The coagulation process is a widely applied technology in water and wastewater treatment.Novel composite polyferric mag-nesium-silicate-sulfate(PFMS)coagulants were synthesized using Na_(2)SiO_(3)·9H_(2)O,Fe_(2)(...The coagulation process is a widely applied technology in water and wastewater treatment.Novel composite polyferric mag-nesium-silicate-sulfate(PFMS)coagulants were synthesized using Na_(2)SiO_(3)·9H_(2)O,Fe_(2)(SO_(4))_(3),and MgSO_(4) as raw materials in this paper.The effects of aging time,Fe:Si:Mg,and OH:M molar ratios(M represents the metal ions)on the coagulation performance of the as-pre-pared PFMS were systematically investigated to obtain optimum coagulants.The results showed that PFMS coagulant exhibited good co-agulation properties in the treatment of simulated humic acid-kaolin surface water and reactive dye wastewater.When the molar ratio was controlled at Fe:Si:Mg=2:2:1 and OH:M=0.32,the obtained PFMS presented excellent stability and a high coagulation efficiency.The removal efficiency of ultraviolet UV254 was 99.81%,and the residual turbidity of the surface water reached 0.56 NTU at a dosage of 30 mg·L^(-1).After standing the coagulant for 120 d in the laboratory,the removal efficiency of UV254 and residual turbidity of the surface wa-ter were 88.12%and 0.68 NTU,respectively,which accord with the surface water treatment requirements.In addition,the coagulation performance in the treatment of reactive dye wastewater was greatly improved by combining the advantages of magnesium and iron salts.Compared with polyferric silicate-sulfate(PFS)and polymagnesium silicate-sulfate(PMS),the PFMS coagulant played a better decolor-ization role within the pH range of 7-13.展开更多
Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propo...Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propose a multi-functional PSHE sensor based on VO_(2), a material that can reveal the phase transition behavior. By applying thermal control, the mutual transformation into different phase states of VO_(2) can be realized, which contributes to the flexible switching between multiple RI sensing tasks. When VO_(2) is insulating, the ultrasensitive detection of glucose concentrations in human blood is achieved. When VO_(2) is in a mixed phase, the structure can be designed to distinguish between the normal cells and cancer cells through no-label and real-time monitoring. When VO_(2) is metallic, the proposed PSHE sensor can act as an RI indicator for gas analytes. Compared with other multi-functional sensing devices with the complex structures, our design consists of only one analyte and two VO_(2) layers, which is very simple and elegant. Therefore, the proposed VO_(2)-based PSHE sensor has outstanding advantages such as small size, high sensitivity, no-label, and real-time detection, providing a new approach for investigating tunable multi-functional sensors.展开更多
This review describes the mechanisms of natural coagulants.It provides a good understanding of the two key processes of coagulation-flocculation:adsorption and charge neutralization,as well as adsorption and bridging....This review describes the mechanisms of natural coagulants.It provides a good understanding of the two key processes of coagulation-flocculation:adsorption and charge neutralization,as well as adsorption and bridging.Various factors have influence the coagulation/flocculation process,including the effect of pH,coagulant dosage,coagulant type,temperature,initial turbidity,coagulation speed,flocculation speed,coagulation and flocculation time,settling time,colloidal particles,zeta potential,the effects of humic acids,and extraction density are explained.The bio-coagulants derived from plants are outlined.The impact of organic coagulants on water quality,focusing on their effects on the physicochemical parameters of water,heavy metals removal,and bacteriological water quality,is examined.The methods of extraction and purification of plant-based coagulants,highlighting techniques such as solvent extraction and ultrasonic extraction,are discussed.It also examines the parameters that influence these processes.The methods and principles of purification of coagulating agents,including dialysis,freeze-drying,ion exchange,electrophoresis,filtration,and centrifugation,are listed.Finally,it evaluates the sustainability of natural coagulants,focusing on the environmental,technical,and economic aspects of their use.At the end of this review,the readers should have a comprehensive understanding of the mechanisms,selection,extraction,purification,and sustainability of plant-based natural coagulants in water treatment.展开更多
Objective Coagulation abnormalities are common and prognostically significant in intensive care units(ICUs)and are associated with increased mortality.This study aimed to explore the association between the levels of ...Objective Coagulation abnormalities are common and prognostically significant in intensive care units(ICUs)and are associated with increased mortality.This study aimed to explore the association between the levels of coagulation markers and the risk of mortality among ICU patients with coagulation abnormalities.Methods This retrospective study investigated patients with coagulation abnormalities in the ICU between January 2021 and December 2022.The initial point for detecting hemostatic biomarkers due to clinical assessment of coagulation abnormalities was designated day 0.Patients were followed up for 28 days,and multivariate logistic regression analysis was utilized to identify risk factors for mortality.Results Of the 451 patients analyzed,115 died,and 336 were alive at the end of the 28-day period.Multivariate analysis revealed that elevated thrombin-antithrombin complex(TAT),tissue plasminogen activator inhibitor complex(tPAIC),prolonged prothrombin time,and thrombocytopenia were independent risk factors for mortality.For nonovert disseminated intravascular coagulation(DIC)patients,older age and thrombocytopenia were associated with increased risks of mortality,whereas elevated levels of plasminα2-plasmin inhibitor complex(PIC)were found to be independent predictors of survival.In patients with overt DIC,elevated levels of tPAIC were independently associated with increased risks of mortality.Nevertheless,thrombocytopenia was independently associated with increased risks of mortality in patients with pre-DIC.Conclusion Coagulation markers such as the TAT,tPAIC,PIC,and platelet count were significantly associated with mortality,underscoring the importance of maintaining a balance between coagulation and fibrinolysis.These findings highlight the potential for targeted therapeutic interventions based on specific coagulation markers to improve patient outcomes.展开更多
