期刊文献+
共找到486篇文章
< 1 2 25 >
每页显示 20 50 100
DFE-GCN: Dual Feature Enhanced Graph Convolutional Network for Controversy Detection
1
作者 Chengfei Hua Wenzhong Yang +3 位作者 Liejun Wang Fuyuan Wei KeZiErBieKe HaiLaTi Yuanyuan Liao 《Computers, Materials & Continua》 SCIE EI 2023年第10期893-909,共17页
With the development of social media and the prevalence of mobile devices,an increasing number of people tend to use social media platforms to express their opinions and attitudes,leading to many online controversies.... With the development of social media and the prevalence of mobile devices,an increasing number of people tend to use social media platforms to express their opinions and attitudes,leading to many online controversies.These online controversies can severely threaten social stability,making automatic detection of controversies particularly necessary.Most controversy detection methods currently focus on mining features from text semantics and propagation structures.However,these methods have two drawbacks:1)limited ability to capture structural features and failure to learn deeper structural features,and 2)neglecting the influence of topic information and ineffective utilization of topic features.In light of these phenomena,this paper proposes a social media controversy detection method called Dual Feature Enhanced Graph Convolutional Network(DFE-GCN).This method explores structural information at different scales from global and local perspectives to capture deeper structural features,enhancing the expressive power of structural features.Furthermore,to strengthen the influence of topic information,this paper utilizes attention mechanisms to enhance topic features after each graph convolutional layer,effectively using topic information.We validated our method on two different public datasets,and the experimental results demonstrate that our method achieves state-of-the-art performance compared to baseline methods.On the Weibo and Reddit datasets,the accuracy is improved by 5.92%and 3.32%,respectively,and the F1 score is improved by 1.99%and 2.17%,demonstrating the positive impact of enhanced structural features and topic features on controversy detection. 展开更多
关键词 Controversy detection graph convolutional network feature enhancement social media
下载PDF
Resilience Augmentation in Unmanned Weapon Systems via Multi-Layer Attention Graph Convolutional Neural Networks
2
作者 Kexin Wang Yingdong Gou +4 位作者 Dingrui Xue Jiancheng Liu Wanlong Qi Gang Hou Bo Li 《Computers, Materials & Continua》 SCIE EI 2024年第8期2941-2962,共22页
