期刊文献+
共找到2,020篇文章
< 1 2 101 >
每页显示 20 50 100
A Modified Iterative Learning Control Approach for the Active Suppression of Rotor Vibration Induced by Coupled Unbalance and Misalignment
1
作者 Yifan Bao Jianfei Yao +1 位作者 Fabrizio Scarpa Yan Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期242-253,共12页
This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibr... This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed. 展开更多
关键词 rotor vibration suppression Modified iterative learning control UNBALANCE Parallel misalignment Active magnetic actuator
下载PDF
Vibration energy harvesting for low frequency using auto-tuning parametric rolling pendulum under exogenous multi-frequency excitations
2
作者 Surat Punyakaew Manukid Parnichkun 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第6期448-455,共8页
An electromagnetic parametrically excited rolling pendulum energy harvester with self-tuning mechanisms subject to multi-frequency excitation is proposed and investigated in this paper.The system consists of two uncou... An electromagnetic parametrically excited rolling pendulum energy harvester with self-tuning mechanisms subject to multi-frequency excitation is proposed and investigated in this paper.The system consists of two uncoupled rolling pendulum.The resonance frequency of each the rolling pendulum can be automatically tuned by adjusting its geometric parameters to access parametric resonance.This harvester can be used to harvest the energy at low frequency.A prototype is developed and evaluated.Its mathematical model is derived.A cam with rolling follower mechanism is employed to generate multi-frequency excitation.An experimental study is conducted to validate the proposed concept.The experimental results are confirmed by the numerical results.The harvester is successfully tuned when the angular velocity of the cam is changed from 1.149 to 1.236 Hz. 展开更多
关键词 Energy harvesting Auto-tuning harvester Parametric rolling pendulum multi-frequency vibration Low operating frequency
下载PDF
Nonlinear dynamic behavior of rubbing rotor under interaction between bending and torsional vibrations 被引量:2
3
作者 刘占生 崔颖 +2 位作者 韩万金 隋玉秋 黄文虎 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2002年第2期117-120,共4页
The nonlinear dynamic behavior of a rubbing rotor system was studied with a mathematical model established with the eccentricity and interaction between bending and torsional vibrations taken into consideration. The n... The nonlinear dynamic behavior of a rubbing rotor system was studied with a mathematical model established with the eccentricity and interaction between bending and torsional vibrations taken into consideration. The nonlinear vibrational response of a rubbing rotor was analyzed using numerical integral, spectroscopic analysis and Poince mapping method, which made it possible to have better understanding of the vibrational characteristics of partial rubbing and complete circular rubbing rotors. The numerical results reveal the response of torsional vibration mainly takes a form of superchronous motion, and its frequency decreases as the rotational speed increases when partial rubbing occurs, and the response of torsional vibration is synchronous when complete circular rubbing occurs. The comparison of the dynamics of rubbing rotors with and without the interaction between bending and torsional vibrations shows the interaction between bending and torsional vibrations advances the rotational speed, at which the response of bending vibration changes from a synchronous motion into a quasi periodic motion, and the interaction between bending and torsional vibrations reduces stability of the rubbing rotor. 展开更多
关键词 INTERACTION BETWEEN BENDING and torsional vibrations RUBBING rotor BIFURCATION
下载PDF
DESCRIPTION AND PREDICTION OF CATASTROPHE OF VIBRATION STATE FOR FAULTY ROTORS 被引量:5
4
作者 Chen Anhua Zhong Jue 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 1996年第1期130-134,共5页
A sudden increase of vibration amplitude with no foreboding often results in an abrupt breakdown of a mechanical system.The catastrophe of vibration state of a faulty rotor is a typical nonlinear phenomenon,and very d... A sudden increase of vibration amplitude with no foreboding often results in an abrupt breakdown of a mechanical system.The catastrophe of vibration state of a faulty rotor is a typical nonlinear phenomenon,and very difficult to be described and predicted with linear vibration theory.On the basis of nonlinear vibration and catastrophe theory,fhe eatastrophe of the vibration amplitude of the faulty rotor is described;a way to predict its emergence is developed. 展开更多
关键词 mechanical fault diagnosis and prediction cusp catastrophe model nonlinear vibration rotor