BACKGROUND:Disseminated intravascular coagulation(DIC)is associated with increased mortality in sepsis patients.In this study,we aimed to assess the clinical ability of sepsis-induced coagulopathy(SIC)and sepsis-assoc...BACKGROUND:Disseminated intravascular coagulation(DIC)is associated with increased mortality in sepsis patients.In this study,we aimed to assess the clinical ability of sepsis-induced coagulopathy(SIC)and sepsis-associated coagulopathy(SAC)criteria in identifying overt-DIC and preDIC status in sepsis patients.METHODS:Data from 419 sepsis patients were retrospectively collected from July 2018 to December 2022.The performances of the SIC and SAC were assessed to identify overt-DIC on days 1,3,7,or 14.The SIC status or SIC score on day 1,the SAC status or SAC score on day 1,and the sum of the SIC or SAC scores on days 1 and 3 were compared in terms of their ability to identify pre-DIC.The SIC or SAC status on day 1 was evaluated as a pre-DIC indicator for anticoagulant initiation.RESULTS:On day 1,the incidences of coagulopathy according to overt-DIC,SIC and SAC criteria were 11.7%,22.0%and 31.5%,respectively.The specificity of SIC for identifying overt-DIC was significantly higher than that of the SAC criteria from day 1 to day 14(P<0.05).On day 1,the SIC score with a cut-off value>3 had a significantly higher sensitivity(72.00%)and area under the curve(AUC)(0.69)in identifying pre-DIC than did the SIC or SAC status(sensitivity:SIC status 44.00%,SAC status 52.00%;AUC:SIC status 0.62,SAC status 0.61).The sum of the SIC scores on days 1 and 3 had a higher AUC value for identifying the pre-DIC state than that of SAC(0.79 vs.0.69,P<0.001).Favorable effects of anticoagulant therapy were observed in SIC(adjusted hazard ratio[HR]=0.216,95%confidence interval[95%CI]:0.060–0.783,P=0.018)and SAC(adjusted HR=0.146,95%CI:0.041–0.513,P=0.003).CONCLUSION:The SIC and SAC seem to be valuable for predicting overt-DIC.The sum of SIC scores on days 1 and 3 has the potential to help identify pre-DIC.展开更多
Fluid catalytic cracking (FCC) salty wastewaters, containing quaternary ammonium compounds (QACs), are very difficult to treat by biochemical process. Anoxic/oxic (A/O) biochemical system, based on nitrification and d...Fluid catalytic cracking (FCC) salty wastewaters, containing quaternary ammonium compounds (QACs), are very difficult to treat by biochemical process. Anoxic/oxic (A/O) biochemical system, based on nitrification and denitrification reactions, was used to assess their possible biodegradation. Because of the negative effects of high salt concentration (3%), heavy metals and toxic organic matter on microorganisms’ activities, some techniques consisting of dilution, coagulation and flocculation, and ozonation pretreatments, were gradually tested to evaluate chemical oxygen demand (COD), ammonia-nitrogen (ammonia-N) and total nitrogen (TN) removal rates. In this process of FCC wastewater, starting with university-domesticated sludge, the ammonia-N and TN removal rates were worst. However, when using domesticated SBR’s sludge and operating with five-fold daily diluted influent (thus reducing salt concentration), the ammonia-N removal reached about 57% while the TN removal rate was less than 37% meaning an amelioration of the nitrification process. However, by reducing the dilution factors, these results were inflected after some days of operation, with ammonia-N removal decreasing and TN barely removed meaning a poor nitrification. Even by reducing heavy metals concentration with coagulation/flocculation process, the results never changed. Thereafter, by using ozonation pre-treatment to degrade the detected organic matter of di-tert-butylphenol and certain isoparaffins, COD, ammonia-N and TN removal rates reached 92%, 62% and 61%, respectively. These results showed that the activities of the microorganisms were increased, thus indicating a net denitrification and nitrification reactions improvement.展开更多
BACKGROUND The incidence of Barrett’s esophagus(BE)in China is lower compared to the Western populations.Hence,studies conducted in the Chinese population has been limited.The current treatment options available for ...BACKGROUND The incidence of Barrett’s esophagus(BE)in China is lower compared to the Western populations.Hence,studies conducted in the Chinese population has been limited.The current treatment options available for BE treatment includes argon plasma coagulation(APC),radiofrequency ablation and cryoablation,all with varying degrees of success.AIM To determine the efficacy and safety of HybridAPC in the treatment of BE.METHODS The study cohort consisted of patients with BE who underwent HybridAPC ablation treatment.These procedures were performed by seven endoscopists from different tertiary hospitals.The duration of the procedure,curative rate,complications and recurrent rate by 1-year follow-up were recorded.RESULTS Eighty individuals were enrolled for treatment from July 2017 to June 2020,comprising of 39 males and 41 females with a median age of 54 years(range,30 to 83 years).The technical success rate of HybridAPC was 100%and the overall curative rate was 98.15%.No severe complications occurred during the operation.BE cases were classified as short-segment BE and long-segment BE.Patients with short-segment BE were all considered cured without complications.Thirty-six patients completed the one-year follow-up without recurrence.Twenty-four percent had mild dysplasia which were all resolved with one post-procedural treatment.The mean duration of the procedure was 10.94±6.52 min.CONCLUSION Treatment of BE with HybridAPC was found to be a simple and quick procedure that is safe and effective during the short-term follow-up,especially in cases of short-segment BE.This technique could be considered as a feasible alternative ablation therapy for BE.展开更多
In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic ...In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic coagulant (FAMC) was used in a dynamic experimental device. To obtain the best possible combination of the impact factors (magnetic intensity, FAMC dosage, flocculant dosage, and feed speed) for minimum overflow turbidity, a response surface methodology test coupled with a four-factor five-level central composite design was conducted. The synergy mechanism of FAMC and flocculant was analyzed based on the potential measurement and scanning electron microscopy. The results show that the flocculant dosage, overflow turbidity, and solid content can be reduced by 50%, 90%, and 80%, while the handling capacity per unit and efficiency of backfill and dry stacking can be promoted by 20%, 17%, and 13%, respectively, with a magnetic intensity of 0.3 T, FAMC dosage of 200 mL/t, flocculant dosage of 30 g/t, and feed speed of 0.6 t/(m^2·h). Therefore, synergy of FAMC and flocculant has obvious efficiency in saving energy and protecting the environment by allowing 70×10^6 t/a of argillized ultrafine tailings slurry to be disposed safely and efficiently with a cost saving of more than 53×106 Yuan/a, which gives it great promise for use in domestic and foreign mines.展开更多