The collective Unmanned Weapon System-of-Systems(UWSOS)network represents a fundamental element in modern warfare,characterized by a diverse array of unmanned combat platforms interconnected through hetero-geneous net... The collective Unmanned Weapon System-of-Systems(UWSOS)network represents a fundamental element in modern warfare,characterized by a diverse array of unmanned combat platforms interconnected through hetero-geneous network architectures.Despite its strategic importance,the UWSOS network is highly susceptible to hostile infiltrations,which significantly impede its battlefield recovery capabilities.Existing methods to enhance network resilience predominantly focus on basic graph relationships,neglecting the crucial higher-order dependencies among nodes necessary for capturing multi-hop meta-paths within the UWSOS.To address these limitations,we propose the Enhanced-Resilience Multi-Layer Attention Graph Convolutional Network(E-MAGCN),designed to augment the adaptability of UWSOS.Our approach employs BERT for extracting semantic insights from nodes and edges,thereby refining feature representations by leveraging various node and edge categories.Additionally,E-MAGCN integrates a regularization-based multi-layer attention mechanism and a semantic node fusion algo-rithm within the Graph Convolutional Network(GCN)framework.Through extensive simulation experiments,our model demonstrates an enhancement in resilience performance ranging from 1.2% to 7% over existing algorithms. 展开更多
关键词 Resilience enhancement heterogeneous network graph convolutional network
下载PDF
Mobile Communication Voice Enhancement Under Convolutional Neural Networks and the Internet of Things
3
作者 Jiajia Yu 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期777-797,共21页
This study aims to reduce the interference of ambient noise in mobile communication,improve the accuracy and authenticity of information transmitted by sound,and guarantee the accuracy of voice information deliv-ered ... This study aims to reduce the interference of ambient noise in mobile communication,improve the accuracy and authenticity of information transmitted by sound,and guarantee the accuracy of voice information deliv-ered by mobile communication.First,the principles and techniques of speech enhancement are analyzed,and a fast lateral recursive least square method(FLRLS method)is adopted to process sound data.Then,the convolutional neural networks(CNNs)-based noise recognition CNN(NR-CNN)algorithm and speech enhancement model are proposed.Finally,related experiments are designed to verify the performance of the proposed algorithm and model.The experimental results show that the noise classification accuracy of the NR-CNN noise recognition algorithm is higher than 99.82%,and the recall rate and F1 value are also higher than 99.92.The proposed sound enhance-ment model can effectively enhance the original sound in the case of noise interference.After the CNN is incorporated,the average value of all noisy sound perception quality evaluation system values is improved by over 21%compared with that of the traditional noise reduction method.The proposed algorithm can adapt to a variety