下载PDF
Nonlinear Vibration Induced by the Water-film Whirl and Whip in a Sliding Bearing Rotor System 被引量:3
5
作者 ZHAI Liming LUO Yongyao +2 位作者 WANG Zhengwei KITAUCHI Seishiro MIYAGAWA Kazuyoshi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第2期260-270,共11页
Many industrial applications and experiments have shown that sliding bearings often experience fluid film whip due to nonlinear fluid film forces which can cause rotor-stator rub-impact failures. The oil-film whips ha... Many industrial applications and experiments have shown that sliding bearings often experience fluid film whip due to nonlinear fluid film forces which can cause rotor-stator rub-impact failures. The oil-film whips have attracted many studies while the water-film whips in the water lubricated sliding bearing have been little researched with the mechanism still an open problem. The dynamic fluid film forces in a water sliding bearing are investigated numerically with rotational, whirling and squeezing motions of the journal using a nonlinear model to identify the relationships between the three motions. Rotor speed-up and slow-down experiments are then conducted with the rotor system supported by a water lubricated sliding bearing to induce the water-film whirl/whip and verify the relationship. The experimental results show that the vibrations of the journal alternated between increasing and decreasing rather than continuously increasing as the rotational speed increased to twice the first critical speed, which can be explained well by the nonlinear model. The radial growth rate of the whirl motion greatly affects the whirl frequency of the journal and is responsible for the frequency lock in the water-film whip. Further analysis shows that increasing the lubricating water flow rate changes the water-film whirl/whip characteristics, reduces the first critical speed, advances the time when significant water-film whirling motion occurs, and also increases the vibration amplitude at the bearing center which may lead to the rotor-stator rub-impact. The study gives the insight into the water-film whirl and whip in the water lubricated sliding bearing. 展开更多
关键词 rotor system sliding bearing vibration water-film whip nonlinear
下载PDF
Experimental study on vibration suppression in a rotor system under base excitation using an integral squeeze film damper 被引量:3
6
作者 闫伟 He Lidong +2 位作者 Zhu Gang Wang Shengli Deng Zhe 《High Technology Letters》 EI CAS 2020年第4期349-359,共11页
Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic ... Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic characteristics,a single-disk rotor test rig,where mass imbalance and base excitation could be applied,is developed.Experimental research on the rotor system response under sinusoidal base excitation conditions with different frequencies and excitation forces is performed and the effect of ISFD on the dynamic characteristics of the rotor is investigated.The experimental results demonstrate that when the sinusoidal base excitation frequency approaches the first critical speed of the rotor system or the natural frequency of the rotor system base,strong vibration occurs in the rotor,indicating that the base excitation of the two frequencies has a greater impact on rotor system response.In addition,with the increase of the base excitation force,the vibration of the rotor will be increased.ISFDs can significantly inhibit the vibration due to unbalanced forces and sinusoidal base excitation in rotor systems.To a certain extent,ISFDs can improve the effect of sinusoidal base excitation with most frequencies on rotor system response,and they have a good vibration reduction effect for sinusoidal base excitation with different excitation forces. 展开更多
关键词 Jeffcott rotor dynamic characteristics base excitation integral squeeze film damper(ISFD) vibration suppression
下载PDF
Experimental Investigation on Vibration Control of Rotor-bearing System with Active Magnetic Exciter 被引量:11
7
作者 WANG Weimin GAO Jinji +1 位作者 HUANG Liquan XIN Zhengqiu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第6期1013-1021,共9页
