Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from p...Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from poor crystallization and high non-radiative recombination losses become a serious limitation in the pursuit of high performance.Here,the relevance between different Pbl_(2)proportions and performance parameters are revealed through analysis of surface morphology,residual stress,and photostability.The increase of Pbl_(2)proportion promotes crystal growth and reduces the work function of the perovskite film surface and promotes the energy level alignment with the carrier transport layer,which decreased the V_(OC)deficit.However,residual PbI_(2)exacerbated the stress level of perovskite film,and the resulting lattice disorder deteriorated the photostability of the device.Ultimately,after the synergistic passivation of residual PbI_(2)and PEAI,the V_(OC)achieves 1.266 V and V_(OC)deficit is less than 0.4 V,the record value in wide bandgap PSCs.展开更多
With the development of Global Navigation Satellite Systems(GNSS),geodetic GNSS receivers have been utilized to monitor sea levels using GNSS-Interferometry Reflectometry(GNSS-IR)technology.The multi-mode,multi-freque...With the development of Global Navigation Satellite Systems(GNSS),geodetic GNSS receivers have been utilized to monitor sea levels using GNSS-Interferometry Reflectometry(GNSS-IR)technology.The multi-mode,multi-frequency signals of GPS,GLONASS,Galileo,and Beidou can be used for GNSS-IR sea level retrieval,but combining these retrievals remains problematic.To address this issue,a GNSS-IR sea level retrieval combination system has been developed,which begins by analyzing error sources in GNSS-IR sea level retrieval and establishing and solving the GNSS-IR retrieval equation.This paper focuses on two key points:time window selection and equation stability.The stability of the retrieval combination equations is determined by the condition number of the coefficient matrix within the time window.The impact of ill-conditioned coefficient matrices on the retrieval results is demonstrated using an extreme case of SNR data with only ascending or descending trajectories.After determining the time window and removing ill-conditioned equations,the multi-mode,multi-frequency GNSS-IR retrieval is performed.Results from three International GNSS Service(IGS)stations show that the combination method produces high-precision,high-resolution,and high-reliability sea level retrieval combination sequences.展开更多
The suppression of low-frequency vibration and noise has always been an important issue in a wide range of engineering applications.To address this concern,a novel square hierarchical honeycomb metamaterial capable of...The suppression of low-frequency vibration and noise has always been an important issue in a wide range of engineering applications.To address this concern,a novel square hierarchical honeycomb metamaterial capable of reducing low-frequency noise has been developed.By combining Bloch’s theorem with the finite element method,the band structure is calculated.Numerical results indicate that this metamaterial can produce multiple low-frequency bandgaps within 500 Hz,with a bandgap ratio exceeding 50%.The first bandgap spans from 169.57 Hz to 216.42 Hz.To reveal the formation mechanism of the bandgap,a vibrational mode analysis is performed.Numerical analysis demonstrates that the bandgap is attributed to the suppression of elastic wave propagation by the vibrations of the structure’s two protruding corners and overall expansion vibrations.Additionally,detailed parametric analyses are conducted to investigate the effect ofθ,i.e.,the angle between the protruding corner of the structure and the horizontal direction,on the band structures and the total effective bandgap width.It is found that reducingθis conducive to obtaining lower frequency bandgaps.The propagation characteristics of elastic waves in the structure are explored by the group velocity,phase velocity,and wave propagation direction.Finally,the transmission characteristics of a finite periodic structure are investigated experimentally.The results indicate significant acceleration amplitude attenuation within the bandgap range,confirming the structure’s excellent low-frequency vibration suppression capability.展开更多
Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovski...Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell.展开更多
A gradient metamaterial with varying-stiffness local resonators is proposed to open the multiple bandgaps and further form a broad fusion bandgap.First,three local resonators with linearly increasing stiffness are per...A gradient metamaterial with varying-stiffness local resonators is proposed to open the multiple bandgaps and further form a broad fusion bandgap.First,three local resonators with linearly increasing stiffness are periodically attached to the spring-mass chain to construct the gradient metamaterial.The dispersion relation is then derived based on Bloch's theorem to reveal the fusion bandgap theoretically.The dynamic characteristic of the finite spring-mass chain is investigated to validate the fusion of multiple bandgaps.Finally,the effects of the design parameters on multiple bandgaps are discussed.The results show that the metamaterial with a non-uniform stiffness gradient pattern is capable of opening a broad fusion bandgap and effectively attenuating the longitudinal waves within a broad frequency region.展开更多