A kind of Fe-polysilicate polymer, poly-silicic-ferric (PSF) coagulant was prepared by co-polymerization (hydroxylation of mixture of Fe^3+ and fresh polysilicic acid (PS)), in which PSF0.5, PSF1 or PSF3 denote...A kind of Fe-polysilicate polymer, poly-silicic-ferric (PSF) coagulant was prepared by co-polymerization (hydroxylation of mixture of Fe^3+ and fresh polysilicic acid (PS)), in which PSF0.5, PSF1 or PSF3 denotes Si/Fe molar ratio of 0.5, 1 or 3, respectively. The effects of Si/Fe ratio and reaction time (co-polymerization time or aging time) on the reaction mode between Si and Fe were studies, and the optimal species of PSF was evaluated by pH change during the preparation of PSF and coagulation tests. The results showed that the characteristics of PSF are largely affected by both reaction time and Si/Fe ratio. PSF is found to be a essential complex of Si, Fe, and many other ions. The reaction mode between Si and Fe differs with various Si/Fe ratios. The pH of PSF0.5, PSF1 or PSF3 tended to be stable when reaction time is 10, 25 or 55 rain, respectively, which is almost consistent with the time reaching the relative stable morphology that is just the optimal species of higher coagulation efficiency. The optimal reaction time reaching optimal species can be evaluated by measuring the pH change during the polymerization process.展开更多
The oxidation rate of ferrous sulfate is investigated for the preparation of polyferric sulfate(PFS) coagulant. It is proved that this reaction is zero order with respect to Fe 2+ , first order with respect to NO ...The oxidation rate of ferrous sulfate is investigated for the preparation of polyferric sulfate(PFS) coagulant. It is proved that this reaction is zero order with respect to Fe 2+ , first order with respect to NO 2(g), and first order with respect to the interface area between gas phase and liquid phase. According to this mechanism, sectionalized reactor(SR) is used in place of traditional reactor(TR), and the liquid of reaction mixture is recycled by pump. As a result, not only the flow path of reaction liquid is prolonged, but also gas liquid contact area enlarged, and the reaction distinctly accelerated, compared with traditional reactor. The effects of parameters including temperature, acidity and others on the reaction rate are also discussed.展开更多
The oxidation rate of ferrous sulfate was investigated in the preparation of polyferric sulfate(PFS) coagulant. It was proved that this reaction is zero order with respect to Fe2+, first order with respect to NO2(g) a...The oxidation rate of ferrous sulfate was investigated in the preparation of polyferric sulfate(PFS) coagulant. It was proved that this reaction is zero order with respect to Fe2+, first order with respect to NO2(g) and first order with respect to the interface area between gas phase and liquid phase. If the partial pressure of NO2(g) in gas phase is increased or the interface area is increased, the time needed to complete the reaction will be decreased.展开更多
The treatment of wastewater from pulp-paper plants in China by horseradish peroxidase was investigated in this study. The effects of horseradish peroxidase and coagulants were discussed in detail. The results indica...The treatment of wastewater from pulp-paper plants in China by horseradish peroxidase was investigated in this study. The effects of horseradish peroxidase and coagulants were discussed in detail. The results indicated that enzymes might improve the removal of AOX, TOC and colour for pulp\|paper wastewater and modified chitosan is far more effective than Al\-2(SO\-4)\-3 to remove AOX, TOC and colour.展开更多
Nano-Al13 was separated and purified by four methods to investigate its characteristic, and was analyzed by Al-Ferron timed complexation spectrophotometer, ^27Al-NMR (nuclear magnetic resonance), and transmission el...Nano-Al13 was separated and purified by four methods to investigate its characteristic, and was analyzed by Al-Ferron timed complexation spectrophotometer, ^27Al-NMR (nuclear magnetic resonance), and transmission electron microscopy (TEM). Coagulation efficiency of nano-Al13, polyaluminum chloride (PAC), and AlCl3 in synthetic water were also investigated by jar test. The dynamic process and aggregation state of kaolin suspensions coagulating with nano-Al13, PAC, and AlCl3 were also investigated. The experimental results indicated that the efficiency of gel column chromatography method was the highest for separating PAC solution with low Al concentration. Ethanol and acetone method was simple and could separated PAC solution with different Al concentrations, while silicon alkylation white block column chromatography method could separate PAC solution only with low Al concentration. The SO4^2-/Ba^2+ displacement method could separate PAC solution with high Al concentration, but extra inorganic cation and anion could be introduced into the solution during the separation. The coagulation efficiency and dynamic experimental results showed that nano- Al13 with a high positive-charged species was the main species of electric neutralization in coagulation process, and it could reduce the turbidity and increase the effective particles collision rate efficiently in coagulation process. Its coagulation speed and the particle size of coagulant formed were of greatest value in this study.展开更多
In order to remove the low turbidity present in surface water, a novel metal-polysilicate coagulant was used to treat the raw water taken from Tanjiang River in Guangdong Province. This study on the effects of Al/Fe ...In order to remove the low turbidity present in surface water, a novel metal-polysilicate coagulant was used to treat the raw water taken from Tanjiang River in Guangdong Province. This study on the effects of Al/Fe molar ratio on the performance of a complex compound formed by polysilicic acid, aluminium and ferric salt (PAFS) showed that PAFS with Al/Fe ratio of 10:3 seemed to have the best coagulation performance in removing turbidity and color. Experimental results showed that under the conditions of polymerization time of 15 d, sedimentation time of 12 min, and pH of 6?8, PAFS with Al/Fe molar ratio of 10:3 had the best coagulation efficiency and lowest residual Al concentration. The turbid- ity decreased from 23.8 NTU to 3.23 NTU and the residual Al concentration was only 0.165 mg/L in the product water. It could be speculated that colloidal impurities and particulate Al were removed by adsorption bridging and electrical neu- tralization of long chain inorganic polymer coagulants.展开更多
Ferrate is an excellent water treatment agent for its multi functions in oxidation, disinfection, coagulation and adsorption, but its coagulation ability depends on its dosage and is after its oxidation. This paper f...Ferrate is an excellent water treatment agent for its multi functions in oxidation, disinfection, coagulation and adsorption, but its coagulation ability depends on its dosage and is after its oxidation. This paper focuses on preparing a new kind of ferrate combined with alum to enhance its coagulation function for water purification. An effective electrolysis reactor was designed and employed in the test. Some key parameters in the process of electrolysis concerning the preparation efficiency, such as the current density, temperature and alkalinity were also investigated. The proper conditions for ferrate alum preparation were determined. Under the condition of 5V given voltage, 6h electrolyzing interval, below 2% alum concentration (in weight), a combined liquid ferrate alum products was successfully prepared, which contained 0.0294 mol/L FeO 2- 4 and 0.0302 mol/L total soluble ferron with 2% Al 2O 3. There was no insoluble ferron produced by controlling an optimum electrochemical condition.展开更多