Vibration control is an efficient way to minimize a rotating machine’s vibration level so that its vibration fault-free can be realized.While,several factors,such as unbalance,misalignment and instability,contribute ... Vibration control is an efficient way to minimize a rotating machine’s vibration level so that its vibration fault-free can be realized.While,several factors,such as unbalance,misalignment and instability,contribute to the serious vibration of rotating machines.It is necessary that one apparatus can depress vibration caused by two or more reasons.The fault self-recovery(FSR) mechanism is introduced and investigated.Strategies of vibration control are investigated theoretically using numerical method firstly.Active magneticelectric exciter(AME) are selected as the actuator of a FSR device because it can provide suitable force by varying the control current in the exciters depending upon a proportional and derivative control law.By numerical study,it is indicate that only a small control force is needed to improve stability margins of the compressor and prevent subsynchronous vibration fault efficiently.About synchronous vibration,three control strategies,searching in whole circle,fast optimizing control(FOC),and none mistaking control,are investigated to show which of the control strategy can realize the fault self-recovery in the shortest time.Experimental study is conducted on a test rig with variable rotating speed.Results of the test indicate that the non-mistake control strategy can minimize synchronous vibration in less than three seconds.The proposed research can provide a new insight for subsynchronous and synchronous vibration restraining about centrifugal compressor. 展开更多
关键词 vibration control rotor-bearing system active magnetic exciter subsynchronous
下载PDF
GENERATOR VIBRATION FAULT DIAGNOSIS METHOD BASED ON ROTOR VIBRATION AND STATOR WINDING PARALLEL BRANCHES CIRCULATING CURRENT CHARACTERISTICS 被引量:2
8
作者 Wan Shuting Li Heming +1 位作者 Li Yonggang Tang Guiji 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第4期592-596,共5页
Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or... Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above. 展开更多
关键词 Generator Fault diagnosis rotor vibration characteristic Stator winding parallel branches circulating current
下载PDF
Experimental study of suppressing the unbalanced response vibration of rotor system with a G-type integral squeeze film damper 被引量:1
9
作者 闫伟 He Lidong +2 位作者 Zhang Yufei Zhang Yipeng Jia Xingyun 《High Technology Letters》 EI CAS 2021年第1期1-9,共9页
Conventional squeeze film dampers have numerous challenges including lock up,bistable response and incoordinate precession.In order to resolve these nonlinear problems,a novel G-type integral squeeze film damper(GISFD... Conventional squeeze film dampers have numerous challenges including lock up,bistable response and incoordinate precession.In order to resolve these nonlinear problems,a novel G-type integral squeeze film damper(GISFD)is proposed in this research.The experimental test rig is provided to investigate the rotor system with an unbalanced single disk.Numerical simulation results show that the structural design of GISFD is reasonable,which can ensure its safe and stable operation.The influence of different support stiffnesses on the first-order speed of the rotor system is analyzed.Experimental results show that GISFD can effectively suppress the unbalanced response vibration of the rotor.In a certain range,it is found that the suppression effect of GISFD increases with the increase in the kinematic viscosity of the damping fluid.When the silicone oil with kinematic viscosity coefficients v=30.0 cm^(2)/s is employed,the vibration reduction of GISFD is approximately 71.51%.Furthermore,the experimental results show that with the increase of the unbalance,there is a linear relationship between the unbalance and the corresponding amplitude of the unbalanced response.It is concluded that GISFD has excellent linear damping characteristics and reduces the sensitivity of the rotor system to the unbalanced mass. 展开更多
关键词 G-type integral squeeze film damper(GISFD) unbalanced response vibration suppression rotor system dynamic characteristic
下载PDF
Coupled lateral-torsional-axial vibrations of a helical gear-rotor-bearing system 被引量:7
10
作者 Chao-Feng Li Shi-Hua Zhou +1 位作者 Jie Liu Bang-Chun Wen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第5期746-761,共16页
Considering the axial and radial loads, a math- ematical model of angular contact ball bearing is deduced with Hertz contact theory. With the coupling effects of lateral, torsional and axial vibrations taken into acco... Considering the axial and radial loads, a math- ematical model of angular contact ball bearing is deduced with Hertz contact theory. With the coupling effects of lateral, torsional and axial vibrations taken into account, a lumped-parameter nonlinear dynamic model of helical gearrotor-bearing system (HGRBS) is established to obtain the transmission system dynamic response to the changes of dif- ferent parameters. The vibration differential equations of the drive system are derived through the Lagrange equation, which considers the kinetic and potential energies, the dis- sipative function and the internal/external excitation. Based on the Runge-Kutta numerical method, the dynamics