of voice environments and can simultaneously enhance and reduce noise processing on a variety of different types of voice signals,and the processing effect is better than that of traditional sound enhancement models.In addition,the sound distortion index of the proposed speech enhancement model is inferior to that of the control group,indicating that the addition of the CNN neural network is less likely to cause sound signal distortion in various sound environments and shows superior robustness.In summary,the proposed CNN-based speech enhancement model shows significant sound enhancement effects,stable performance,and strong adapt-ability.This study provides a reference and basis for research applying neural networks in speech enhancement. 展开更多
关键词 convolutional neural networks speech enhancement noise recognition deep learning human-computer interaction Internet of Things
下载PDF
Multiphase convolutional dense network for the classification of focal liver lesions on dynamic contrast-enhanced computed tomography 被引量:5
4
作者 Su-E Cao Lin-Qi Zhang +10 位作者 Si-Chi Kuang Wen-Qi Shi Bing Hu Si-Dong Xie Yi-Nan Chen Hui Liu Si-Min Chen Ting Jiang Meng Ye Han-Xi Zhang Jin Wang 《World Journal of Gastroenterology》 SCIE CAS 2020年第25期3660-3672,共13页
BACKGROUND The accurate classification of focal liver lesions(FLLs)is essential to properly guide treatment options and predict prognosis.Dynamic contrast-enhanced computed tomography(DCE-CT)is still the cornerstone i... BACKGROUND The accurate classification of focal liver lesions(FLLs)is essential to properly guide treatment options and predict prognosis.Dynamic contrast-enhanced computed tomography(DCE-CT)is still the cornerstone in the exact classification of FLLs due to its noninvasive nature,high scanning speed,and high-density resolution.Since their recent development,convolutional neural network-based deep learning techniques has been recognized to have high potential for image recognition tasks.AIM To develop and evaluate an automated multiphase convolutional dense network(MP-CDN)to classify FLLs on multiphase CT.METHODS A total of 517 FLLs scanned on a 320-detector CT scanner using a four-phase DCECT imaging protocol(including precontrast phase,arterial phase,portal venous phase,and delayed phase)from 2012 to 2017 were retrospectively enrolled.FLLs were classified into four categories:Category A,hepatocellular carcinoma(HCC);category B,liver metastases;category C,benign non-inflammatory FLLs including hemangiomas,focal nodular hyperplasias and adenomas;and category D,hepatic abscesses.Each category was split into a training set and test set in an approximate 8:2 ratio.An MP-CDN classifier with a sequential input of the fourphase CT images was developed to automatically classify FLLs.The classification performance of the model was evaluated on the test set;the accuracy and specificity