Herein,two asymmetric hexacyclic fused small molecule acceptors(SMAs),namely BP4F-HU and BP4F-UU,were synthesized.The elongated outside chains in the BP4F-UU molecule played a crucial role in optimizing the morphology...Herein,two asymmetric hexacyclic fused small molecule acceptors(SMAs),namely BP4F-HU and BP4F-UU,were synthesized.The elongated outside chains in the BP4F-UU molecule played a crucial role in optimizing the morphology of blend film,thereby improving charge mobility and reducing energy loss within the corresponding film.Notably,the PM6:BP4F-UU device exhibited a higher open-circuit voltage(V_(oc))of 0.878 V compared to the PM6:BP4F-HU device with a V_(oc)of 0.863 V.Further,a new wide bandgap SMA named BTP-TA was designed and synthesized as the third component to the PM6:BP4F-UU host binary devices,which showed an ideal complementary absorption spectrum in PM6:BP4F-UU system.In addition,BTP-TA can achieve efficient intermolecular energy transfer to BP4F-UU by fluorescence resonance energy transfer(FRET)pathway,due to the good overlap between the photoluminescence(PL)spectrum of BTP-TA and the absorption region of BP4F-UU.Consequently,ternary devices with 15wt%BTP-TA exhibits broader photon utilization,optimal blend morphology,and reduced charge recombination compared to the corresponding binary devices.Consequently,PM6:BP4F-UU:BTP-TA ternary device achieved an optimal power conversion efficiency(PCE)of 17.83%with simultaneously increased V_(oc)of 0.905 V,short-circuit current density(J_(sc))of 26.14 mA/cm^(2),and fill factor(FF)of 75.38%.展开更多
This letter presents a multi-frequency proportional-resonant (MFPR) current controller developed for PWM voltage source converter (VSC) under the unbalanced supply voltage conditions. The delta operator is used in...This letter presents a multi-frequency proportional-resonant (MFPR) current controller developed for PWM voltage source converter (VSC) under the unbalanced supply voltage conditions. The delta operator is used in place of the shift operator for the implementation of MFPR by using a low-cost fixed-point DSE The experimental results with an alternative control strategy validated the feasibility of the proposed MFPR current controller for the PWM VSC during voltage unbalance.展开更多
For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide...For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide-ranging multi-frequency radar for low angle targets is proposed. Sequential transmitting multiple pulses with different frequencies are first applied to decorrelate the cohe- rence of the direct and reflected echoes. After receiving all echoes, the multi-frequency samples are arranged in a sort descending ac- cording to the amplitude. Some high amplitude echoes in the same range cell are accumulated to improve the signal-to-noise ratio and the optimal number of high amplitude echoes is analyzed and given by experiments. Finally, simulation results are presented to verify the effectiveness of the method.展开更多
Based on the complexity of mine stratum and coupling of the multi-frequency for the damage of mine stratum,using the method of on-site inspection and mathematical statistics,the regulation and nonlinear characteristic...Based on the complexity of mine stratum and coupling of the multi-frequency for the damage of mine stratum,using the method of on-site inspection and mathematical statistics,the regulation and nonlinear characteristics of strata collapse in mine stratum's multi-frequency mining were put forward and systemically studied.Study result shows that the influence of multi-frequency mining in mine stratum has the feature of multi-frequency incontinuity,multi-characteristic and multi-type nonlinear collapse,strata collapse activa- tion turned worse,presenting an accumulation effect of multi-frequency mining for the strata damage.With the example of multi-frequency mining in the mine,the real characte- ristics of strata collapse by multi-frequency mining and nonlinear characteristics of accu- mulative response damage were analyzed.Research achievements about the surface re- cover and controlling of strata collapse by the multi-frequency mining have instruction meaning.展开更多
The chaotic dynamics of the softening-spring Duffing system with multi-frequency external periodic forces is studied. It is found that the mechanism for chaos is the transverse heteroclinic tori. The Poincaré map...The chaotic dynamics of the softening-spring Duffing system with multi-frequency external periodic forces is studied. It is found that the mechanism for chaos is the transverse heteroclinic tori. The Poincaré map, the stable and the unstable manifolds of the system under two incommensurate periodic forces were set up on a two-dimensional torus. Utilizing a global perturbation technique of Melnikov the criterion for the transverse interaction of the stable and the unstable manifolds was given. The system under more but finite incommensurate periodic forces was also studied. The (Melnikov's) global perturbation technique was therefore generalized to higher dimensional systems. The region in parameter space where chaotic dynamics may occur was given. It was also demonstrated that increasing the number of forcing frequencies will increase the area in parameter space where chaotic behavior can occur.展开更多
Harmonic, subharmonic, superharmonic, simultaneous sub/super harmonic, and combination resonances of the additive type of self-excited two coupled-second order systems to multi-frequency excitation are investigated. T...Harmonic, subharmonic, superharmonic, simultaneous sub/super harmonic, and combination resonances of the additive type of self-excited two coupled-second order systems to multi-frequency excitation are investigated. The theoretical results are obtained by the multiple-scales method. The steady state amplitudes for each resonance are plotted, showing the influence of the different parameters. Analysis for each figure is given. Approximate solution corresponding to each type of resonance is determined. Stability analyses are carried out for each case.展开更多
