To predict complex reservoir spaces(with developed caves,pores,and fractures),based on the results of full-azimuth depth migration processing,we adopted reverse weighted nonlinear inversion to improve the accuracy of ...To predict complex reservoir spaces(with developed caves,pores,and fractures),based on the results of full-azimuth depth migration processing,we adopted reverse weighted nonlinear inversion to improve the accuracy of porous reservoir prediction.Scattering imaging three-parameter wavelet transform technology was used to accurately predict small-scale cave bodies.The joint inversion method of velocity and amplitude anisotropy was developed to improve the accuracy of small and medium-sized fracture prediction.The results of multiscale fracture modeling and characterization,interwell connectivity analysis,and connection path prediction are consistent with the production condition.Finally,based on the above prediction findings,favorable reservoir development areas were predicted.The above ideas and strategies have great application value for the efficient exploration and development of complex storage space reservoirs and the optimization of high-yield well locations.展开更多
BACKGROUND High complex anal fistulas are epithelialized tunnels,with the main fistula piercing above the deep external sphincter and the internal opening approaching the dentate line.Conventional surgical procedures ...BACKGROUND High complex anal fistulas are epithelialized tunnels,with the main fistula piercing above the deep external sphincter and the internal opening approaching the dentate line.Conventional surgical procedures for high complex anal fistulas remove most of the external sphincter and damage the anorectal ring.Postoperative loss of anal function can cause physical and mental damage.Transanal opening of the intersphincteric space(TROPIS)is an effective procedure that completely preserves the external anal sphincter.However,its clinical application is limited by challenges in the localization of the internal opening of a fistula and the high risk of complications.On the basis of our clinical experience,we modified the TROPIS procedure for the treatment of treating high complex anal fistulas.CASE SUMMARY A patient with a high complex anal fistula located above the anorectal ring underwent modified TROPIS,which involved sepsis drainage and identification of the internal opening in the intersphincteric space.The patient with the high complex anal fistula recovered well postoperatively,without any postoperative complications or anal dysfunction.Anal function returned to normal after 17 months of follow-up.CONCLUSION The modified TROPIS procedure is the most minimally invasive surgery for anal fistulas that minimally impairs anal function.It allows the complete removal of infected anal glands and reduces the risk of postoperative complications.Modified TROPIS via the intersphincteric approach is an alternative sphincter-preserving treatment for high complex anal fistulas.展开更多
A natural extension of the Lorentz transformation to its complex version was constructed together with a parallel extension of the Minkowski M<sup>4</sup> model for special relativity (SR) to complex C<...A natural extension of the Lorentz transformation to its complex version was constructed together with a parallel extension of the Minkowski M<sup>4</sup> model for special relativity (SR) to complex C<sup>4</sup> space-time. As the [signed] absolute values of complex coordinates of the underlying motion’s characterization in C<sup>4</sup> one obtains a Newtonian-like type of motion whereas as the real parts of the complex motion’s description and of the complex Lorentz transformation, all the SR theory as modeled by M<sup>4</sup> real space-time can be recovered. This means all the SR theory is preserved in the real subspace M<sup>4</sup> of the space-time C<sup>4</sup> while becoming simpler and clearer in the new complex model’s framework. Since velocities in the complex model can be determined geometrically, with no primary use of time, time turns out to be definable within the equivalent theory of the reduced complex C<sup>4</sup> model to the C<sup>3</sup> “para-space” model. That procedure allows us to separate time from the (para)space and consider all the SR theory as a theory of C<sup>3</sup> alone. On the other hand, the complex time defined within the C<sup>3</sup> theory is interpreted and modeled by the single separate C<sup>1</sup> complex plane. The possibility for application of the C<sup>3</sup> model to quantum mechanics is suggested. As such, the model C<sup>3</sup> seems to have unifying abilities for application to different physical theories.展开更多
A submanifold in a complex space form is called slant if it has constant Wirtinger angles. B. Y. Chen and Y. Tazawa proved that there do not exist minimal proper slant surfaces in CP2 and CH2. So it seems that the sla...A submanifold in a complex space form is called slant if it has constant Wirtinger angles. B. Y. Chen and Y. Tazawa proved that there do not exist minimal proper slant surfaces in CP2 and CH2. So it seems that the slant immersion has some interesting properties. The authors have great interest to consider slant immersions satisfying some additional conditions, such as unfull first normal bundles or Chen’s equality holding. They prove that there do not exist n-dimensional Kaehlerian slant immersions in CPn and CHn with unfull first normal bundles. Next, it is seen that every Kaehlerian slant submanifold satisfying an equality of Chen is minimal which is similar to that of Lagrangian immersions. But in contrast, it is shown that a large class of slant immersions do not exist thoroughly. Finally, they give an application of Chen’s inequality to general slant immersions in a complex projective space, which generalizes a result of Chen.展开更多