of the HGRBS is investigated, which describes vibration properties of HGRBS more comprehensively. The results show that the vibration amplitudes have obvious fluctuation, and the frequency multiplication and random frequency components become increasingly obvious with changing rotational speed and eccentricity at gear and bearing positions. Axial vibration of the HGRBS also has some fluctuations. The bearing has self-variable stiffness frequency, which should be avoided in engineering design. In addition, the bearing clearance needs little attention due to its slightly discernible effect on vibration response. It is suggested that a careful examination should be made in modelling the nonlinear dynamic behavior of a helical gear-rotor-bearing system. 展开更多
关键词 Helical gear-rotor-bearing system Coupled lateral-torsional-axial vibration Meshing frequency Nonlinear dynamics
下载PDF
Research on suppress vibration of rotor misalignment with shear viscous damper 被引量:2
11
作者 黄秀金 He Lidong Wang Cai 《High Technology Letters》 EI CAS 2015年第2期239-243,共5页
A new type of shear viscous damper for rotating machinery is designed.The new damper with good stability and reliability can inhibit all kinds of frequency multiplication vibration caused by misalignment in the condit... A new type of shear viscous damper for rotating machinery is designed.The new damper with good stability and reliability can inhibit all kinds of frequency multiplication vibration caused by misalignment in the condition of non-stop machine.It analyzes and discusses the use of the shear viscous damper for misalignment vibration response inhibition with a finite element method,and experiments are extensively carried out with a laboratory test rig.Both the simulation and experimental results basically agree well in that,the damper can effectively control the misalignment vibration of the rotor system and improves the stability of the entire rotor system.Experimental results show the amplitude of one time running speed component decreases by 30%,and the two time running speed vibration has been basically eliminated. 展开更多
关键词 粘滞阻尼器 振动响应 转子偏心 剪切 转子系统 运行速度 非线性振动 实验台
下载PDF
INFLUENCE OF UNBALANCE ON LOW-FREQUENCY VIBRATION OF ROTOR-BEARING SYSTEM
12
作者 杨建刚 戴德成 高伟 《Journal of Southeast University(English Edition)》 EI CAS 1995年第1期44-50,共7页
The influence of unbalance on low-frequency vibration exists whenthere are nonlinear factors in oil film force. Based on the Muszpeka oil film mod-el , a theoretical proof is presented. Some new results are obtained ... The influence of unbalance on low-frequency vibration exists whenthere are nonlinear factors in oil film force. Based on the Muszpeka oil film mod-el , a theoretical proof is presented. Some new results are obtained based on the im-proved simulation meth 展开更多
关键词 nonlinear vibration BALANCE rotor journal BEARING / LATERAL vibra-tion
下载PDF
STUDY ON ROTOR HEAD VIBRATION ABSORBER OF HELICOPTER
13
作者 GuZhongquan PengFujun MaKougen(Research Instituie of Vibration Eng, Nanj ing University ofAeronautics and Astronautics, Nanj ing, China, 2 10016) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1994年第3期195-200,共6页
Rotor Head Vibration Absorber (RHVA) is a new kind of vibration reduc-tion device for helicoper, which provides some advantages in applications. The mechan-ical model for analysing and designing such kind of device is... Rotor Head Vibration Absorber (RHVA) is a new kind of vibration reduc-tion device for helicoper, which provides some advantages in applications. The mechan-ical model for analysing and designing such kind of device is presented, two analyticalmethods (in frequency domain and time domain) and its adaptabihty are studied. At thesame time the charactenstics of RHVA are analysed. The deduced rotor receptancesproved by model test are presented. At last the effectiveness of mechanical model andanalytical methods presented in this paper and of RHVA are illustrated in the calculation example. 展开更多
关键词 helicopters rotor body interactions vibration isolators dynamic models
下载PDF
Magnetic field effects on the nonlinear vibration of a rotor
14
作者 M.EFTEKHARI A.DASHTI-RAHMATABADI A.MAZIDI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第2期289-312,共24页