Coagulation mechanisms of polyaluminum chloride(PACl) at various dosages were studied using a conventional jar test at different final and initial pH values during treating kaolin suspension. The optimal final pH and ...Coagulation mechanisms of polyaluminum chloride(PACl) at various dosages were studied using a conventional jar test at different final and initial pH values during treating kaolin suspension. The optimal final pH and dosages for PACl were obtained based on residual turbidity and zeta potential of flocs. The coagulation zones at various PACl dosages and solution p H values were developed and compared with those of alum. It is found that the optimal mechanism under acidic condition is charge neutralization, while alkaline condition will facilitate the coagulation of PACl. Both charge neutralization coagulation and sweep coagulation can achieve high coagulation efficiency under the alkaline condition ranging from final p H 7.0 to 10.0. Stabilization, charge neutralization destabilization, restabilization and sweep zones occur successively with increasing PACl dosages with the final p H values fixed at 7.0 and 8.0, but restabilization zone disappears at final p H 10.0. When the final p H is not controlled and consequently decreases with increasing PACl dosage, no typical sweep zone can be observed and the coagulant efficiency decreases at high PACl dosage. It seems that the final pH is more meaningful than the initial p H for coagulation. Charge neutralization coagulation efficiency is dominated by zeta potential of flocs and PACl precipitates. The charge neutralization and sweep coagulation zones of PACl are broader in the ranges of coagulant dosage and p H than those of alum. The results are helpful for us to treat water and wastewater using PACl and to understand the coagulation process of PACl.展开更多
Inflammation and coagulation are so tightly linked that the cytokine storm which accompanies the development of sepsis initiates thrombin activation and the development of an intravascular coagulopathy. This review ex...Inflammation and coagulation are so tightly linked that the cytokine storm which accompanies the development of sepsis initiates thrombin activation and the development of an intravascular coagulopathy. This review examines the interaction between the inflammatory and coagulation cascades, as well as the role of endogenous anticoagulants in regulating this interaction and dampening the activity of both pathways. Clinical trials attempting to improve outcomes in patients with severe sepsis by inhibiting thrombin generation with heparin and or endogenous anticoagulants are reviewed. In general, these trials have failed to demonstrate that anticoagulant therapy is associated with improvement in mortality or morbidity. While it is possible that selective patients who are severelyill with a high expected mortality may be shown to benefit from such therapy, at the present time none of these anticoagulants are neither approved nor can they be recommended for the treatment of sepsis.展开更多
This study investigated the floc aggregation, average floc size, floc size variance and floc growth velocity when ferric chloride (FeCl3) and polyferric chloride (PFC) were used to treat the simulated water sample...This study investigated the floc aggregation, average floc size, floc size variance and floc growth velocity when ferric chloride (FeCl3) and polyferric chloride (PFC) were used to treat the simulated water samples. The factors including coagulant dose, ionic strength and solution pH, which affect the floc aggregation, were studied. Experiments were carried out in a bench-scale reactor using photometric dispersion analyzer ( PDA). Results showed that there were great differences between the floc aggregation of PFC and FeCl3. The average floc size and fioc growth velocity of PFC were much larger than those of FeCl3. Compared with FeCl3, PFC gave a better coagulation performance in wider range of pH, dosage and ionic strength. It was also found that the coagulation efficiency of PFC did not depend on average floc size but on floc growth velocity.展开更多
Combined with the practical experience of wastewater treatment plant, the chemical coagulants have inhibition effects on microorganism activity, with the influence degree of PAC (polyaluminium chloride) > AlCl3>...Combined with the practical experience of wastewater treatment plant, the chemical coagulants have inhibition effects on microorganism activity, with the influence degree of PAC (polyaluminium chloride) > AlCl3> Fe2(SO4)3. In synchronization dephosphorization, the inhibition rates of PAC in 10 ppm and 20 ppm are 11.9% and 33% respectively;while the inhibition rates of AlCl3 and Fe2(SO4)3 in 20 ppm are 15.8% and 8.5% respectively, compared with 9.6% and 5.4% in 10 ppm. Backwash wastewater from sand filter after adding coagulants has no direct inhibition effect on microorganism, but it results in inorganic components increase in active sludge. By taking North STP as an example, the VSS/SS ratio reduced from 0.65 after coagulants application to 0.54.展开更多
Objective: To evaluate the anti-inflammatory, anticoagulant and antioxidant effects of aqueous extracts of thyme varieties from Moroccan.Methods: The aqueous extracts of tree medicinal plants [Thymus atlanticus(T. atl...Objective: To evaluate the anti-inflammatory, anticoagulant and antioxidant effects of aqueous extracts of thyme varieties from Moroccan.Methods: The aqueous extracts of tree medicinal plants [Thymus atlanticus(T. atlanticus), Thymus satureioides and Thymus zygis(T. zygis)] were screened for their antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl radical-scavenging, ferric reducing antioxidant power assay, radical scavenging activity method, the inhibition of 2,2'-azobis(2-amidinopropane) dihydrochloride that induces oxidative erythrocyte hemolysis and thiobarbituric acid reactive substances assay. The anti-inflammatory activity of aqueous extracts was evaluated in vivo using croton oil-induced ear edema and carrageenan-induced paw edema in mice and rats, respectively. This extracts were evaluated in vitro for their anticoagulant activity at the different concentrations by partial thromboplastin time and prothrombin time activated. Results: All thyme varieties were found to possess considerable antioxidant activity and potent anti-inflammatory activity in the croton oil-induced edema. Administration of aqueous extracts of two varieties(50 mg/kg)(T. zygis and T. atlanticus) reduced significantly the carrageenaninduced paw edema similar to non-steroidal anti-inflammatory drug(indomethacin, 10 mg/kg). In partial thromboplastin time and prothrombin time tests, T. atlanticus and T. zygis extracts showed the strongest anticoagulant activity. In contrast, Thymus satureioides did not show the anticoagulant activity in these tests. Conclusions: All aqueous extracts possess considerable antioxidant activity and are rich in total polyphenol and flavonoid but they act differently in the process of inflammatory and coagulation studied. This study shows great variability of biological activities in thyme varieties.展开更多
基金supported by the National Natural Science Foundation of China (No.U1810205).