were calculated from the confusion matrix,and the area under the receiver operating characteristic curve(AUC)was calculated from the SoftMax probability outputted from the last layer of the MP-CDN.RESULTS A total of 410 FLLs were used for training and 107 FLLs were used for testing.The mean classification accuracy of the test set was 81.3%(87/107).The accuracy/specificity of distinguishing each category from the others were 0.916/0.964,0.925/0.905,0.860/0.918,and 0.925/0.963 for HCC,metastases,benign non-inflammatory FLLs,and abscesses on the test set,respectively.The AUC(95%confidence interval)for differentiating each category from the others was 0.92(0.837-0.992),0.99(0.967-1.00),0.88(0.795-0.955)and 0.96(0.914-0.996)for HCC,metastases,benign non-inflammatory FLLs,and abscesses on the test set,respectively.CONCLUSION MP-CDN accurately classified FLLs detected on four-phase CT as HCC,metastases,benign non-inflammatory FLLs and hepatic abscesses and may assist radiologists in identifying the different types of FLLs. 展开更多
关键词 Deep learning convolutional neural networks Focal liver lesions CLASSIFICATION Multiphase computed tomography Dynamic enhancement pattern
下载PDF
A Novel Forgery Detection in Image Frames of the Videos Using Enhanced Convolutional Neural Network in Face Images 被引量:2
5
作者 S.Velliangiri J.Premalatha 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期625-645,共21页
Different devices in the recent era generated a vast amount of digital video.Generally,it has been seen in recent years that people are forging the video to use it as proof of evidence in the court of justice.Many kin... Different devices in the recent era generated a vast amount of digital video.Generally,it has been seen in recent years that people are forging the video to use it as proof of evidence in the court of justice.Many kinds of researches on forensic detection have been presented,and it provides less accuracy.This paper proposed a novel forgery detection technique in image frames of the videos using enhanced Convolutional Neural Network(CNN).In the initial stage,the input video is taken as of the dataset and then converts the videos into image frames.Next,perform pre-sampling using the Adaptive Rood Pattern Search(ARPS)algorithm intended for reducing the useless frames.In the next stage,perform preprocessing for enhancing the image frames.Then,face detection is done as of the image utilizing the Viola-Jones algorithm.Finally,the improved Crow Search Algorithm(ICSA)has been used to select the extorted features and inputted to the Enhanced Convolutional Neural Network(ECNN)classifier for detecting the forged image frames.The experimental outcome of the proposed system has achieved 97.21%accuracy compared to other existing methods. 展开更多
关键词 Adaptive Rood Pattern Search(ARPS) Improved Crow Search Algorithm(ICSA) enhanced convolutional Neural network(ECNN) Viola Jones algorithm Speeded Up Robust Feature(SURF)