The acoustical scattering cross section is usually employed to evaluate the scattering ability of the bubbles when they are excited by the incident acoustic waves. This parameter is strongly related to many important ...The acoustical scattering cross section is usually employed to evaluate the scattering ability of the bubbles when they are excited by the incident acoustic waves. This parameter is strongly related to many important applications of performance prediction for search sonar or underwater telemetry, acoustical oceanography, acoustic cavitation, volcanology, and medical and industrial ultrasound. In the present paper, both the analytical and numerical analysis results of the acoustical scattering cross section of a single bubble under multi-frequency excitation are obtained. The nonlinear characteristics(e.g.,harmonics, subharmonics, and ultraharmonics) of the scattering cross section curve under multi-frequency excitation are investigated compared with single-frequency excitation. The influence of several paramount parameters(e.g., bubble equilibrium radius, acoustic pressure amplitude, and acoustic frequencies) in the multi-frequency system on the predictions of scattering cross section is discussed. It is shown that the combination resonances become significant in the multi-frequency system when the acoustic power is big enough, and the acoustical scattering cross section is promoted significantly within a much broader range of bubble sizes and acoustic frequencies due to the generation of more resonances.展开更多
GPS positioning precision is affected by various error sources, and traditional combinations of GPS carrier phase observations have their own limitations such as the wide-lane, the narrow-lane and the ionospheric-free...GPS positioning precision is affected by various error sources, and traditional combinations of GPS carrier phase observations have their own limitations such as the wide-lane, the narrow-lane and the ionospheric-free combinations. To obtain the optimal positioning precision, a new linear combination method is addressed through the variance-covariance (VCV) of the GPS multi-frequency carrier phase combination equations, and the impact of the positioning precision is analyzed with the changing of the observation errors deduced by the law of error propagation. For the high precision positioning with only one carrier phase combination, the optimal combination method is deduced and further validated by an example of a baseline resolution with 60 km length. The result indicates that this method is the simplest, and the positioning precision is the best. Therefore, it is useful for long baseline quick positioning for different precision requirements in various distances.展开更多
Local defected resonance(LDR)is a recently-developed non-destructive testing method,which identifies damage by detecting the vibrational response of the structural surface under the wideband ultrasonic excitation. The...Local defected resonance(LDR)is a recently-developed non-destructive testing method,which identifies damage by detecting the vibrational response of the structural surface under the wideband ultrasonic excitation. The concept of LDR is studied and applied for damage imaging of delamination in composite laminates. Aiming at the problem of poor anti-noise ability and inaccurate damage identification in traditional detection process,an LDR-based multi-frequency method is proposed. Experimental results show that the proposed method can realize the localization and imaging of delamination damage in composite materials.展开更多
This paper considers multi-frequency passive radar and develops a multi-frequency joint direction of arrival(DOA)estimation algorithm to improve estimation accuracy and resolution.The developed algorithm exploits the ...This paper considers multi-frequency passive radar and develops a multi-frequency joint direction of arrival(DOA)estimation algorithm to improve estimation accuracy and resolution.The developed algorithm exploits the sparsity of targets in the spatial domain.Specifically,we first extract the required frequency channel data and acquire the snapshot data through a series of preprocessing such as clutter suppression,coherent integration,beamforming,and constant false alarm rate(CFAR)detection.Then,based on the framework of sparse Bayesian learning,the target’s DOA is estimated by jointly extracting the multi-frequency data via evidence maximization.Simulation results show that the developed algorithm has better estimation accuracy and resolution than other existing multi-frequency DOA estimation algorithms,especially under the scenarios of low signalto-noise ratio(SNR)and small snapshots.Furthermore,the effectiveness is verified by the field experimental data of a multi-frequency FM-based passive radar.展开更多
Modulated high frequency (HF) heating of the ionosphere provides a feasible means of artificially generating ex- tremely low frequency (ELF)/very low frequency (VLF) whistler waves, which can leak into the inner...Modulated high frequency (HF) heating of the ionosphere provides a feasible means of artificially generating ex- tremely low frequency (ELF)/very low frequency (VLF) whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high energy electrons. Combining the ray tracing method and test particle simulations, we evaluate the effects of energetic electron resonant scattering driven by the discrete, multi-frequency arti- ficially generated ELF/VLF waves. The simulation results indicate a stochastic behavior of electrons and a linear profile of pitch angle and kinetic energy variations averaged over all test electrons. These features are similar to those associated with single-frequency waves. The computed local diffusion coefficients show that, although the momentum diffusion of relativistic electrons due to artificial ELF/VLF whistlers with a nominal amplitude of ~ 1 pT is minor, the pitch angle scattering can be notably efficient at low pitch angles near the loss cone, which supports the feasibility of artificial triggering of multi-frequency ELF/VLF whistler waves for the removal of high energy electrons from the magnetosphere. We also investigate the dependences of diffusion coefficients on the frequency interval (△f) of the discrete, multi-frequency waves. We find that there is a threshold value of Af for which the net diffusion coefficient of multi-frequency whistlers is inversely proportional to △f (proportional to the frequency components Nw) when △f is below the threshold value but it remains unchanged with increasing Af when △f is larger than the threshold value. This is explained as being due to the fact that the resonant scattering effect of broadband waves is the sum of the effects of each frequency in the 'effective frequency band'. Our results suggest that the modulation frequency of HF heating of the ionosphere can be appropriately selected with reasonable frequency intervals so that better performance of controlled precipitation of high energy electrons in the plasmasphere by artificial ELF/VLF whistler waves can be achieved.展开更多
