the multi-stress variation law of arc is quantitatively evaluated.The dynamic action mechanism of multi-field stress on arc drifting characteristics is explored,as the physical mechanism of arc drifting under low pressure is theoretically explained.The research results provide theoretical support for arc suppression in high-altitude areas.展开更多
Tailoring grain size can improve the strength of polycrystals by regulating the proportion of grains to grain boundaries and the interaction area.As the grain size decreases to the nanoscale,the deformation mechanism ...Tailoring grain size can improve the strength of polycrystals by regulating the proportion of grains to grain boundaries and the interaction area.As the grain size decreases to the nanoscale,the deformation mechanism in polycrystals shifts from being primarily mediated by dislocations to deformation occurring within the grains and grain boundaries.However,the mechanism responsible for fine-grain strengthening in ferroelectric materials remains unclear,primarily due to the complex multi-field coupling effect arising from spontaneous polarization.Through molecular dynamics simulations,we investigate the strengthening mechanism of barium titanate(BaTiO3),with extremely fine-grain sizes.This material exhibits an inverse Hall–Petch relationship between grain size and strength,rooting in the inhomogeneous concentration of atomic strain and grain rotation.Furthermore,we present a theoretical model to predict the transition from the inverse Hall–Petch stage to the Hall–Petch stage based on strength variations with size,which aligns well with the simulation results.It has been found that the piezoelectric properties of the BaTiO3 are affected by polarization domain switching at various grain sizes.This study enhances our understanding of the atomic-scale mechanisms that contribute to the performance evolution of fine-grain nano-ferroelectric materials.It also provides valuable insights into the design of extremely small-scale ferroelectric components.展开更多
Toprovide a theoretical basis for optimizing the pervaporation procedure, a mass transfer model for pervaporation for binary mixtures was developed basedon the multi-fields synergy theory. This model used the mechanis...Toprovide a theoretical basis for optimizing the pervaporation procedure, a mass transfer model for pervaporation for binary mixtures was developed basedon the multi-fields synergy theory. This model used the mechanism of sorption-diffusion-desorption and introduced a diffusion coefficient, which was dependent on the feed concentration and temperature. Regarding the strong coupling effect in the mass transfer, the concentration distribution in membrane was predicted using the Flory-Huggins thermodynamic theory. The batch experiments and other experiments with constant composition-were conducted-using a modified chitosan pervaporatioffmembrane to separate tert-butyl alcohol (TBA)-water mixtures. The parameters of the mass transfer model were obtained from the flux of the experiments with a constant composition and the activity coefficients available through phase equilibrium equation, using the Willson equation in the feed side and the Flory-Huggins thermodynamic theory within the membrane The simulation results of the experiments .are in good agreement with the results, of the experiments.展开更多
Based on the generalized variational principle of magneto-thermo-elasticity of the ferromagnetic elastic medium, a nonlinear coupling theoretical modeling for a ferromagnetic thin shell is developed. All governing equ...Based on the generalized variational principle of magneto-thermo-elasticity of the ferromagnetic elastic medium, a nonlinear coupling theoretical modeling for a ferromagnetic thin shell is developed. All governing equations and boundary conditions for the ferromagnetic shell are obtained from the variational manipulations on the magnetic scalar potential, temperature and the elastic displacement related to the total energy functional. The multi-field couplings and geometrical nonlinearity of the ferromagnetic thin shell are taken into account in the modeling. The general modeling can be further deduced to existing models of the magneto-elasticity and the thermo-elasticity of a ferromagnetic shell and magneto-thermo-elasticity of a ferromagnetic plate, which are coincident with the ones in literature.展开更多
