To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforc...To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforced polymer(CFRP)and aluminum components for a robotic aircraft assembly system.To meet the specific functional requirements for blind rivet installation on CFRP and aluminum materials,additional modules are incorporated on the end effector aside of the basic processing modules for drilling.And all of these processing modules allow for a onestep-drilling-countersinking process,hole inspection,automatic rivet feed,rivet geometry check,sealant application,rivet insertion and installation.Besides,to guarantee the better quality of the hole drilled and joints riveted,several online detection and adjustment measures are applied to this end effector,including the reference detection and perpendicular calibration,which could effectively ensure the positioning precision and perpendicular accuracy as demanded.Finally,the test result shows that this end effector is capable of producing each hole to a positioning precision within ±0.5 mm,aperpendicular accuracy within 0.3°,a diameter tolerance of H8,and a countersink depth tolerance of±0.01 mm.Moreover,it could drill and rivet up to three joints per minute,with acceptable shearing and tensile strength.展开更多
Ice cores contain an abundance of information about the Earth's climate in the past, and recovered from shallow drilling down to 300-350 m give sufficient information for reconstructing of the last climatic changes a...Ice cores contain an abundance of information about the Earth's climate in the past, and recovered from shallow drilling down to 300-350 m give sufficient information for reconstructing of the last climatic changes and for monitoring of pollution from human being. Cable-suspended core auger drills use an armored cable with a winch to provide power to the down-hole motor system and to retrieve the down-hole unit. Because of their lightweight, convenient transportation and installation, high penetration rates and low power consumption, core auger drills are widely used for shallow drilling in ice. Nowadays at least 14 types of auger electromechani- cal drills were designed and tested in different foreign and national glaciological laboratories. However, auger options were usually determined by experience, and the main parameters ( helix angle of the fights and rotational speed) are varied in a wide range from drill to drill. If parameters of auger are not chosen properly, poorly en- gineered drills had troubles with low efficiency of cuttings transportation, jam of ice cuttings, repeated fragmen- tation, cutters icing and stop penetration, abnormal power consumption, high rotation torques, and so on. Thus, this paper presents the method of optimization of iee cuttings transportation of cable-suspended core auger drill on the base of the theory of rotary auger. As the result, the optimal helix angle was determined correspond- ing to the rotational speed from the transportation efficiency point of view.展开更多
Drilling operations in polar regions and mountainous areas are complicated by nature of the extreme environment. Yet conventional rotary drilling technologies can be used to drill ice for scientific samples and oth- e...Drilling operations in polar regions and mountainous areas are complicated by nature of the extreme environment. Yet conventional rotary drilling technologies can be used to drill ice for scientific samples and oth- er research. Due to such reasons as power consumption and weight complications, it is hard to apply a conven- tional rotary drilling rig for glacial exploration. Use of small, relatively lightweight, portable engine-powered drilling systems in which the drill lifting from the borehole is carried by the winch. It is reasonable enough for near-surface shallow ice-drilling down to 50 m. Such systems can be used for near-surface ablation-stakes in- stallation, also temperature measurements at the bottom of active strata layer, revealing of anthropogenie pollu- tion, etc. The specified used in this research is an auger ice drill powered by a gasoline engine. At this stage, it is crucial to choose effective drilling parameters such as weight on bit (WOB) and drill bit rotation rate. Sen- sors equipped on the rig have measured the main parameters of the drilling process, such as drill speed, WOB, drill rotation speed, torque and temperature. This paper addresses research on drilling parameters of engine powered auger ice drill and supplies some recommendations for optimization of any ice-core drilling process.展开更多
基金supported by the National Natural Science Foundations of China(Nos.5157051626,51475225)
文摘To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforced polymer(CFRP)and aluminum components for a robotic aircraft assembly system.To meet the specific functional requirements for blind rivet installation on CFRP and aluminum materials,additional modules are incorporated on the end effector aside of the basic processing modules for drilling.And all of these processing modules allow for a onestep-drilling-countersinking process,hole inspection,automatic rivet feed,rivet geometry check,sealant application,rivet insertion and installation.Besides,to guarantee the better quality of the hole drilled and joints riveted,several online detection and adjustment measures are applied to this end effector,including the reference detection and perpendicular calibration,which could effectively ensure the positioning precision and perpendicular accuracy as demanded.Finally,the test result shows that this end effector is capable of producing each hole to a positioning precision within ±0.5 mm,aperpendicular accuracy within 0.3°,a diameter tolerance of H8,and a countersink depth tolerance of±0.01 mm.Moreover,it could drill and rivet up to three joints per minute,with acceptable shearing and tensile strength.
基金Supported by Project of the National Science Foundation of China(No.41327804)
文摘Ice cores contain an abundance of information about the Earth's climate in the past, and recovered from shallow drilling down to 300-350 m give sufficient information for reconstructing of the last climatic changes and for monitoring of pollution from human being. Cable-suspended core auger drills use an armored cable with a winch to provide power to the down-hole motor system and to retrieve the down-hole unit. Because of their lightweight, convenient transportation and installation, high penetration rates and low power consumption, core auger drills are widely used for shallow drilling in ice. Nowadays at least 14 types of auger electromechani- cal drills were designed and tested in different foreign and national glaciological laboratories. However, auger options were usually determined by experience, and the main parameters ( helix angle of the fights and rotational speed) are varied in a wide range from drill to drill. If parameters of auger are not chosen properly, poorly en- gineered drills had troubles with low efficiency of cuttings transportation, jam of ice cuttings, repeated fragmen- tation, cutters icing and stop penetration, abnormal power consumption, high rotation torques, and so on. Thus, this paper presents the method of optimization of iee cuttings transportation of cable-suspended core auger drill on the base of the theory of rotary auger. As the result, the optimal helix angle was determined correspond- ing to the rotational speed from the transportation efficiency point of view.
基金Supported by projects of National Science Foundation of China(No.41327804)the Geological Survey of China(No.3R212W324424)
文摘Drilling operations in polar regions and mountainous areas are complicated by nature of the extreme environment. Yet conventional rotary drilling technologies can be used to drill ice for scientific samples and oth- er research. Due to such reasons as power consumption and weight complications, it is hard to apply a conven- tional rotary drilling rig for glacial exploration. Use of small, relatively lightweight, portable engine-powered drilling systems in which the drill lifting from the borehole is carried by the winch. It is reasonable enough for near-surface shallow ice-drilling down to 50 m. Such systems can be used for near-surface ablation-stakes in- stallation, also temperature measurements at the bottom of active strata layer, revealing of anthropogenie pollu- tion, etc. The specified used in this research is an auger ice drill powered by a gasoline engine. At this stage, it is crucial to choose effective drilling parameters such as weight on bit (WOB) and drill bit rotation rate. Sen- sors equipped on the rig have measured the main parameters of the drilling process, such as drill speed, WOB, drill rotation speed, torque and temperature. This paper addresses research on drilling parameters of engine powered auger ice drill and supplies some recommendations for optimization of any ice-core drilling process.