This paper explores the multi-frequency independent channel interference alignment(MFC-IA) system of 3 channels and4 users,and single data stream transmit,i.e.(3×3,1)~4 system.We derive the analytic solution for(...This paper explores the multi-frequency independent channel interference alignment(MFC-IA) system of 3 channels and4 users,and single data stream transmit,i.e.(3×3,1)~4 system.We derive the analytic solution for(3×3,1)~4 MFC-IA system.Based on the analytic solution,an optimization problem is proposed aim at the optimal IA solution.Then based on such a math model,we propose a simulated annealing(SA) algorithm to search optimal IA solution.The simulation results show that the simulated annealing IA algorithm has a better sum rate performance than iterative maximize signal to interference plus noise ratio(Max-SINR) algorithm.This result can be extended to single data stream multi-antenna IA system with 3 antennas and4 users.展开更多
An electromagnetic parametrically excited rolling pendulum energy harvester with self-tuning mechanisms subject to multi-frequency excitation is proposed and investigated in this paper.The system consists of two uncou...An electromagnetic parametrically excited rolling pendulum energy harvester with self-tuning mechanisms subject to multi-frequency excitation is proposed and investigated in this paper.The system consists of two uncoupled rolling pendulum.The resonance frequency of each the rolling pendulum can be automatically tuned by adjusting its geometric parameters to access parametric resonance.This harvester can be used to harvest the energy at low frequency.A prototype is developed and evaluated.Its mathematical model is derived.A cam with rolling follower mechanism is employed to generate multi-frequency excitation.An experimental study is conducted to validate the proposed concept.The experimental results are confirmed by the numerical results.The harvester is successfully tuned when the angular velocity of the cam is changed from 1.149 to 1.236 Hz.展开更多
By introducing nonlinear frequency, using Floquet theory and referring to the characteristics of the solution when it passes through the transition boundaries, all kinds of bifurcation modes and their transition bound...By introducing nonlinear frequency, using Floquet theory and referring to the characteristics of the solution when it passes through the transition boundaries, all kinds of bifurcation modes and their transition boundaries of Duffing equation with two periodic excitations as well as the possible ways to chaos are studied in this paper.展开更多
To improve the quality of ultrasonic elastography, by taking the advantage of code excitation and frequency compounding, a transmitting-side multi-frequency with coded excitation for elastography (TFCCE) was propose...To improve the quality of ultrasonic elastography, by taking the advantage of code excitation and frequency compounding, a transmitting-side multi-frequency with coded excitation for elastography (TFCCE) was proposed. TFCCE adopts the chirp signal excitation scheme and strikes a balance in the selection of sub-signal bandwidth, the bandwidth overlap and the number of sub-strain image based on theoretical derivation, so as to further improve the quality of elastic image. Experiments have proved that, compared with the other optimizing methods, the elastographyic signal-to-noise ratio(Re-SN) and contrast-to-noise ratio(Re-CN) are improved significantly with different echo signal-to-noise ratios (ReSN) and attenuation coefficients. When ReSN is 50 dB, compared with short pulse, Rc-SN and Re-CN obtained by TFCCE increase by 53% and 143%, respectively. Moreover, in a deeper investigation (85-95 mm), the image has lower strain noise and clear details. When the attenuation coefficient is in the range of 0-1 dB/(cm.MHz), Re-SN and Re-CN obtained by TFCCE can be kept in moderate ranges of 5〈Re-SN〈6.8 and 11.4〈Re-CN〈15.2, respectively. In particular, for higher tissue attenuation, the basic image quality cannot be ensured with short pulse excitation, while mediocre quality strain figure can be obtained by TFCCE. Therefore, the TFCCE technology can effectively improve the elastography quality and can be applied to ultrasonic clinical trials.展开更多
基金the supports from the National Natural Science Foundation of China(Nos.62264012,62164009)Inner Mongolia Higher Education Research Project(No.NJZZ22343)+1 种基金Inner Mongolia University Research Foundation for Advanced Talents in 2021(No.10000-21311201/005)the Inner Mongolia Autonomous Region for Advanced Talents in 2020(No.12000-12102628)。
文摘Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from poor crystallization and high non-radiative recombination losses become a serious limitation in the pursuit of high performance.Here,the relevance between different Pbl_(2)proportions and performance parameters are revealed through analysis of surface morphology,residual stress,and photostability.The increase of Pbl_(2)proportion promotes crystal growth and reduces the work function of the perovskite film surface and promotes the energy level alignment with the carrier transport layer,which decreased the V_(OC)deficit.However,residual PbI_(2)exacerbated the stress level of perovskite film,and the resulting lattice disorder deteriorated the photostability of the device.Ultimately,after the synergistic passivation of residual PbI_(2)and PEAI,the V_(OC)achieves 1.266 V and V_(OC)deficit is less than 0.4 V,the record value in wide bandgap PSCs.