Secondary storage spaces with very complex geometries are well developed in Ordovician carbonate reservoirs in the Tarim Basin,which is taken as a study case in this paper.It is still not clear how the secondary stora...Secondary storage spaces with very complex geometries are well developed in Ordovician carbonate reservoirs in the Tarim Basin,which is taken as a study case in this paper.It is still not clear how the secondary storage space shape influences the P-& S-wave velocities (or elastic properties) in complex carbonate reservoirs.In this paper,three classical rock physics models (Wyllie timeaverage equation,Gassmann equation and the Kuster-Toks z model) are comparably analyzed for their construction principles and actual velocity prediction results,aiming at determining the most favourable rock physics model to consider the influence of secondary storage space shape.Then relationships between the P-& S-wave velocities in carbonate reservoirs and geometric shapes of secondary storage spaces are discussed from different aspects based on actual well data by employing the favourable rock physics model.To explain the influence of secondary storage space shape on V P-V S relationship,it is analyzed for the differences of S-wave velocities between derived from common empirical relationships (including Castagna's mud rock line and Greenberg-Castagna V P-V S relationship) and predicted by the rock physics model.We advocate that V P-V S relationship for complex carbonate reservoirs should be built for different storage space types.For the carbonate reservoirs in the Tarim Basin,the V P-V S relationships for fractured,fractured-cavernous,and fractured-hole-vuggy reservoirs are respectively built on the basis of velocity prediction and secondary storage space type determination.Through the discussion above,it is expected that the velocity prediction and the V P-V S relationships for complex carbonate reservoirs should fully consider the influence of secondary storage space shape,thus providing more reasonable constraints for prestack inversion,further building a foundation for realizing carbonate reservoir prediction and fluid prediction.展开更多
This paper studies the relationship between the pseudo-umbilical totally real submanifolds and the minimal totally real submanifolds in a complex projective space. Two theo- rems which claim that some types of pseudo-...This paper studies the relationship between the pseudo-umbilical totally real submanifolds and the minimal totally real submanifolds in a complex projective space. Two theo- rems which claim that some types of pseudo-umbilical totally real submanifolds must be minimal submanifolds are proved.展开更多
A class B of complex functions is introduced and several existence theorems of unique(common) fixed points for mappings satisfying a B-implicit contraction are presented.Moreover, the existence results of common fixed...A class B of complex functions is introduced and several existence theorems of unique(common) fixed points for mappings satisfying a B-implicit contraction are presented.Moreover, the existence results of common fixed points for two mappings on a nonempty set with two complex valued metrics are provided. Our outcomes generalize and improve some known results, especially, for instance, Banach contraction principle, Chatterjea-type fixed point theorem and the corresponding fixed point theorems.展开更多
Let C be the familiar class of normalized close-to-convex functions in the unit disk.In[17],Koepf demonstrated that,as to a function■in the class C,■By applying this inequality,it can be proven that‖a3|-|a2‖≤1 fo...Let C be the familiar class of normalized close-to-convex functions in the unit disk.In[17],Koepf demonstrated that,as to a function■in the class C,■By applying this inequality,it can be proven that‖a3|-|a2‖≤1 for close-to-convex functions.Now we generalized the above conclusions to a subclass of close-to-starlike mappings defined on the unit ball of a complex Banach space.展开更多
In this paper, by the definition of almost spirallike mappings of type β and order α and the geometric property of the spirallike mapping of type β, we prove that the generalized Roper-Suffridge extension operator ...In this paper, by the definition of almost spirallike mappings of type β and order α and the geometric property of the spirallike mapping of type β, we prove that the generalized Roper-Suffridge extension operator preserves almost spirallikeness of type β and order α in complex Banach spaces. Key words:展开更多
We consider the space X of all analytic functionsof two complex variables s1 and s2, equipping it with the natural locally convex topology and using the growth parameter, the order of f as defined recently by the auth...We consider the space X of all analytic functionsof two complex variables s1 and s2, equipping it with the natural locally convex topology and using the growth parameter, the order of f as defined recently by the authors. Under this topology X becomes a Frechet space Apart from finding the characterization of continuous linear functionals, linear transformation on X, we have obtained the necessary and sufficient conditions for a double sequence in X to be a proper bases.展开更多