In this paper,to better reveal the surface effect and the screening effect as well as the nonlinear multi-field coupling characteristic of the multifunctional piezoelectric semiconductor(PS)nanodevice,and to further i...In this paper,to better reveal the surface effect and the screening effect as well as the nonlinear multi-field coupling characteristic of the multifunctional piezoelectric semiconductor(PS)nanodevice,and to further improve its working performance,a magneto-mechanical-thermo coupling theoretical model is theoretically established for the extensional analysis of a three-layered magneto-electro-semiconductor coupling laminated nanoplate with the surface effect.Next,by using the current theoretical model,some numerical analyses and discussion about the surface effect,the corresponding critical thickness of the nanoplate,and the distributions of the physical fields(including the electron concentration perturbation,the electric potential,the electric field,the average electric displacement,the effective polarization charge density,and the total charge density)under different initial state electron concentrations,as well as their active manipulation via some external magnetic field,pre-stress,and temperature stimuli,are performed.Utilizing the nonlinear multi-field coupling effect induced by inevitable external stimuli in the device operating environment,this paper not only provides theoretical support for understanding the size-dependent tuning/controlling of carrier transport as well as its screening effect,but also assists the design of a series of multiferroic PS nanodevices.展开更多
文摘Rock block removal is the prevalent physical mechanism for rock erosion and could affect the stability of dam foundations and spillways.Despite this,understanding of block removal is still inadequate because of the complex interactions among block characteristics,hydraulic forces,and erosive processes acting on the block.Herein,based on a previously conducted physical experiment of erosion of a single rock block,the removal processes of two different protruding blocks are represented by a coupled computational fluid dynamics-discrete element model(CFD-DEM)approach under varied flow conditions.Additionally,the blocks could be rotated with respect to the flow direction to consider the effect of the discontinuity orientation on the block removal process.Simulation results visualize the entire block removal process.The simulations reproduce the effects of the discontinuity orientation on the critical flow velocity inducing block incipient motion and the trajectory of the block motion observed in the physical experiments.The numerical results present a similar tendency of the critical velocities at different discontinuity orientations but have slightly lower values.The trajectory of the block in the simulations fits well with the experimental measurements.The relationship between the dimensionless critical shear stress and discontinuity orientation observed from the simulations shows that the effect of block protrusion becomes more dominant on the block incipient motion with the increase of relative protrusion height.To our knowledge,this present study is the first attempt to use the coupled finite volume method(FVM)-DEM approach for modelling the interaction behavior between the block and the flowing water so that the block removal process can be reproduced and analyzed.
基金Project (No. 10372088) supported by the National Natural Science Foundation of China
文摘This paper presents an overview of the recent progress of potential theory method in the analysis of mixed boundary value problems mainly stemming from three-dimensional crack or contact problems of multi-field coupled media. This method was used to derive a series of exact three dimensional solutions which should be of great theoretical significance because most of them usually cannot be derived by other methods such as the transform method and the trial-and-error method. Further, many solutions are obtained in terms of elementary functions that enable us to treat more complicated problems easily. It is pointed out here that the method is usually only applicable to media characterizing transverse isotropy, from which, however, the results for the isotropic case can be readily obtained.
基金funded by the National Natural Science Foundation of China(No.51568022)the Science and Technology Project of Education Department,Jiangxi Province,China(No.GJJ217404).
文摘A complex interface exists between waterflow and solid particles during hydraulic soil erosion.In this study,the particle discrete element method(DEM)has been used to simulate the hydraulic erosion of a granular soil under moving bed conditions and surrounding terrain changes.Moreover,the weakly compressible smoothed particle hydrodynamics(WCSPH)approach has been exploited to simulate the instability process of the free surfacefluid and its propagation characteristics at the solid–liquid interface.The influence of a suspended medium on the waterflow dynamics has been characterized using the mixed viscosity concept accounting for the solid–liquid mixed particle volume ratio.Numerical simulations of wall-jet scouring and reservoir sedimentflushing on a mobile bed were performed and validated with experiments.The results show that the proposed WCSPH–DEM coupling model is highly suitable for determining parameters,such as the local maximum scour depth,the scour pit width,and the sand bed profile.The effects on the hydraulic erosion process of two important para-meters of the mixed viscosity coefficient(initial solid volume concentration and initial viscosity coefficient)are also discussed to a certain extent in this study.
基金supported by National Natural Science Foundation(No.41272301 and No.42007171)Nature Fund of Hebei(No.D2021504034)Chinese Academy of Geological Sciences(No.YYWF201628).