基金National Natural Science Foundation of China(No.42004018)。
文摘With the development of Global Navigation Satellite Systems(GNSS),geodetic GNSS receivers have been utilized to monitor sea levels using GNSS-Interferometry Reflectometry(GNSS-IR)technology.The multi-mode,multi-frequency signals of GPS,GLONASS,Galileo,and Beidou can be used for GNSS-IR sea level retrieval,but combining these retrievals remains problematic.To address this issue,a GNSS-IR sea level retrieval combination system has been developed,which begins by analyzing error sources in GNSS-IR sea level retrieval and establishing and solving the GNSS-IR retrieval equation.This paper focuses on two key points:time window selection and equation stability.The stability of the retrieval combination equations is determined by the condition number of the coefficient matrix within the time window.The impact of ill-conditioned coefficient matrices on the retrieval results is demonstrated using an extreme case of SNR data with only ascending or descending trajectories.After determining the time window and removing ill-conditioned equations,the multi-mode,multi-frequency GNSS-IR retrieval is performed.Results from three International GNSS Service(IGS)stations show that the combination method produces high-precision,high-resolution,and high-reliability sea level retrieval combination sequences.
基金supported by the National Natural Science Foundation of China(Nos.12272219,12372019,12072222,12132010,12021002,and 11991032)the Open Projects of State Key Laboratory for Strength and Structural Integrity of China(No.ASSIKFJJ202303002)+1 种基金the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures of China(No.SKLTESKF1901)the Aeronautical Science Foundation of China(No.ASFC-201915048001)。
文摘The suppression of low-frequency vibration and noise has always been an important issue in a wide range of engineering applications.To address this concern,a novel square hierarchical honeycomb metamaterial capable of reducing low-frequency noise has been developed.By combining Bloch’s theorem with the finite element method,the band structure is calculated.Numerical results indicate that this metamaterial can produce multiple low-frequency bandgaps within 500 Hz,with a bandgap ratio exceeding 50%.The first bandgap spans from 169.57 Hz to 216.42 Hz.To reveal the formation mechanism of the bandgap,a vibrational mode analysis is performed.Numerical analysis demonstrates that the bandgap is attributed to the suppression of elastic wave propagation by the vibrations of the structure’s two protruding corners and overall expansion vibrations.Additionally,detailed parametric analyses are conducted to investigate the effect ofθ,i.e.,the angle between the protruding corner of the structure and the horizontal direction,on the band structures and the total effective bandgap width.It is found that reducingθis conducive to obtaining lower frequency bandgaps.The propagation characteristics of elastic waves in the structure are explored by the group velocity,phase velocity,and wave propagation direction.Finally,the transmission characteristics of a finite periodic structure are investigated experimentally.The results indicate significant acceleration amplitude attenuation within the bandgap range,confirming the structure’s excellent low-frequency vibration suppression capability.
基金supported by the National Research Foundation of Korea (NRF)the Ministry of Science,ICT (2022M3J1A1085285,2019R1A2C1084010,and 2022R1A2C2006532)the Korea Electric Power Corporation (R20XO02-1)。
文摘Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell.
基金supported by the National Natural Science Foundation of China(Nos.12122206,52175125,12272129,12304309,and 12302039)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24A020006)+1 种基金the Hong Kong Scholars Program of China(No.XJ2022012)the Natural Science Foundation of Hunan Province of China(No.2024JJ4004)。
文摘A gradient metamaterial with varying-stiffness local resonators is proposed to open the multiple bandgaps and further form a broad fusion bandgap.First,three local resonators with linearly increasing stiffness are periodically attached to the spring-mass chain to construct the gradient metamaterial.The dispersion relation is then derived based on Bloch's theorem to reveal the fusion bandgap theoretically.The dynamic characteristic of the finite spring-mass chain is investigated to validate the fusion of multiple bandgaps.Finally,the effects of the design parameters on multiple bandgaps are discussed.The results show that the metamaterial with a non-uniform stiffness gradient pattern is capable of opening a broad fusion bandgap and effectively attenuating the longitudinal waves within a broad frequency region.