下载PDF
Enhancing Human Action Recognition with Adaptive Hybrid Deep Attentive Networks and Archerfish Optimization
6
作者 Ahmad Yahiya Ahmad Bani Ahmad Jafar Alzubi +3 位作者 Sophers James Vincent Omollo Nyangaresi Chanthirasekaran Kutralakani Anguraju Krishnan 《Computers, Materials & Continua》 SCIE EI 2024年第9期4791-4812,共22页
In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the e... In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach. 展开更多
关键词 Human action recognition multi-modal sensor data and signals adaptive hybrid deep attentive network enhanced archerfish hunting optimizer 1D convolutional neural network gated recurrent units
下载PDF
Facial Expression Recognition Using Enhanced Convolution Neural Network with Attention Mechanism 被引量:2
7
作者 K.Prabhu S.SathishKumar +2 位作者 M.Sivachitra S.Dineshkumar P.Sathiyabama 《Computer Systems Science & Engineering》 SCIE EI 2022年第4期415-426,共12页
Facial Expression Recognition(FER)has been an interesting area of research in places where there is human-computer interaction.Human psychol-ogy,emotions and behaviors can be analyzed in FER.Classifiers used in FER hav... Facial Expression Recognition(FER)has been an interesting area of research in places where there is human-computer interaction.Human psychol-ogy,emotions and behaviors can be analyzed in FER.Classifiers used in FER have been perfect on normal faces but have been found to be constrained in occluded faces.Recently,Deep Learning Techniques(DLT)have gained popular-ity in applications of real-world problems including recognition of human emo-tions.The human face reflects emotional states and human intentions.An expression is the most natural and powerful way of communicating non-verbally.Systems which form communications between the two are termed Human Machine Interaction(HMI)systems.FER can improve HMI systems as human expressions convey useful information to an observer.This paper proposes a FER scheme called EECNN(Enhanced Convolution Neural Network with Atten-tion mechanism)to recognize seven types of human emotions with satisfying results in its experiments.Proposed EECNN achieved 89.8%accuracy in classi-fying the images. 展开更多
关键词 Facial expression recognition linear discriminant analysis animal migration optimization regions of interest enhanced convolution neural network with attention mechanism
下载PDF
Using Hybrid Penalty and Gated Linear Units to Improve Wasserstein Generative Adversarial Networks for Single-Channel Speech Enhancement
8
作者 Xiaojun Zhu Heming Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2155-2172,共18页