文摘The coagulation process is a widely applied technology in water and wastewater treatment.Novel composite polyferric mag-nesium-silicate-sulfate(PFMS)coagulants were synthesized using Na_(2)SiO_(3)·9H_(2)O,Fe_(2)(SO_(4))_(3),and MgSO_(4) as raw materials in this paper.The effects of aging time,Fe:Si:Mg,and OH:M molar ratios(M represents the metal ions)on the coagulation performance of the as-pre-pared PFMS were systematically investigated to obtain optimum coagulants.The results showed that PFMS coagulant exhibited good co-agulation properties in the treatment of simulated humic acid-kaolin surface water and reactive dye wastewater.When the molar ratio was controlled at Fe:Si:Mg=2:2:1 and OH:M=0.32,the obtained PFMS presented excellent stability and a high coagulation efficiency.The removal efficiency of ultraviolet UV254 was 99.81%,and the residual turbidity of the surface water reached 0.56 NTU at a dosage of 30 mg·L^(-1).After standing the coagulant for 120 d in the laboratory,the removal efficiency of UV254 and residual turbidity of the surface wa-ter were 88.12%and 0.68 NTU,respectively,which accord with the surface water treatment requirements.In addition,the coagulation performance in the treatment of reactive dye wastewater was greatly improved by combining the advantages of magnesium and iron salts.Compared with polyferric silicate-sulfate(PFS)and polymagnesium silicate-sulfate(PMS),the PFMS coagulant played a better decolor-ization role within the pH range of 7-13.
基金Project supported by the National Natural Science Foundation of China(Grant No.NSFC 12175107)the Natural Science Foundation of Nanjing Vocational University of Industry Technology,China(Grant No.YK22-02-08)+3 种基金the Qing Lan Project of Jiangsu Province,Chinathe Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX23_0964)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20230347)the Fund from the Research Center of Industrial Perception and Intelligent Manufacturing Equipment Engineering of Jiangsu Province,China(Grant No.ZK21-05-09)。
文摘Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propose a multi-functional PSHE sensor based on VO_(2), a material that can reveal the phase transition behavior. By applying thermal control, the mutual transformation into different phase states of VO_(2) can be realized, which contributes to the flexible switching between multiple RI sensing tasks. When VO_(2) is insulating, the ultrasensitive detection of glucose concentrations in human blood is achieved. When VO_(2) is in a mixed phase, the structure can be designed to distinguish between the normal cells and cancer cells through no-label and real-time monitoring. When VO_(2) is metallic, the proposed PSHE sensor can act as an RI indicator for gas analytes. Compared with other multi-functional sensing devices with the complex structures, our design consists of only one analyte and two VO_(2) layers, which is very simple and elegant. Therefore, the proposed VO_(2)-based PSHE sensor has outstanding advantages such as small size, high sensitivity, no-label, and real-time detection, providing a new approach for investigating tunable multi-functional sensors.
文摘This review describes the mechanisms of natural coagulants.It provides a good understanding of the two key processes of coagulation-flocculation:adsorption and charge neutralization,as well as adsorption and bridging.Various factors have influence the coagulation/flocculation process,including the effect of pH,coagulant dosage,coagulant type,temperature,initial turbidity,coagulation speed,flocculation speed,coagulation and flocculation time,settling time,colloidal particles,zeta potential,the effects of humic acids,and extraction density are explained.The bio-coagulants derived from plants are outlined.The impact of organic coagulants on water quality,focusing on their effects on the physicochemical parameters of water,heavy metals removal,and bacteriological water quality,is examined.The methods of extraction and purification of plant-based coagulants,highlighting techniques such as solvent extraction and ultrasonic extraction,are discussed.It also examines the parameters that influence these processes.The methods and principles of purification of coagulating agents,including dialysis,freeze-drying,ion exchange,electrophoresis,filtration,and centrifugation,are listed.Finally,it evaluates the sustainability of natural coagulants,focusing on the environmental,technical,and economic aspects of their use.At the end of this review,the readers should have a comprehensive understanding of the mechanisms,selection,extraction,purification,and sustainability of plant-based natural coagulants in water treatment.
基金supported by grants from National Key R&D Program of China(No.2023YFC2507800)ECCM Program of Clinical Research Centre of Shandong University(No.2021SDUCRCB008)+2 种基金Young Taishan Scholar Foundation of Shandong Province(No.tsqn201812133)the Fundamental Research Funds of Shandong University(No.2020QNQT001)National Natural Science Foundation of China(No.81900124).
文摘Objective Coagulation abnormalities are common and prognostically significant in intensive care units(ICUs)and are associated with increased mortality.This study aimed to explore the association between the levels of coagulation markers and the risk of mortality among ICU patients with coagulation abnormalities.Methods This retrospective study investigated patients with coagulation abnormalities in the ICU between January 2021 and December 2022.The initial point for detecting hemostatic biomarkers due to clinical assessment of coagulation abnormalities was designated day 0.Patients were followed up for 28 days,and multivariate logistic regression analysis was utilized to identify risk factors for mortality.Results Of the 451 patients analyzed,115 died,and 336 were alive at the end of the 28-day period.Multivariate analysis revealed that elevated thrombin-antithrombin complex(TAT),tissue plasminogen activator inhibitor complex(tPAIC),prolonged prothrombin time,and thrombocytopenia were independent risk factors for mortality.For nonovert disseminated intravascular coagulation(DIC)patients,older age and thrombocytopenia were associated with increased risks of mortality,whereas elevated levels of plasminα2-plasmin inhibitor complex(PIC)were found to be independent predictors of survival.In patients with overt DIC,elevated levels of tPAIC were independently associated with increased risks of mortality.Nevertheless,thrombocytopenia was independently associated with increased risks of mortality in patients with pre-DIC.Conclusion Coagulation markers such as the TAT,tPAIC,PIC,and platelet count were significantly associated with mortality,underscoring the importance of maintaining a balance between coagulation and fibrinolysis.These findings highlight the potential for targeted therapeutic interventions based on specific coagulation markers to improve patient outcomes.