基金the National Natural Science Foundation of China(Nos.52125306 and 21875286)。
文摘Herein,two asymmetric hexacyclic fused small molecule acceptors(SMAs),namely BP4F-HU and BP4F-UU,were synthesized.The elongated outside chains in the BP4F-UU molecule played a crucial role in optimizing the morphology of blend film,thereby improving charge mobility and reducing energy loss within the corresponding film.Notably,the PM6:BP4F-UU device exhibited a higher open-circuit voltage(V_(oc))of 0.878 V compared to the PM6:BP4F-HU device with a V_(oc)of 0.863 V.Further,a new wide bandgap SMA named BTP-TA was designed and synthesized as the third component to the PM6:BP4F-UU host binary devices,which showed an ideal complementary absorption spectrum in PM6:BP4F-UU system.In addition,BTP-TA can achieve efficient intermolecular energy transfer to BP4F-UU by fluorescence resonance energy transfer(FRET)pathway,due to the good overlap between the photoluminescence(PL)spectrum of BTP-TA and the absorption region of BP4F-UU.Consequently,ternary devices with 15wt%BTP-TA exhibits broader photon utilization,optimal blend morphology,and reduced charge recombination compared to the corresponding binary devices.Consequently,PM6:BP4F-UU:BTP-TA ternary device achieved an optimal power conversion efficiency(PCE)of 17.83%with simultaneously increased V_(oc)of 0.905 V,short-circuit current density(J_(sc))of 26.14 mA/cm^(2),and fill factor(FF)of 75.38%.
基金Project (No. 50577056) supported by the National Natural Science Foundation of China
文摘This letter presents a multi-frequency proportional-resonant (MFPR) current controller developed for PWM voltage source converter (VSC) under the unbalanced supply voltage conditions. The delta operator is used in place of the shift operator for the implementation of MFPR by using a low-cost fixed-point DSE The experimental results with an alternative control strategy validated the feasibility of the proposed MFPR current controller for the PWM VSC during voltage unbalance.
基金supported by the National Natural Science Foundation of China(6137213661372134+2 种基金61172137)the Fundamental Research Funds for the Central Universities(K5051202005)the China Scholarship Council(CSC)
文摘For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide-ranging multi-frequency radar for low angle targets is proposed. Sequential transmitting multiple pulses with different frequencies are first applied to decorrelate the cohe- rence of the direct and reflected echoes. After receiving all echoes, the multi-frequency samples are arranged in a sort descending ac- cording to the amplitude. Some high amplitude echoes in the same range cell are accumulated to improve the signal-to-noise ratio and the optimal number of high amplitude echoes is analyzed and given by experiments. Finally, simulation results are presented to verify the effectiveness of the method.
基金the National Natural Science Foundation of China(50604009)Open Research Project of State Key Laboratory of Coal Resources & Safe Mining(CUMTB)(2007-09)+3 种基金Liaoning Technical University Science Research Foundation(04A01009)Natural Science Research Foundation of Liaoning Province(20022158202183392)Liaoning Technical University Open Research Foundation Program of the Geomantics & Application Provincial Level Key Laboratory(2004014)
文摘Based on the complexity of mine stratum and coupling of the multi-frequency for the damage of mine stratum,using the method of on-site inspection and mathematical statistics,the regulation and nonlinear characteristics of strata collapse in mine stratum's multi-frequency mining were put forward and systemically studied.Study result shows that the influence of multi-frequency mining in mine stratum has the feature of multi-frequency incontinuity,multi-characteristic and multi-type nonlinear collapse,strata collapse activa- tion turned worse,presenting an accumulation effect of multi-frequency mining for the strata damage.With the example of multi-frequency mining in the mine,the real characte- ristics of strata collapse by multi-frequency mining and nonlinear characteristics of accu- mulative response damage were analyzed.Research achievements about the surface re- cover and controlling of strata collapse by the multi-frequency mining have instruction meaning.
文摘The chaotic dynamics of the softening-spring Duffing system with multi-frequency external periodic forces is studied. It is found that the mechanism for chaos is the transverse heteroclinic tori. The Poincaré map, the stable and the unstable manifolds of the system under two incommensurate periodic forces were set up on a two-dimensional torus. Utilizing a global perturbation technique of Melnikov the criterion for the transverse interaction of the stable and the unstable manifolds was given. The system under more but finite incommensurate periodic forces was also studied. The (Melnikov's) global perturbation technique was therefore generalized to higher dimensional systems. The region in parameter space where chaotic dynamics may occur was given. It was also demonstrated that increasing the number of forcing frequencies will increase the area in parameter space where chaotic behavior can occur.