Recently,speech enhancement methods based on Generative Adversarial Networks have achieved good performance in time-domain noisy signals.However,the training of Generative Adversarial Networks has such problems as con... Recently,speech enhancement methods based on Generative Adversarial Networks have achieved good performance in time-domain noisy signals.However,the training of Generative Adversarial Networks has such problems as convergence difficulty,model collapse,etc.In this work,an end-to-end speech enhancement model based on Wasserstein Generative Adversarial Networks is proposed,and some improvements have been made in order to get faster convergence speed and better generated speech quality.Specifically,in the generator coding part,each convolution layer adopts different convolution kernel sizes to conduct convolution operations for obtaining speech coding information from multiple scales;a gated linear unit is introduced to alleviate the vanishing gradient problem with the increase of network depth;the gradient penalty of the discriminator is replaced with spectral normalization to accelerate the convergence rate of themodel;a hybrid penalty termcomposed of L1 regularization and a scale-invariant signal-to-distortion ratio is introduced into the loss function of the generator to improve the quality of generated speech.The experimental results on both TIMIT corpus and Tibetan corpus show that the proposed model improves the speech quality significantly and accelerates the convergence speed of the model. 展开更多
关键词 Speech enhancement generative adversarial networks hybrid penalty gated linear units multi-scale convolution
下载PDF
深度复数轴向自注意力卷积循环网络的语音增强 被引量:1
9
作者 曹洁 王乔 +3 位作者 梁浩鹏 王宸章 李晓旭 于泓 《计算机系统应用》 2024年第4期60-68,共9页
单通道语音增强任务中相位估计不准确会导致增强语音的质量较差,针对这一问题,提出了一种基于深度复数轴向自注意力卷积循环网络(deep complex axial self-attention convolutional recurrent network,DCACRN)的语音增强方法,在复数域... 单通道语音增强任务中相位估计不准确会导致增强语音的质量较差,针对这一问题,提出了一种基于深度复数轴向自注意力卷积循环网络(deep complex axial self-attention convolutional recurrent network,DCACRN)的语音增强方法,在复数域同时实现了语音幅度信息和相位信息的增强.首先使用基于复数卷积网络的编码器从输入语音信号中提取复数表示的特征,并引入卷积跳连模块用以将特征映射到高维空间进行特征融合,加强信息间的交互和梯度的流动.然后设计了基于轴向自注意力机制的编码器-解码器结构,利用轴向自注意力机制来增强模型的时序建模能力和特征提取能力.最后通过解码器实现对语音信号的重构,同时利用混合损失函数优化网络模型,提升增强语音信号的质量.实验在公开数据集Valentini和DNS Challenge上进行,结果表明所提方法相对于其他模型在客观语音质量评估(perceptual evaluation of speech quality,PESQ)和短时客观可懂度(short-time objective intelligibility,STOI)两项指标上均有提升,在非混响数据集中,PESQ比DCTCRN(deep cosine transform convolutional recurrent network)提高了12.8%,比DCCRN(deep complex convolutional recurrent network)提高了3.9%,验证了该网络模型在语音增强任务中的有效性. 展开更多
关键词 单通道语音增强 复数卷积循环网络 卷积跳连 轴向自注意力机制
下载PDF
基于卷积神经网络的遥感图像目标识别仿真 被引量:1
10
作者 秦川 高翔 《计算机仿真》 2024年第4期274-278,共5页
在遥感图像中,目标往往位于复杂的地物背景中,包括不同类型的植被、土地覆盖、建筑物等。上述复杂的地物背景对目标识别造成了困难。为了精准识别遥感图像目标,提出一种卷积神经网络下遥感图像目标识别算法。将暗通道原理和双边滤波算... 在遥感图像中,目标往往位于复杂的地物背景中,包括不同类型的植被、土地覆盖、建筑物等。上述复杂的地物背景对目标识别造成了困难。为了精准识别遥感图像目标,提出一种卷积神经网络下遥感图像目标识别算法。将暗通道原理和双边滤波算法有效结合,对遥感图像展开增强处理。统计分析遥感图像目标尺度范围,通过训练和测试卷积神经网络,得到最佳目标感兴趣区域尺度。确定目标感兴趣区域最佳尺度后,构建基于卷积神经网络的遥感图像目标识别架构,完成遥感图像目标识别。通过实验分析证明,采用所提算法可以有效提升遥感图像增强效果,具有较好的遥感图像目标识别性能。 展开更多
关键词 卷积神经网络 图像增强 遥感图像 目标识别