In this paper we extend the results obtained in [3], where are investigated the general settings of the two-dimensional complex Finsler manifolds, with respect to a local complex Berwahl frame. The geometry of such ma...In this paper we extend the results obtained in [3], where are investigated the general settings of the two-dimensional complex Finsler manifolds, with respect to a local complex Berwahl frame. The geometry of such manifolds is controlled by three real invari- ants which live on T'M: two horizontal curvature invariants K and W and one vertical curvature invariant I. By means of these invariants are defined both the horizontal and the vertical holomorphic sectional curvatures. The complex Landsberg and Berwald spaces are of particular into, rest. Complex Berwald spaces coincide with K/ihler spaces, in the two - dimensional case, We establish the necessary and sufficient condition under which K is a constant and we obtain a characterization for the Kghler purely Hermitian spaces by the fact K = W=constant and I = 0. For the class of complex Berwald spaces we have K =W = 0. Finally, a classitication of two-dimensional complex Finsler spaces for which the horizontal curvature satisfies a special property is obtained.展开更多
The survivability of computer systems should be guaranteed in order to improve its operation efficiency,especially for the efficiency of its critical functions.This paper proposes a decentralized mechanism based on So...The survivability of computer systems should be guaranteed in order to improve its operation efficiency,especially for the efficiency of its critical functions.This paper proposes a decentralized mechanism based on Software-Defined Architecture(SDA).The concepts of critical functions and critical states are defined,and then,the critical functional parameters of the target system are collected and analyzed.Experiments based on the analysis results are performed for reconfiguring the implementations of the whole system.A formal model is presented for analyzing and improving the survivability of the system,and the problem investigated in this paper is reduced to an optimization problem for increasing the system survival time.展开更多
Recent research challenges in the wireless communication include the usage of diversity and efficient coding to improve data transmission quality and spectral efficiency. Space diversity uses multiple transmitting and...Recent research challenges in the wireless communication include the usage of diversity and efficient coding to improve data transmission quality and spectral efficiency. Space diversity uses multiple transmitting and/or receiving antennas to create independent fading channels without penalty in bandwidth efficiency. Space-time block coding is an encoding scheme for communication over Rayleigh fading channels using multiple transmitting antennas. Space-time block codes from complex orthogonal designs exist only for two transmitting antennas. This paper generalizes a new complex orthogonal space-time block code for four transmitting antennas, whose decoding complexity is very low. Simulations show that the generalized complex orthogonal space-time block code has low bit error rate, full rate and possibly large diversity.展开更多
Let M be a n-dimensional compact irreducible complex space with a line bundle L. It is shown that if M is completely intersected with respect to L and dimH0(M, L) = n + 1, then M is biholomorphic to a complex projecti...Let M be a n-dimensional compact irreducible complex space with a line bundle L. It is shown that if M is completely intersected with respect to L and dimH0(M, L) = n + 1, then M is biholomorphic to a complex projective space Pn of dimension n.展开更多
Abstract. We use the two mappings satisfying II-expansive conditions on complex valued metric spaces to construct the convergent sequences and prove that the unique limit of the sequences is the point of coincidence o...Abstract. We use the two mappings satisfying II-expansive conditions on complex valued metric spaces to construct the convergent sequences and prove that the unique limit of the sequences is the point of coincidence or common fixed point of the two mappings. Also, we discuss the uniqueness of points of coincidence or common fixed points and give the existence theorems of unique fixed points. The obtained results generalize and improve the corresponding conclusions in references.展开更多
Let M be a real hypersurface of a complex space form with almost contact metric structure (φ,ξ,η,g). In this paper, we prove that if the structure Jacobi operator Rξ=(·,ξ) ξ is φ▽ξξ-parallel and Rξ com...Let M be a real hypersurface of a complex space form with almost contact metric structure (φ,ξ,η,g). In this paper, we prove that if the structure Jacobi operator Rξ=(·,ξ) ξ is φ▽ξξ-parallel and Rξ commute with the shape operator, then M is a Hopf hypersurface. Further, if Rξ is φ▽ξξ-parallel and Rξ commute with the Ricci tensor, then M is also a Hopf hypersurface provided that TrRξ is constant.展开更多
New objects characterizing the structure of complex linear transformations areintroduced. These new objects yield a new result for the decomposition of complexvector spaces relative to complex lrnear transformations a...New objects characterizing the structure of complex linear transformations areintroduced. These new objects yield a new result for the decomposition of complexvector spaces relative to complex lrnear transformations and provide all Jordan basesby which the Jordan canonical form is constructed. Accordingly, they can result in thecelebrated Jordan theorem and the third decomposition theorem of space directly. and,moreover, they can give a new deep insight into the exquisite and subtle structure ofthe Jordan form. The latter indicates that the Jordan canonical form of a complexlinear transformation is an invariant structure associated with double arbitrary. choices.展开更多
We proved a complex interpolation theorem of noncommutative Hardy spaces associated with semi-finite von Neumann algebras and extend the Riesz type factorization to the semi-finite case.