文摘The increasing severity of ground subsidence,ground fissure and other disasters caused by the excessive exploitation of deep underground resources has highlighted the pressing need for effective management.A significant contributing factor to the challenges faced is the inadequacy of existing soil mechanics experimental instruments in providing effective indicators,creating a bottleneck in comprehensively understanding the mechanisms of land subsidence.It is urgent to develop a multi-field and multi-functional soil mechanics experimental system to address this issue.Based soil mechanics theories,the existing manufacturing capabilities of triaxial apparatus and the practical demands of the test system,a set of multi-field coupled high-pressure triaxial system is developed tailored for testing deep soils(at depths of approximately 3000 m)and soft rock.This system incorporates specialized design elements such as high-pressure chamber and horizontal deformation testing devices.In addition to the conventional triaxial tester functions,its distinctive feature encompass a horizontal deformation tracking measuring device,a water release testing device and temperature control device for the sample.This ensemble facilitates testing of horizontal and vertical deformation water release and other parameters of samples under a specified stress conditions,at constant or varying temperature ranging from-40℃–90℃.The accuracy of the tested parameters meets the requirements of relevant current specifications.The test system not only provides scientifically robust data for revealing the deformation and failure mechanism of soil subjected to extreme temperature,but also offers critical data support for major engineering projects,deep exploration and mitigation efforts related to soil deformation-induced disaster.
基金supported by the National Natural Science Foundation of China(Project Nos.51708185,41807209 and 51778215,SC,http://www.nsfc.gov.cn)the Young Teacher Foundation of HPU(Project No.2019XQG-19,SC,http://www6.hpu.edu.cn/rsc)+1 种基金the Henan Provincial Youth Talent Promotion Program(Project No.2020HYTP003,SC,http://www.hast.net.cn:82)the Doctor Foundation of Henan Polytechnic University(Project No.B2017-51 and B2017-53,SC,http://kxc.hpu.edu.cn).
文摘Minin-induced water inrush from a confined aquifer due to subsided floor karst collapse column(SKCC)is a type of serious disaster in the underground coal extraction.Karst collapse column(KCC)developed in a confined aquifer occurs widely throughout northern China.A water inrush disaster from SKCC occurred in Taoyuan coal mine on February 3,2013.In order to analyze the effect of the KCC influence zone’s(KCCIZ)width and the entry driving distance of the water inrush through the fractured channels of the SKCC,the stress,seepage,and impact dynamics coupling equations were used tomodel the seepage rule,and a numerical FLAC3D model was created to determine the plastic zones,the vertical displacement development of the rockmass surrounding the entry driving working face(EDWF),and the seepage vector and water inflow development of the seepage field.The hysteretic mechanism of water inrush due to SKCC in Taoyuan coal mine was investigated.The results indicate that a water inrush disaster will occur when the width of the KCCIZ exceeds 16 m under a driving,which leads to the aquifer connecting with the fractured zones of the entry floor.Hysteretic water inrush disasters are related to the stress release rate of the surrounding rocks under the entry driving.When the entry driving exceeds about 10 m from the water inrush point,the stress release rate reaches about 100%,and a water inrush disaster occurs.
基金Project(2012BAK09B02-05)supported by the National"Twelfth Five"Science and Technology Support Program,ChinaProject(51274250)supported by the National Natural Science Foundation of China+2 种基金Project(2013zzts057)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(11KF02)supported by the Research Fund of the State Key Laboratory of Coal Resources and Mine safety,CUMT,ChinaProject(2012M511417)supported by China Postdoctoral Science Foundation
文摘There were differences between real boundary and blast hole controlling boundary of irregular mined-out area in underground metal mines. There were errors in numerical analysis of stability for goaf, if it was analyzed as regular 3D mined-out area and the influence of coupling stress-seepage-disturbance was not considered adequately. Taking a lead zinc mine as the background, the model was built by the coupling of Surpac and Midas-Gts based on the goaf model precisely measured by CMS.According to seepage stress fundamental equations based on the equivalent continuum mechanical and the theory about equivalent load of dynamic disturbance in deep-hole blasting, the stability of mined-out area under multi-field coupling of stress-seepage-dynamic disturbance was numerically analyzed. The results show that it is more consistent between the numerical analysis model based on the real model of irregular 3D shape goaf and the real situation, which could faithfully reappear the change rule of stress–strain about the surrounding rock under synthetic action of blasting dynamic loading and the seepage pressure. The mined-out area multi-field coupling formed by blasting excavation is stable. Based on combination of the advantages of the CMS,Surpac and Midas-Gts, and fully consideration of the effects of multi-field coupling, the accurate and effective way could be provided for numerical analysis of stability for mined-out area.