下载PDF
基于图结构增强的图神经网络方法
11
作者 张芳 单万锦 王雯 《天津工业大学学报》 CAS 北大核心 2024年第3期58-65,共8页
针对图卷积网络(GCNs)在面对低同质性的图结构时性能骤降问题,提出了一种新颖的基于图结构增强的图神经网络方法,用于学习改善的图节点表示。首先将节点信息通过消息传播和聚合,得到节点的初始表示;然后计算节点表示的相似性度量,得到... 针对图卷积网络(GCNs)在面对低同质性的图结构时性能骤降问题,提出了一种新颖的基于图结构增强的图神经网络方法,用于学习改善的图节点表示。首先将节点信息通过消息传播和聚合,得到节点的初始表示;然后计算节点表示的相似性度量,得到图的同质结构;最后融合图的原始结构和同质结构进行节点的信息传递得到节点表示用于下游任务。结果表明:在6个公开的数据集上,所提算法在节点分类的多个指标上均优于对比算法,特别是在同质性较低的4个数据集上,所提算法的准确度(ACC)分数分别超过最高基准5.53%、6.87%、3.08%、4.00%,宏平均(F1)值分别超过最高基准5.75%、8.06%、6.46%、5.61%,获得了远高于基准的优越表现,表明所提方法成功改善了图数据的结构,验证了该算法对图结构优化的有效性。 展开更多
关键词 图结构增强 相似性度量 图卷积网络 节点分类
下载PDF
考虑多尺度纹理特征的红外传感图像频域增强
12
作者 曾琪 杨真 《传感技术学报》 CAS CSCD 北大核心 2024年第4期652-657,共6页
红外传感图像质量容易受探测器和传输距离影响,导致图像亮度和对比度较低、轮廓细节模糊等问题。为此,提出了考虑多尺度纹理特征的红外传感图像频域增强方法。引入残差学习策略,基于多尺度纹理特征搭建多尺度卷积神经网络模型,进行图像... 红外传感图像质量容易受探测器和传输距离影响,导致图像亮度和对比度较低、轮廓细节模糊等问题。为此,提出了考虑多尺度纹理特征的红外传感图像频域增强方法。引入残差学习策略,基于多尺度纹理特征搭建多尺度卷积神经网络模型,进行图像去噪。对去噪后图像进行傅里叶变换,获取红外传感图像的低频图像和高频图像。针对低频图像部分,调节图像灰度和对比度以增强低频分量。针对高频图像部分,利用Log算子和Laplace算子增强图像细节及边缘。加权融合两者处理结果,选取Gamma校正调节对比度,增强高频分量。融合两种增强后图像,实现红外传感图像频域增强。实验结果表明,该方法峰值信噪比高于43,信息熵大于8,边缘强度超过82,对比度熵大于8.1,平均梯度大于8。 展开更多
关键词 多尺度纹理特征 红外传感图像 图像频域增强 卷积神经网络 GAMMA校正
下载PDF
AR-MED共振特征增强的风电齿轮箱故障诊断
13
作者 孙抗 史晓玉 +1 位作者 赵来军 杨明 《组合机床与自动化加工技术》 北大核心 2024年第8期163-167,174,共6页
针对风电齿轮箱故障时脉冲成分往往淹没在其他频率分量中,早期故障特征难以有效提取的问题,提出一种自回归最小熵解卷积(AR-MED)共振特征增强的风电齿轮箱故障诊断方法,并结合一维卷积神经网络(1DCNN),实现齿轮箱高精度故障诊断。首先,... 针对风电齿轮箱故障时脉冲成分往往淹没在其他频率分量中,早期故障特征难以有效提取的问题,提出一种自回归最小熵解卷积(AR-MED)共振特征增强的风电齿轮箱故障诊断方法,并结合一维卷积神经网络(1DCNN),实现齿轮箱高精度故障诊断。首先,使用共振稀疏分解算法(RSSD)将振动信号分解成含有噪声和谐波成分的高共振分量和含有故障冲击成分的低共振分量;其次,对低共振分量使用自回归最小熵解卷积运算,增强低共振分量中微弱的周期性冲击成分;最后,构建自回归最小熵解卷积共振特征增强的1DCNN模型,将分解得到的谐波分量和周期性冲击分量进行特征融合以及有针对的训练和分类。实验结果表明,与现有故障诊断模型相比,所提方法在提取风电齿轮箱的故障特征信息以及提高故障诊断精度方面具有有效性和优越性。 展开更多
关键词 共振稀疏分解 自回归最小熵解卷积 特征增强 一维卷积神经网络 风电齿轮箱
下载PDF
基于ARIMA-TCN混合模型的高速铁路时间同步方法
14
作者 陈永 詹芝贤 张薇 《铁道学报》 EI CAS CSCD 北大核心 2024年第6期90-100,共11页
列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(... 列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(ARIMA-TCN)混合模型的高速铁路时间同步方法。首先,根据上下行链路传输速率的不对称比,建立高速铁路时钟的数学理论和实际观测模型。然后,使用拉依达准则识别处理跳变异常值,完成实际时间序列的预处理。再次,使用ARIMA模型平滑时间序列中不确定时延带来的噪声抖动,获得平稳的时间序列。最后,通过提出的注意力增强TCN模型进行预测补偿,完成时钟偏移的补偿校正。通过实验仿真,得到基站区间内位置、基站间距以及车速对高速铁路时间同步的影响性分析。实验结果表明:与对比方法相比,所提方法补偿后的均方根误差较最小二乘法减少了75%、较最大似然估计方法误差减少了44.4%,较BP神经网络方法误差减少了16.7%,验证所提方法具有更低的同步误差和更高的同步精度。 展开更多
关键词 时间同步 精确时钟协议 差分自回归移动平均模型 注意力增强时域卷积网络 时间补偿
下载PDF
面向超分辨率重建的层次间局部特征增强网络
15
作者 王晓峰 黄煜婷 +2 位作者 张文尉 张轩 陈东方 《计算机工程与设计》 北大核心 2024年第8期2407-2414,共8页
基于卷积神经网络的超分辨率重建模型以单项传播为主,层次越靠后感知信息的能力越微弱,导致层次间局部特征部分丢失,难以实质提升网络的特征表达能力。针对此问题,提出层次间局部特征增强网络。该方法由级联残差模块、层次间特征增强块... 基于卷积神经网络的超分辨率重建模型以单项传播为主,层次越靠后感知信息的能力越微弱,导致层次间局部特征部分丢失,难以实质提升网络的特征表达能力。针对此问题,提出层次间局部特征增强网络。该方法由级联残差模块、层次间特征增强块和特征感知注意力机制组成。级联残差模块通过有效残差连接增加对残差分支信息的利用;层次间特征增强块提取不同深度特征的依赖关系,自适应调整中间层特征权值增强捕获关键信息的能力;特征感知注意力机制采用方向感知和位置判断的方式准确定位和识别感兴趣对象。多项标准数据集的实验结果表明,该方法能改善超分辨率的视觉重建效果,整体性能优于现有方法。 展开更多
关键词 卷积神经网络 超分辨率 局部特征增强 级联残差模块 注意力机制 方向感知 位置判断