文摘Harmonic, subharmonic, superharmonic, simultaneous sub/super harmonic, and combination resonances of the additive type of self-excited two coupled-second order systems to multi-frequency excitation are investigated. The theoretical results are obtained by the multiple-scales method. The steady state amplitudes for each resonance are plotted, showing the influence of the different parameters. Analysis for each figure is given. Approximate solution corresponding to each type of resonance is determined. Stability analyses are carried out for each case.
基金Project supported by the National Natural Science Foundation of China(Grant No.11674074)the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT1228)
文摘The acoustical scattering cross section is usually employed to evaluate the scattering ability of the bubbles when they are excited by the incident acoustic waves. This parameter is strongly related to many important applications of performance prediction for search sonar or underwater telemetry, acoustical oceanography, acoustic cavitation, volcanology, and medical and industrial ultrasound. In the present paper, both the analytical and numerical analysis results of the acoustical scattering cross section of a single bubble under multi-frequency excitation are obtained. The nonlinear characteristics(e.g.,harmonics, subharmonics, and ultraharmonics) of the scattering cross section curve under multi-frequency excitation are investigated compared with single-frequency excitation. The influence of several paramount parameters(e.g., bubble equilibrium radius, acoustic pressure amplitude, and acoustic frequencies) in the multi-frequency system on the predictions of scattering cross section is discussed. It is shown that the combination resonances become significant in the multi-frequency system when the acoustic power is big enough, and the acoustical scattering cross section is promoted significantly within a much broader range of bubble sizes and acoustic frequencies due to the generation of more resonances.
基金Supported by the Key Laboratory of Geological Hazards on Three Gorges Reservoir Area,Ministry of Education, China(No.2006KDZ05).
文摘GPS positioning precision is affected by various error sources, and traditional combinations of GPS carrier phase observations have their own limitations such as the wide-lane, the narrow-lane and the ionospheric-free combinations. To obtain the optimal positioning precision, a new linear combination method is addressed through the variance-covariance (VCV) of the GPS multi-frequency carrier phase combination equations, and the impact of the positioning precision is analyzed with the changing of the observation errors deduced by the law of error propagation. For the high precision positioning with only one carrier phase combination, the optimal combination method is deduced and further validated by an example of a baseline resolution with 60 km length. The result indicates that this method is the simplest, and the positioning precision is the best. Therefore, it is useful for long baseline quick positioning for different precision requirements in various distances.
基金supported by the National Natural Science Foundation of China(Nos.51875227,51805261,51775267)the Natural Science Foundation of Jiangsu Province(Nos.BK20181286,BK20180430)the Aviation Science Fund(No.20161552014)
文摘Local defected resonance(LDR)is a recently-developed non-destructive testing method,which identifies damage by detecting the vibrational response of the structural surface under the wideband ultrasonic excitation. The concept of LDR is studied and applied for damage imaging of delamination in composite laminates. Aiming at the problem of poor anti-noise ability and inaccurate damage identification in traditional detection process,an LDR-based multi-frequency method is proposed. Experimental results show that the proposed method can realize the localization and imaging of delamination damage in composite materials.
基金supported by the National Natural Science Foundation of China(62071335,61931015,61831009)the Technological Innovation Project of Hubei Province of China(2019AAA061).