基金supported by the National Key Research and Development Program of China(2021YFC2501800)Shanghai Committee of Science and Technology(20Y11900100,21MC1930400,and 20DZ2261200)Clinical Research Plan of Shanghai Hospital Development Center(SHDC2020CR4059)。
文摘BACKGROUND:Disseminated intravascular coagulation(DIC)is associated with increased mortality in sepsis patients.In this study,we aimed to assess the clinical ability of sepsis-induced coagulopathy(SIC)and sepsis-associated coagulopathy(SAC)criteria in identifying overt-DIC and preDIC status in sepsis patients.METHODS:Data from 419 sepsis patients were retrospectively collected from July 2018 to December 2022.The performances of the SIC and SAC were assessed to identify overt-DIC on days 1,3,7,or 14.The SIC status or SIC score on day 1,the SAC status or SAC score on day 1,and the sum of the SIC or SAC scores on days 1 and 3 were compared in terms of their ability to identify pre-DIC.The SIC or SAC status on day 1 was evaluated as a pre-DIC indicator for anticoagulant initiation.RESULTS:On day 1,the incidences of coagulopathy according to overt-DIC,SIC and SAC criteria were 11.7%,22.0%and 31.5%,respectively.The specificity of SIC for identifying overt-DIC was significantly higher than that of the SAC criteria from day 1 to day 14(P<0.05).On day 1,the SIC score with a cut-off value>3 had a significantly higher sensitivity(72.00%)and area under the curve(AUC)(0.69)in identifying pre-DIC than did the SIC or SAC status(sensitivity:SIC status 44.00%,SAC status 52.00%;AUC:SIC status 0.62,SAC status 0.61).The sum of the SIC scores on days 1 and 3 had a higher AUC value for identifying the pre-DIC state than that of SAC(0.79 vs.0.69,P<0.001).Favorable effects of anticoagulant therapy were observed in SIC(adjusted hazard ratio[HR]=0.216,95%confidence interval[95%CI]:0.060–0.783,P=0.018)and SAC(adjusted HR=0.146,95%CI:0.041–0.513,P=0.003).CONCLUSION:The SIC and SAC seem to be valuable for predicting overt-DIC.The sum of SIC scores on days 1 and 3 has the potential to help identify pre-DIC.
文摘Fluid catalytic cracking (FCC) salty wastewaters, containing quaternary ammonium compounds (QACs), are very difficult to treat by biochemical process. Anoxic/oxic (A/O) biochemical system, based on nitrification and denitrification reactions, was used to assess their possible biodegradation. Because of the negative effects of high salt concentration (3%), heavy metals and toxic organic matter on microorganisms’ activities, some techniques consisting of dilution, coagulation and flocculation, and ozonation pretreatments, were gradually tested to evaluate chemical oxygen demand (COD), ammonia-nitrogen (ammonia-N) and total nitrogen (TN) removal rates. In this process of FCC wastewater, starting with university-domesticated sludge, the ammonia-N and TN removal rates were worst. However, when using domesticated SBR’s sludge and operating with five-fold daily diluted influent (thus reducing salt concentration), the ammonia-N removal reached about 57% while the TN removal rate was less than 37% meaning an amelioration of the nitrification process. However, by reducing the dilution factors, these results were inflected after some days of operation, with ammonia-N removal decreasing and TN barely removed meaning a poor nitrification. Even by reducing heavy metals concentration with coagulation/flocculation process, the results never changed. Thereafter, by using ozonation pre-treatment to degrade the detected organic matter of di-tert-butylphenol and certain isoparaffins, COD, ammonia-N and TN removal rates reached 92%, 62% and 61%, respectively. These results showed that the activities of the microorganisms were increased, thus indicating a net denitrification and nitrification reactions improvement.
文摘BACKGROUND The incidence of Barrett’s esophagus(BE)in China is lower compared to the Western populations.Hence,studies conducted in the Chinese population has been limited.The current treatment options available for BE treatment includes argon plasma coagulation(APC),radiofrequency ablation and cryoablation,all with varying degrees of success.AIM To determine the efficacy and safety of HybridAPC in the treatment of BE.METHODS The study cohort consisted of patients with BE who underwent HybridAPC ablation treatment.These procedures were performed by seven endoscopists from different tertiary hospitals.The duration of the procedure,curative rate,complications and recurrent rate by 1-year follow-up were recorded.RESULTS Eighty individuals were enrolled for treatment from July 2017 to June 2020,comprising of 39 males and 41 females with a median age of 54 years(range,30 to 83 years).The technical success rate of HybridAPC was 100%and the overall curative rate was 98.15%.No severe complications occurred during the operation.BE cases were classified as short-segment BE and long-segment BE.Patients with short-segment BE were all considered cured without complications.Thirty-six patients completed the one-year follow-up without recurrence.Twenty-four percent had mild dysplasia which were all resolved with one post-procedural treatment.The mean duration of the procedure was 10.94±6.52 min.CONCLUSION Treatment of BE with HybridAPC was found to be a simple and quick procedure that is safe and effective during the short-term follow-up,especially in cases of short-segment BE.This technique could be considered as a feasible alternative ablation therapy for BE.