The nonlinear vibration of a rotor operated in a magnetic field with geometric and inertia nonlinearity is investigated. An asymmetric magnetic flux density is generated,resulting in the production of a load on the ro... The nonlinear vibration of a rotor operated in a magnetic field with geometric and inertia nonlinearity is investigated. An asymmetric magnetic flux density is generated,resulting in the production of a load on the rotor since the air-gap distribution between the rotor and the stator is not uniform. This electromagnetic load is a nonlinear function of the distance between the geometric centers of the rotor and the stator. The nonlinear equation of motion is obtained by the inclusion of the nonlinearity in the inertia, the curvature, and the electromagnetic load. After discretization of the governing partial differential equations by the Galerkin method, the multiple-scale perturbation method is used to derive the approximate solutions to the equations. In the numerical results, the effects of the electromagnetic parameter load, the damping coefficient, the amplitude of the initial displacement, the mass moment of inertia, and the rotation speed on the linear and nonlinear backward and forward frequencies are investigated. The results show that the magnetic field has significant effects on the nonlinear frequency of oscillation. 展开更多
关键词 NONLINEAR vibration in-extensional rotor NONLINEAR CURVATURE gyroscopic effect MAGNETIC field
下载PDF
Vibration Characteristics of Rotor System with Loose Disc Caused by the Insufficient Interference Force
15
作者 Zhinong Li Fang Qiao +3 位作者 Wenxiu Lu Jie Liu Dong Wang Fulei Chu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第3期297-311,共15页
The rotating parts looseness is one of the common failures in rotating machinery.The current researches of looseness fault mainly focus on non-rotating components.However,the looseness fault of disc-shaft system,which... The rotating parts looseness is one of the common failures in rotating machinery.The current researches of looseness fault mainly focus on non-rotating components.However,the looseness fault of disc-shaft system,which is the main work part in the rotor system,is almost ignored.Here,a dynamic model of the rotor system with loose disc caused by the insufficient interference force is proposed based on the contact model of disc-shaft system with the microscopic surface topography,the vibration characteristics of the system are analyzed and discussed by the number simulation,and verified by the experiment.The results show that the speed of the shaft,the contact stiffness,the clearance between the disc and shaft,the damping of the disc and the rotational damping have an influence on the rotation state of the disc.When the rotation speed of the disc and the shaft are same,the collision frequency is mainly composed of one frequency multiplication component and very weak high frequency multiplication components.When the rotation speed of the disc and the shaft is close,the vibration of the disc occurs a beat vibration phenomenon in the horizontal direction.Simultaneously,a periodical similar beat vibration phenomenon also occurs in the waveform of the disc-shaft displacement difference.The collision frequency is mainly composed of a low frequency and a weak high frequency component.When the rotation speed of the disc and the shaft has great difference,the collision frequency is mainly composed of one frequency multiplication,a few weak high frequency multiplication components and a few low frequency multiplication component.With the reduction of the relative speed of the disc,the trajectory of the disc changes from circle-shape to inner eight-shape,and then to circle-shape.In the inner eight-shape,the inner ring first gradually becomes smaller and then gradually becomes larger,and the outer ring is still getting smaller.The obtained research results in this paper has important theoretical value for the diagnosis of the rotor system with the loose disc. 展开更多
关键词 rotor system with loose disc rotor dynamics Nonlinear dynamic characteristic Nonlinear vibration Insufficient interference force Fault diagnosis
下载PDF
Transversal vibrations of double-plate systems 被引量:6
16
作者 Katica(Stevanovic) Hedrih 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第5期487-501,共15页
This paper presents an analytical and numerical analysis of free and forced transversal vibrations of an elastically connected double-plate system. Analytical solutions of a system of coupled partial differential equa... This paper presents an analytical and numerical analysis of free and forced transversal vibrations of an elastically connected double-plate system. Analytical solutions of a system of coupled partial differential equations, which describe corresponding dynamical free and forced processes, are obtained using Bernoulli's particular integral and Lagrange's method of variation constants. It is shown that one-mode vibrations correspond to two-frequency regime for free vibrations induced by initial conditions and to three-frequency regime for forced vibrations induced by one-frequency external excitation and corresponding initial conditions. The analytical solutions show that the elastic connec- tion between plates leads to the appearance of twofrequency regime of time function, which corresponds to one eigenamplitude function of one mode, and also that the time functions of different vibration modes are uncoupled, for each shape of vibrations. It has been proven that for both elastically connected plates, for every pair of m and n, two possibilities for appearance of the resonance dynamical states, as well as for appearance of the dynamical absorption, are present. Using the MathCad program, the corresponding visualizations of the characteristic forms of the plate middle surfaces through time are presented. 展开更多