文摘This paper considers multi-frequency passive radar and develops a multi-frequency joint direction of arrival(DOA)estimation algorithm to improve estimation accuracy and resolution.The developed algorithm exploits the sparsity of targets in the spatial domain.Specifically,we first extract the required frequency channel data and acquire the snapshot data through a series of preprocessing such as clutter suppression,coherent integration,beamforming,and constant false alarm rate(CFAR)detection.Then,based on the framework of sparse Bayesian learning,the target’s DOA is estimated by jointly extracting the multi-frequency data via evidence maximization.Simulation results show that the developed algorithm has better estimation accuracy and resolution than other existing multi-frequency DOA estimation algorithms,especially under the scenarios of low signalto-noise ratio(SNR)and small snapshots.Furthermore,the effectiveness is verified by the field experimental data of a multi-frequency FM-based passive radar.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41204120 and 41304130)the Fundamental Research Funds for the Central Universities(Grant No.2042014kf0251)
文摘Modulated high frequency (HF) heating of the ionosphere provides a feasible means of artificially generating ex- tremely low frequency (ELF)/very low frequency (VLF) whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high energy electrons. Combining the ray tracing method and test particle simulations, we evaluate the effects of energetic electron resonant scattering driven by the discrete, multi-frequency arti- ficially generated ELF/VLF waves. The simulation results indicate a stochastic behavior of electrons and a linear profile of pitch angle and kinetic energy variations averaged over all test electrons. These features are similar to those associated with single-frequency waves. The computed local diffusion coefficients show that, although the momentum diffusion of relativistic electrons due to artificial ELF/VLF whistlers with a nominal amplitude of ~ 1 pT is minor, the pitch angle scattering can be notably efficient at low pitch angles near the loss cone, which supports the feasibility of artificial triggering of multi-frequency ELF/VLF whistler waves for the removal of high energy electrons from the magnetosphere. We also investigate the dependences of diffusion coefficients on the frequency interval (△f) of the discrete, multi-frequency waves. We find that there is a threshold value of Af for which the net diffusion coefficient of multi-frequency whistlers is inversely proportional to △f (proportional to the frequency components Nw) when △f is below the threshold value but it remains unchanged with increasing Af when △f is larger than the threshold value. This is explained as being due to the fact that the resonant scattering effect of broadband waves is the sum of the effects of each frequency in the 'effective frequency band'. Our results suggest that the modulation frequency of HF heating of the ionosphere can be appropriately selected with reasonable frequency intervals so that better performance of controlled precipitation of high energy electrons in the plasmasphere by artificial ELF/VLF whistler waves can be achieved.
基金supported by the 863 Program of China under Grant No.2015AA01A703the Fundamental Research Funds for the Central Universities under Grant No.2014ZD03-02+1 种基金the National Natural Science Foundation of China(NSFC,No.61171104,61571055)fund of State Key Laboratory of Millimeter Wave(SKL of MMW,No.K201501)
文摘This paper explores the multi-frequency independent channel interference alignment(MFC-IA) system of 3 channels and4 users,and single data stream transmit,i.e.(3×3,1)~4 system.We derive the analytic solution for(3×3,1)~4 MFC-IA system.Based on the analytic solution,an optimization problem is proposed aim at the optimal IA solution.Then based on such a math model,we propose a simulated annealing(SA) algorithm to search optimal IA solution.The simulation results show that the simulated annealing IA algorithm has a better sum rate performance than iterative maximize signal to interference plus noise ratio(Max-SINR) algorithm.This result can be extended to single data stream multi-antenna IA system with 3 antennas and4 users.
文摘An electromagnetic parametrically excited rolling pendulum energy harvester with self-tuning mechanisms subject to multi-frequency excitation is proposed and investigated in this paper.The system consists of two uncoupled rolling pendulum.The resonance frequency of each the rolling pendulum can be automatically tuned by adjusting its geometric parameters to access parametric resonance.This harvester can be used to harvest the energy at low frequency.A prototype is developed and evaluated.Its mathematical model is derived.A cam with rolling follower mechanism is employed to generate multi-frequency excitation.An experimental study is conducted to validate the proposed concept.The experimental results are confirmed by the numerical results.The harvester is successfully tuned when the angular velocity of the cam is changed from 1.149 to 1.236 Hz.
文摘By introducing nonlinear frequency, using Floquet theory and referring to the characteristics of the solution when it passes through the transition boundaries, all kinds of bifurcation modes and their transition boundaries of Duffing equation with two periodic excitations as well as the possible ways to chaos are studied in this paper.
基金Project(2013GZX0147-3) supported by the Natural Science Foundation of Sichuan Province,China
文摘To improve the quality of ultrasonic elastography, by taking the advantage of code excitation and frequency compounding, a transmitting-side multi-frequency with coded excitation for elastography (TFCCE) was proposed. TFCCE adopts the chirp signal excitation scheme and strikes a balance in the selection of sub-signal bandwidth, the bandwidth overlap and the number of sub-strain image based on theoretical derivation, so as to further improve the quality of elastic image. Experiments have proved that, compared with the other optimizing methods, the elastographyic signal-to-noise ratio(Re-SN) and contrast-to-noise ratio(Re-CN) are improved significantly with different echo signal-to-noise ratios (ReSN) and attenuation coefficients. When ReSN is 50 dB, compared with short pulse, Rc-SN and Re-CN obtained by TFCCE increase by 53% and 143%, respectively. Moreover, in a deeper investigation (85-95 mm), the image has lower strain noise and clear details. When the attenuation coefficient is in the range of 0-1 dB/(cm.MHz), Re-SN and Re-CN obtained by TFCCE can be kept in moderate ranges of 5〈Re-SN〈6.8 and 11.4〈Re-CN〈15.2, respectively. In particular, for higher tissue attenuation, the basic image quality cannot be ensured with short pulse excitation, while mediocre quality strain figure can be obtained by TFCCE. Therefore, the TFCCE technology can effectively improve the elastography quality and can be applied to ultrasonic clinical trials.