下载PDF
基于图卷积网络和图数据增强技术的节点分类研究
16
作者 司亚超 刘子奇 赵明瞻 《河北建筑工程学院学报》 CAS 2024年第2期236-240,共5页
在图卷积网络中,节点分类是一个基本问题,它涉及到图中节点的标签预测。然而,由于真实世界中的图往往具有复杂的结构和噪声,节点分类准确率往往不尽如人意。为了解决这个问题,提出了一种使用图神经网络和图数据增强技术的方法来提高节... 在图卷积网络中,节点分类是一个基本问题,它涉及到图中节点的标签预测。然而,由于真实世界中的图往往具有复杂的结构和噪声,节点分类准确率往往不尽如人意。为了解决这个问题,提出了一种使用图神经网络和图数据增强技术的方法来提高节点分类准确率。首先,我们使用图数据增强技术对图数据进行预处理,对原始训练数据进行变换和扩展来生成更多训练样本,以此来提高模型的泛化性和鲁棒性,然后用图卷积网络模型对图数据进行节点分类,最后,在Cora数据集上进行了多次对比实验。实验结果表明,使用图卷积网络和图数据增强技术可以显著提高节点分类准确率,Cora数据集上的节点分类准确率从82.6%提高到了84.0%。 展开更多
关键词 图卷积网络 图数据增强 节点分类 准确率
下载PDF
一种基于多模态特征增强网络的抑郁症检测方法
17
作者 赵小明 范慧婷 张石清 《软件工程》 2024年第10期68-73,共6页
针对传统的多模态融合方法在抑郁症检测中忽略了模态之间的交互性、未能充分提取出更全面的特征表示的问题,本研究提出一种基于多模态特征增强网络的抑郁症检测方法,该方法有效地集成了视频、音频和远程光电容积脉搏(photoplethysmograp... 针对传统的多模态融合方法在抑郁症检测中忽略了模态之间的交互性、未能充分提取出更全面的特征表示的问题,本研究提出一种基于多模态特征增强网络的抑郁症检测方法,该方法有效地集成了视频、音频和远程光电容积脉搏(photoplethysmographic,rPPG)信号3种模态,通过模态间Transformer、模态内Transformer和多头自注意力机制,共同学习输入模态序列每个时间步的模态内和模态间的动态关系,达到了特征增强的目的。最终,拼接3个模态增强后的特征获得全面特征表示。在AVEC2013公共数据集上的实验结果显示,该方法的平均绝对误差为7.07,优于单模态抑郁症检测,表明该方法有效促进了模态之间的交互,并实现了特征增强,在自动抑郁症检测任务中展现出显著的有效性。 展开更多
关键词 多模态 深度学习 抑郁症检测 卷积神经网络 特征增强 多模态融合
下载PDF
基于改进时间卷积网络的微电网超短期负荷预测
18
作者 王印松 吕率豪 《太阳能学报》 EI CAS CSCD 北大核心 2024年第6期255-263,共9页
为了提高微电网中用电负荷超短期预测的准确性,对时间卷积网络进行特征增强和注意力增强改进,将时间卷积网络中的一维因果膨胀卷积替换为二维卷积,同时利用时间模式注意力机制对时间卷积网络的隐藏层加权处理,提取负荷的多维特征,挖掘... 为了提高微电网中用电负荷超短期预测的准确性,对时间卷积网络进行特征增强和注意力增强改进,将时间卷积网络中的一维因果膨胀卷积替换为二维卷积,同时利用时间模式注意力机制对时间卷积网络的隐藏层加权处理,提取负荷的多维特征,挖掘序列中存在的潜藏联系。根据改进的方法建立预测模型并进行对比实验以验证方法的有效性,能够对用电负荷的不确定性进行有效的处理,拓宽特征向量的维度,有效捕捉负荷序列中与时间有关的特征,提高用电负荷的预测精度。 展开更多
关键词 负荷预测 微电网 卷积神经网络 特征增强 时间模式注意力机制
下载PDF
融合选择性稀疏采样的细粒度图像分类
19
作者 孙红 陈玉娟 宋冬豪 《小型微型计算机系统》 CSCD 北大核心 2024年第6期1460-1465,共6页
常用的细粒度分类方法通过提取局部信息学习细粒度特征,容易忽视周围环境因素影响问题,造成分类精度下降.针对这一问题提出了一个简单有效的框架,称为选择性稀疏采样.通过类峰值响应产生稀疏注意定位有信息的对象部分,根据图像内容选择... 常用的细粒度分类方法通过提取局部信息学习细粒度特征,容易忽视周围环境因素影响问题,造成分类精度下降.针对这一问题提出了一个简单有效的框架,称为选择性稀疏采样.通过类峰值响应产生稀疏注意定位有信息的对象部分,根据图像内容选择动态数量的稀疏注意,生成判别性和补充性两个分支进行视觉表示,使得特征部分和全局信息相辅相成.对于容易产生混淆的部分,引入了一个“梯度增强”损失,只关注每个样本的混淆类,为补充性分支提供更多的细节特征.通过实验结果表明,该方法在常用数据集的基准测试中分别达到了88.6%,92.8%和94.8%的精确度,验证了该方法的有效性. 展开更多
关键词 细粒度图像分类 选择稀疏采样 类峰值响应 梯度增强 卷积神经网络
下载PDF
基于自适应空间特征增强的多视图深度估计
20
作者 魏东 刘欢 +3 位作者 张潇瀚 李昌恺 孙天翼 张子优 《系统仿真学报》 CAS CSCD 北大核心 2024年第1期110-119,共10页
为了提高多视图深度估计结果精度,提出一种基于自适应空间特征增强的多视图深度估计算法。设计了由改进后的特征金字塔网络(feature pyramid network,FPN)和自适应空间特征增强(adaptive space feature enhancement,ASFE)组成的多尺度... 为了提高多视图深度估计结果精度,提出一种基于自适应空间特征增强的多视图深度估计算法。设计了由改进后的特征金字塔网络(feature pyramid network,FPN)和自适应空间特征增强(adaptive space feature enhancement,ASFE)组成的多尺度特征提取模块,获取到具有全局上下文信息和位置信息的多尺度特征图像。通过残差学习网络对深度图进行优化,防止多次卷积操作出现重建边缘模糊的问题。通过分类的思想构建focal loss函数增强网络模型的判断能力。由实验结果可知,该算法在DTU(technical university of denmark)数据集上和CasMVSNet(Cascade MVSNet)算法相比,在整体精度误差、运行时间、显存资源占用上分别降低了14.08%、72.15%、4.62%。在Tanks and Temples数据集整体评价指标Mean上该模型优于其他算法,证明提出的基于自适应空间特征增强的多视图深度估计算法的有效性。 展开更多
关键词 多视图深度估计 自适应空间特征增强 残差学习网络 卷积操作 focal loss函数
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部