基金Supported by the National Natural Science Fund for Distinguished Young Scholars of China(50725931)the National Natural Science Foundation of China(50839004,51079107)the Supporting Program of the "Eleventh Five-year Plan" for Sci & Tech Research of China(2008BAB29B01)
文摘Human activities, such as blasting excavation, bolting, grouting and impounding of reservoirs, will lead to disturbances to rock masses and variations in their structural features and material properties. These engineering disturbances are important factors that would alter the natural evolutionary processes or change the multi-field interactions in the rock masses from their initial equilibrium states. The concept of generalized multi-field couplings was proposed by placing particular emphasis on the role of engineering disturbances in traditional multi-field couplings in rock masses. A mathematical model was then developed, in which the effects of engineering disturbances on the coupling-processes were described with changes in boundary conditions and evolutions in thermo-hydro-mechanical (THM) properties of the rocks. A parameter, d, which is similar to damage variables but has a broader physical meaning, was conceptually introduced to represent the degree of engineering disturbances and the couplings among the material properties. The effects of blasting excavation, bolting and grouting in rock engineering were illustrated with various field observations or theoretical results, on which the degree of disturbances and the variations in elastic moduli and permeabilities were particularly focused. The influences of excavation and groundwater drainage on the seepage flow and stability of the slopes were demonstrated with numerical simulations. The proposed approach was further employed to investigate the coupled hydro-mechanical responses of a high rock slope to excavation, bolting and impounding of the reservoir in the dam left abutment of Jinping I hydropower station. The impacts of engineering disturbances on the deformation and stability of the slope during construction and operation were demonstrated.
基金Project supported by the National Natural Sciences Foundation of China (Nos. 10132010 and 90405005).
文摘In order to study the multi-field coupling mechanical behavior of the simply-supported conductive rectangular thin plate under the condition of an externally lateral strong impulsive magnetic field, that is the dynamic buckling phenomenon of the thin plates in the effect of the magnetic volume forces produced by the interaction between the eddy current and the magnetic fields, a FEM analysis program is developed to characterize the phenomena of magnetoelastic buckling and instability of the plates. The critical values of magnetic field for the three different initial vibrating modes are obtained, with a detailed discussion made on the effects of the lengththickness ratio a/h of the plate and the length-width ratio a/b as well as the impulse parameter on the critical value BOcr of the applied magnetic field.
基金supported by the National Natural Science Foundation of China(Nos.12172236 and 12202289)。
文摘Sandwiched functionally-graded piezoelectric semiconductor(FGPS)plates possess high strength and excellent piezoelectric and semiconductor properties,and have significant potential applications in micro-electro-mechanical systems.The multi-field coupling and free vibration of a sandwiched FGPS plate are studied,and the governing equation and natural frequency are derived with the consideration of electron movement.The material properties in the functionally-graded layers are assumed to vary smoothly,and the first-order shear deformation theory is introduced to derive the multi-field coupling in the plate.The total strain energy of the plate is obtained,and the governing equations are presented by using Hamilton’s principle.By introducing the boundary conditions,the coupling physical fields are solved.In numerical examples,the natural frequencies of sandwiched FGPS plates under different geometrical and physical parameters are discussed.It is found that the initial electron density can be used to modulate the natural frequencies and vibrational displacement of sandwiched FGPS plates in the case of nano-size.The effects of the material properties of FGPS layers on the natural frequencies are also examined in detail.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51707166,51922090,U1966602,and U19A20105)the Sichuan Science and Technology General Project(Grant Nos.2019YJ0213 and2019JDJQ0019)。
文摘The fault caused by a pantograph-catenary arc is the main factor that threatens the stability of high-speed railway energy transmission.Pantograph-catenary arc vertical drift is more severe than the case under normal pressure,as it is easy to develop the rigid busbar,which may lead to the flashover occurring around the support insulators.We establish a pantograph-catenary arc experiment and diagnosis platform to simulate low pressure and strong airflow environment.Meanwhile,the variation law of arc drift height with time under different air pressures and airflow velocities is analyzed.Moreover,arc drift characteristics and influencing factors are explored.The physical process of the arc column drifting to the rigid busbar with the jumping mechanism of the arc root on the rigid busbar is summarized.In order to further explore the mechanism of the above physical process,a multi-field stress coupling model is built,as the multi-stress variation law of arc is quantitatively evaluated.The dynamic action mechanism of multi-field stress on arc drifting characteristics is explored,as the physical mechanism of arc drifting under low pressure is theoretically explained.The research results provide theoretical support for arc suppression in high-altitude areas.