基金Project(2012BAC09B02)supported by the 12th-Five Years Key Programs for Science and Technology Development of ChinaProject(2015zzts078)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(2015CX005)supported by Innovation Driven Plan of Central South University,China
文摘In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic coagulant (FAMC) was used in a dynamic experimental device. To obtain the best possible combination of the impact factors (magnetic intensity, FAMC dosage, flocculant dosage, and feed speed) for minimum overflow turbidity, a response surface methodology test coupled with a four-factor five-level central composite design was conducted. The synergy mechanism of FAMC and flocculant was analyzed based on the potential measurement and scanning electron microscopy. The results show that the flocculant dosage, overflow turbidity, and solid content can be reduced by 50%, 90%, and 80%, while the handling capacity per unit and efficiency of backfill and dry stacking can be promoted by 20%, 17%, and 13%, respectively, with a magnetic intensity of 0.3 T, FAMC dosage of 200 mL/t, flocculant dosage of 30 g/t, and feed speed of 0.6 t/(m^2·h). Therefore, synergy of FAMC and flocculant has obvious efficiency in saving energy and protecting the environment by allowing 70×10^6 t/a of argillized ultrafine tailings slurry to be disposed safely and efficiently with a cost saving of more than 53×106 Yuan/a, which gives it great promise for use in domestic and foreign mines.
基金Project supported by the National Basic Research Projects (973) of China(No.2004CB418500).
文摘A kind of Fe-polysilicate polymer, poly-silicic-ferric (PSF) coagulant was prepared by co-polymerization (hydroxylation of mixture of Fe^3+ and fresh polysilicic acid (PS)), in which PSF0.5, PSF1 or PSF3 denotes Si/Fe molar ratio of 0.5, 1 or 3, respectively. The effects of Si/Fe ratio and reaction time (co-polymerization time or aging time) on the reaction mode between Si and Fe were studies, and the optimal species of PSF was evaluated by pH change during the preparation of PSF and coagulation tests. The results showed that the characteristics of PSF are largely affected by both reaction time and Si/Fe ratio. PSF is found to be a essential complex of Si, Fe, and many other ions. The reaction mode between Si and Fe differs with various Si/Fe ratios. The pH of PSF0.5, PSF1 or PSF3 tended to be stable when reaction time is 10, 25 or 55 rain, respectively, which is almost consistent with the time reaching the relative stable morphology that is just the optimal species of higher coagulation efficiency. The optimal reaction time reaching optimal species can be evaluated by measuring the pH change during the polymerization process.
文摘The oxidation rate of ferrous sulfate is investigated for the preparation of polyferric sulfate(PFS) coagulant. It is proved that this reaction is zero order with respect to Fe 2+ , first order with respect to NO 2(g), and first order with respect to the interface area between gas phase and liquid phase. According to this mechanism, sectionalized reactor(SR) is used in place of traditional reactor(TR), and the liquid of reaction mixture is recycled by pump. As a result, not only the flow path of reaction liquid is prolonged, but also gas liquid contact area enlarged, and the reaction distinctly accelerated, compared with traditional reactor. The effects of parameters including temperature, acidity and others on the reaction rate are also discussed.
文摘The oxidation rate of ferrous sulfate was investigated in the preparation of polyferric sulfate(PFS) coagulant. It was proved that this reaction is zero order with respect to Fe2+, first order with respect to NO2(g) and first order with respect to the interface area between gas phase and liquid phase. If the partial pressure of NO2(g) in gas phase is increased or the interface area is increased, the time needed to complete the reaction will be decreased.
文摘The treatment of wastewater from pulp-paper plants in China by horseradish peroxidase was investigated in this study. The effects of horseradish peroxidase and coagulants were discussed in detail. The results indicated that enzymes might improve the removal of AOX, TOC and colour for pulp\|paper wastewater and modified chitosan is far more effective than Al\-2(SO\-4)\-3 to remove AOX, TOC and colour.
基金supported by the National Natural Sciences Foundation of China (No. 50678095)the Postdoctoral Innovative Projects of Shandong Province (No. 200703053).
文摘Nano-Al13 was separated and purified by four methods to investigate its characteristic, and was analyzed by Al-Ferron timed complexation spectrophotometer, ^27Al-NMR (nuclear magnetic resonance), and transmission electron microscopy (TEM). Coagulation efficiency of nano-Al13, polyaluminum chloride (PAC), and AlCl3 in synthetic water were also investigated by jar test. The dynamic process and aggregation state of kaolin suspensions coagulating with nano-Al13, PAC, and AlCl3 were also investigated. The experimental results indicated that the efficiency of gel column chromatography method was the highest for separating PAC solution with low Al concentration. Ethanol and acetone method was simple and could separated PAC solution with different Al concentrations, while silicon alkylation white block column chromatography method could separate PAC solution only with low Al concentration. The SO4^2-/Ba^2+ displacement method could separate PAC solution with high Al concentration, but extra inorganic cation and anion could be introduced into the solution during the separation. The coagulation efficiency and dynamic experimental results showed that nano- Al13 with a high positive-charged species was the main species of electric neutralization in coagulation process, and it could reduce the turbidity and increase the effective particles collision rate efficiently in coagulation process. Its coagulation speed and the particle size of coagulant formed were of greatest value in this study.
基金Project (No. E9825) supported by the Natural Science Foundation of Heilongjiang Province,China
文摘In order to remove the low turbidity present in surface water, a novel metal-polysilicate coagulant was used to treat the raw water taken from Tanjiang River in Guangdong Province. This study on the effects of Al/Fe molar ratio on the performance of a complex compound formed by polysilicic acid, aluminium and ferric salt (PAFS) showed that PAFS with Al/Fe ratio of 10:3 seemed to have the best coagulation performance in removing turbidity and color. Experimental results showed that under the conditions of polymerization time of 15 d, sedimentation time of 12 min, and pH of 6?8, PAFS with Al/Fe molar ratio of 10:3 had the best coagulation efficiency and lowest residual Al concentration. The turbid- ity decreased from 23.8 NTU to 3.23 NTU and the residual Al concentration was only 0.165 mg/L in the product water. It could be speculated that colloidal impurities and particulate Al were removed by adsorption bridging and electrical neu- tralization of long chain inorganic polymer coagulants.