关键词 Double plate system Elastic connection vibration multi-frequency Visualization
下载PDF
ZERO MODE NATURAL FREQUENCY AND NONLINEAR VIBRATION OF COUPLED LATERAL AND TORSION OF A LARGE TURBINE GENERATOR 被引量:2
17
作者 TaNa QiuJiajun CaiGanhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第2期302-306,共5页
Zero mode natural frequency (ZMNF) is found during experiments. The ZMNF andvibrations resulted by it are studied. First, calculating method of the ZMNF excited byelectromagnetic in vibrational system of coupled mecha... Zero mode natural frequency (ZMNF) is found during experiments. The ZMNF andvibrations resulted by it are studied. First, calculating method of the ZMNF excited byelectromagnetic in vibrational system of coupled mechanics and electrics are given from the view ofmagnetic energy. Laws that the ZMNF varies with active power and exciting current are obtained andare verified by experiments. Then, coupled lateral and torsional vibration of rotor shaft system isstudied by considering rest eccentricity, rotating eccentricity and swing eccentricity. UsingLargrange-Maxwell equation when three phases are asymmetric derives differential equation of thecoupled vibration. With energy method of nonlinear vibration, amplitude-frequency characteristics ofresonance are studied when rotating speed of rotor equals to ZMNF. The results show that ZMNF willoccur in turbine generators by the action of electromagnetic. Because ZMNF varies withelectromagnetic parameters, resonance can occur when exciting frequency of the rotor speed is fixedwhereas exciting current change. And also find that a generator is in the state of large amplitudein rated exciting current. 展开更多
关键词 Zero mode natural frequency Coupled vibration of lateral and torsionEccentricity rotor shaft Hydro turbine generator
下载PDF
Study on online elimination of sudden unbalance-induced vibration using active balancing technology 被引量:6
18
作者 苏奕儒 He Lidong 《High Technology Letters》 EI CAS 2010年第2期210-214,共5页
关键词 动平衡技术 振动消除 不平衡 动平衡装置 模拟试验台 安装位置 旋转机构 有限元法
下载PDF
SUPPRESSION OF TRANSIENT RESPONSE OF A ROTOR IN ACTIVE VIBRATlON CONTROL
19
作者 LiuBaojiang Yan Litang(Group 405,Beij ing University of Aeronautics and Astronautics,Beijing, China, 100083) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1994年第3期219-226,共8页
Transient response and its influence factors are investigated and a methodfor attenuating the transient response is developed by means of a time varying model.The system gain matrix is obtained by choosing weighting m... Transient response and its influence factors are investigated and a methodfor attenuating the transient response is developed by means of a time varying model.The system gain matrix is obtained by choosing weighting matrices and solving the timevarying Riccati equation. Control forces are applied to the system via a feed back loop.Comparisons of responses with and without control are made. The results show that thetransienl and steady state responses are significantly suppressed in the close loop systemand control forces are very small. 展开更多
关键词 rotors vibration active control. transient response
下载PDF
THE ANALYSIS FOR THE AIRFLOW EXCITING-VIBRATION FORCE OF CONTROL STAGE OF STEAM TURBINE
20
作者 柴山 张耀明 +2 位作者 马浩 曲庆文 赵又群 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第7期794-801,共8页
Based on the hydrodynamics, the airflow exciting-vibration force of control stage of steam turbine is studied by using the momentum theorem. A formulation for calculating the air exciting-vibration force of the contro... Based on the hydrodynamics, the airflow exciting-vibration force of control stage of steam turbine is studied by using the momentum theorem. A formulation for calculating the air exciting-vibration force of the control stage of steam turbine is deduced first by using theoretical analysis method and taking all the design factors of vane and nozzles into consideration. Moreover, the exciting-vibration forces in different load cases are discussed respectively. 展开更多
关键词 rotor dynamics exciting-vibration force AIRFLOW
下载PDF
上一页 1 2 101 下一页 到第
使用帮助 返回顶部