基金supported by the National Natural Science Foundation of China(Nos.12172117,12372154)National Science and Technology Major Project(No.J2019-1II-0010-0054)+1 种基金National Numerical Windtunnel(No.NNW2019-JT01-023)High-Performance Computing Center of Hebei University。
文摘Tailoring grain size can improve the strength of polycrystals by regulating the proportion of grains to grain boundaries and the interaction area.As the grain size decreases to the nanoscale,the deformation mechanism in polycrystals shifts from being primarily mediated by dislocations to deformation occurring within the grains and grain boundaries.However,the mechanism responsible for fine-grain strengthening in ferroelectric materials remains unclear,primarily due to the complex multi-field coupling effect arising from spontaneous polarization.Through molecular dynamics simulations,we investigate the strengthening mechanism of barium titanate(BaTiO3),with extremely fine-grain sizes.This material exhibits an inverse Hall–Petch relationship between grain size and strength,rooting in the inhomogeneous concentration of atomic strain and grain rotation.Furthermore,we present a theoretical model to predict the transition from the inverse Hall–Petch stage to the Hall–Petch stage based on strength variations with size,which aligns well with the simulation results.It has been found that the piezoelectric properties of the BaTiO3 are affected by polarization domain switching at various grain sizes.This study enhances our understanding of the atomic-scale mechanisms that contribute to the performance evolution of fine-grain nano-ferroelectric materials.It also provides valuable insights into the design of extremely small-scale ferroelectric components.
基金Supported by the Key Project of National Natural Science Foundation of China (No.20436040), and the National Natural Science Foundation of China (No.20476084, No.20776117).
文摘Toprovide a theoretical basis for optimizing the pervaporation procedure, a mass transfer model for pervaporation for binary mixtures was developed basedon the multi-fields synergy theory. This model used the mechanism of sorption-diffusion-desorption and introduced a diffusion coefficient, which was dependent on the feed concentration and temperature. Regarding the strong coupling effect in the mass transfer, the concentration distribution in membrane was predicted using the Flory-Huggins thermodynamic theory. The batch experiments and other experiments with constant composition-were conducted-using a modified chitosan pervaporatioffmembrane to separate tert-butyl alcohol (TBA)-water mixtures. The parameters of the mass transfer model were obtained from the flux of the experiments with a constant composition and the activity coefficients available through phase equilibrium equation, using the Willson equation in the feed side and the Flory-Huggins thermodynamic theory within the membrane The simulation results of the experiments .are in good agreement with the results, of the experiments.
基金supported by the National Natural Science Foundation of China (No.10872081)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (No. 111005)
文摘Based on the generalized variational principle of magneto-thermo-elasticity of the ferromagnetic elastic medium, a nonlinear coupling theoretical modeling for a ferromagnetic thin shell is developed. All governing equations and boundary conditions for the ferromagnetic shell are obtained from the variational manipulations on the magnetic scalar potential, temperature and the elastic displacement related to the total energy functional. The multi-field couplings and geometrical nonlinearity of the ferromagnetic thin shell are taken into account in the modeling. The general modeling can be further deduced to existing models of the magneto-elasticity and the thermo-elasticity of a ferromagnetic shell and magneto-thermo-elasticity of a ferromagnetic plate, which are coincident with the ones in literature.
基金supported by the National Natural Science Foundation of China(Nos.12072253,11972176,and 12062011)the Doctoral Science Fund of Lanzhou University of Technology of China(No.062002)the Opening Project from the State Key Laboratory for Strength and Vibration of Mechanical Structures of China(No.SV2021-KF-19)。
文摘In this paper,to better reveal the surface effect and the screening effect as well as the nonlinear multi-field coupling characteristic of the multifunctional piezoelectric semiconductor(PS)nanodevice,and to further improve its working performance,a magneto-mechanical-thermo coupling theoretical model is theoretically established for the extensional analysis of a three-layered magneto-electro-semiconductor coupling laminated nanoplate with the surface effect.Next,by using the current theoretical model,some numerical analyses and discussion about the surface effect,the corresponding critical thickness of the nanoplate,and the distributions of the physical fields(including the electron concentration perturbation,the electric potential,the electric field,the average electric displacement,the effective polarization charge density,and the total charge density)under different initial state electron concentrations,as well as their active manipulation via some external magnetic field,pre-stress,and temperature stimuli,are performed.Utilizing the nonlinear multi-field coupling effect induced by inevitable external stimuli in the device operating environment,this paper not only provides theoretical support for understanding the size-dependent tuning/controlling of carrier transport as well as its screening effect,but also assists the design of a series of multiferroic PS nanodevices.