文摘Ferrate is an excellent water treatment agent for its multi functions in oxidation, disinfection, coagulation and adsorption, but its coagulation ability depends on its dosage and is after its oxidation. This paper focuses on preparing a new kind of ferrate combined with alum to enhance its coagulation function for water purification. An effective electrolysis reactor was designed and employed in the test. Some key parameters in the process of electrolysis concerning the preparation efficiency, such as the current density, temperature and alkalinity were also investigated. The proper conditions for ferrate alum preparation were determined. Under the condition of 5V given voltage, 6h electrolyzing interval, below 2% alum concentration (in weight), a combined liquid ferrate alum products was successfully prepared, which contained 0.0294 mol/L FeO 2- 4 and 0.0302 mol/L total soluble ferron with 2% Al 2O 3. There was no insoluble ferron produced by controlling an optimum electrochemical condition.
基金Supported by the Special Funds of Technological Development for Scientific Research Institutes from the Ministry of Science and Technology of China(2010EG111022,2011EG111307,2012EG111122)the Program for Overseas Talents(OTP-2013-015)the Program for Innovative Research Team(IG201204N)from Beijing Academy of Science and Technology
文摘Coagulation mechanisms of polyaluminum chloride(PACl) at various dosages were studied using a conventional jar test at different final and initial pH values during treating kaolin suspension. The optimal final pH and dosages for PACl were obtained based on residual turbidity and zeta potential of flocs. The coagulation zones at various PACl dosages and solution p H values were developed and compared with those of alum. It is found that the optimal mechanism under acidic condition is charge neutralization, while alkaline condition will facilitate the coagulation of PACl. Both charge neutralization coagulation and sweep coagulation can achieve high coagulation efficiency under the alkaline condition ranging from final p H 7.0 to 10.0. Stabilization, charge neutralization destabilization, restabilization and sweep zones occur successively with increasing PACl dosages with the final p H values fixed at 7.0 and 8.0, but restabilization zone disappears at final p H 10.0. When the final p H is not controlled and consequently decreases with increasing PACl dosage, no typical sweep zone can be observed and the coagulant efficiency decreases at high PACl dosage. It seems that the final pH is more meaningful than the initial p H for coagulation. Charge neutralization coagulation efficiency is dominated by zeta potential of flocs and PACl precipitates. The charge neutralization and sweep coagulation zones of PACl are broader in the ranges of coagulant dosage and p H than those of alum. The results are helpful for us to treat water and wastewater using PACl and to understand the coagulation process of PACl.
文摘Inflammation and coagulation are so tightly linked that the cytokine storm which accompanies the development of sepsis initiates thrombin activation and the development of an intravascular coagulopathy. This review examines the interaction between the inflammatory and coagulation cascades, as well as the role of endogenous anticoagulants in regulating this interaction and dampening the activity of both pathways. Clinical trials attempting to improve outcomes in patients with severe sepsis by inhibiting thrombin generation with heparin and or endogenous anticoagulants are reviewed. In general, these trials have failed to demonstrate that anticoagulant therapy is associated with improvement in mortality or morbidity. While it is possible that selective patients who are severelyill with a high expected mortality may be shown to benefit from such therapy, at the present time none of these anticoagulants are neither approved nor can they be recommended for the treatment of sepsis.
文摘This study investigated the floc aggregation, average floc size, floc size variance and floc growth velocity when ferric chloride (FeCl3) and polyferric chloride (PFC) were used to treat the simulated water samples. The factors including coagulant dose, ionic strength and solution pH, which affect the floc aggregation, were studied. Experiments were carried out in a bench-scale reactor using photometric dispersion analyzer ( PDA). Results showed that there were great differences between the floc aggregation of PFC and FeCl3. The average floc size and fioc growth velocity of PFC were much larger than those of FeCl3. Compared with FeCl3, PFC gave a better coagulation performance in wider range of pH, dosage and ionic strength. It was also found that the coagulation efficiency of PFC did not depend on average floc size but on floc growth velocity.
文摘Combined with the practical experience of wastewater treatment plant, the chemical coagulants have inhibition effects on microorganism activity, with the influence degree of PAC (polyaluminium chloride) > AlCl3> Fe2(SO4)3. In synchronization dephosphorization, the inhibition rates of PAC in 10 ppm and 20 ppm are 11.9% and 33% respectively;while the inhibition rates of AlCl3 and Fe2(SO4)3 in 20 ppm are 15.8% and 8.5% respectively, compared with 9.6% and 5.4% in 10 ppm. Backwash wastewater from sand filter after adding coagulants has no direct inhibition effect on microorganism, but it results in inorganic components increase in active sludge. By taking North STP as an example, the VSS/SS ratio reduced from 0.65 after coagulants application to 0.54.
基金Supported by Department of Biology,Laboratory of Biochemistry,Faculty of Sciences and Techniques,University Moulay Ismail,Errachidia,Morocco
文摘Objective: To evaluate the anti-inflammatory, anticoagulant and antioxidant effects of aqueous extracts of thyme varieties from Moroccan.Methods: The aqueous extracts of tree medicinal plants [Thymus atlanticus(T. atlanticus), Thymus satureioides and Thymus zygis(T. zygis)] were screened for their antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl radical-scavenging, ferric reducing antioxidant power assay, radical scavenging activity method, the inhibition of 2,2'-azobis(2-amidinopropane) dihydrochloride that induces oxidative erythrocyte hemolysis and thiobarbituric acid reactive substances assay. The anti-inflammatory activity of aqueous extracts was evaluated in vivo using croton oil-induced ear edema and carrageenan-induced paw edema in mice and rats, respectively. This extracts were evaluated in vitro for their anticoagulant activity at the different concentrations by partial thromboplastin time and prothrombin time activated. Results: All thyme varieties were found to possess considerable antioxidant activity and potent anti-inflammatory activity in the croton oil-induced edema. Administration of aqueous extracts of two varieties(50 mg/kg)(T. zygis and T. atlanticus) reduced significantly the carrageenaninduced paw edema similar to non-steroidal anti-inflammatory drug(indomethacin, 10 mg/kg). In partial thromboplastin time and prothrombin time tests, T. atlanticus and T. zygis extracts showed the strongest anticoagulant activity. In contrast, Thymus satureioides did not show the anticoagulant activity in these tests. Conclusions: All aqueous extracts possess considerable antioxidant activity and are rich in total polyphenol and flavonoid but they act differently in the process of inflammatory and coagulation studied. This study shows great variability of biological activities in thyme varieties.