We concentrate on using the traceless Ricci tensor and the Bochner curvature tensor to study the rigidity problems for complete K?hler manifolds. We derive some elliptic differential inequalities from Weitzenb?ck form...We concentrate on using the traceless Ricci tensor and the Bochner curvature tensor to study the rigidity problems for complete K?hler manifolds. We derive some elliptic differential inequalities from Weitzenb?ck formulas for the traceless Ricci tensor of K?hler manifolds with constant scalar curvature and the Bochner tensor of K?hler-Einstein manifolds respectively. Using elliptic estimates and maximum principle, several L^p and L~∞ pinching results are established to characterize K?hler-Einstein manifolds among K?hler manifolds with constant scalar curvature and complex space forms among K?hler-Einstein manifolds.Our results can be regarded as a complex analogues to the rigidity results for Riemannian manifolds. Moreover, our main results especially establish the rigidity theorems for complete noncompact K?hler manifolds and noncompact K?hler-Einstein manifolds under some pointwise pinching conditions or global integral pinching conditions. To the best of our knowledge,these kinds of results have not been reported.展开更多
Duality behavior of photons in wave-particle property has posed challenges and opportunities to discover other frontiers of fundamental particles leading to the relativistic and quantum description of matter. The spee...Duality behavior of photons in wave-particle property has posed challenges and opportunities to discover other frontiers of fundamental particles leading to the relativistic and quantum description of matter. The speed of particles faster than the speed of light could not be recognized, and matter was always described as a real number. A new fundamental view on matter as a complex value has been introduced by many authors who present a paradigm that is shifted from real or pure imaginary particles to Complex Matter Space. A new assumption will be imposed that matter has two intrinsic components: i) mass, and ii) charge. The mass will be measured by real number systems and charged by an imaginary unit. The relativistic concept of Complex Matter Space on energy and momentum is investigated and we can conclude that the new Complex Matter Space (CMS) theory will help get one step closer to a better understanding toward: 1) Un-Euclidean description of Minkowski Geometry in the context of the Complex Matter Space, 2) transformation from Euclidean to Minkowski space and its relativistic interpretation. Finally, geometrical foundations are essential to have a real picture of space, matter, and the universe.展开更多
文摘To predict complex reservoir spaces(with developed caves,pores,and fractures),based on the results of full-azimuth depth migration processing,we adopted reverse weighted nonlinear inversion to improve the accuracy of porous reservoir prediction.Scattering imaging three-parameter wavelet transform technology was used to accurately predict small-scale cave bodies.The joint inversion method of velocity and amplitude anisotropy was developed to improve the accuracy of small and medium-sized fracture prediction.The results of multiscale fracture modeling and characterization,interwell connectivity analysis,and connection path prediction are consistent with the production condition.Finally,based on the above prediction findings,favorable reservoir development areas were predicted.The above ideas and strategies have great application value for the efficient exploration and development of complex storage space reservoirs and the optimization of high-yield well locations.
文摘BACKGROUND High complex anal fistulas are epithelialized tunnels,with the main fistula piercing above the deep external sphincter and the internal opening approaching the dentate line.Conventional surgical procedures for high complex anal fistulas remove most of the external sphincter and damage the anorectal ring.Postoperative loss of anal function can cause physical and mental damage.Transanal opening of the intersphincteric space(TROPIS)is an effective procedure that completely preserves the external anal sphincter.However,its clinical application is limited by challenges in the localization of the internal opening of a fistula and the high risk of complications.On the basis of our clinical experience,we modified the TROPIS procedure for the treatment of treating high complex anal fistulas.CASE SUMMARY A patient with a high complex anal fistula located above the anorectal ring underwent modified TROPIS,which involved sepsis drainage and identification of the internal opening in the intersphincteric space.The patient with the high complex anal fistula recovered well postoperatively,without any postoperative complications or anal dysfunction.Anal function returned to normal after 17 months of follow-up.CONCLUSION The modified TROPIS procedure is the most minimally invasive surgery for anal fistulas that minimally impairs anal function.It allows the complete removal of infected anal glands and reduces the risk of postoperative complications.Modified TROPIS via the intersphincteric approach is an alternative sphincter-preserving treatment for high complex anal fistulas.
文摘A natural extension of the Lorentz transformation to its complex version was constructed together with a parallel extension of the Minkowski M<sup>4</sup> model for special relativity (SR) to complex C<sup>4</sup> space-time. As the [signed] absolute values of complex coordinates of the underlying motion’s characterization in C<sup>4</sup> one obtains a Newtonian-like type of motion whereas as the real parts of the complex motion’s description and of the complex Lorentz transformation, all the SR theory as modeled by M<sup>4</sup> real space-time can be recovered. This means all the SR theory is preserved in the real subspace M<sup>4</sup> of the space-time C<sup>4</sup> while becoming simpler and clearer in the new complex model’s framework. Since velocities in the complex model can be determined geometrically, with no primary use of time, time turns out to be definable within the equivalent theory of the reduced complex C<sup>4</sup> model to the C<sup>3</sup> “para-space” model. That procedure allows us to separate time from the (para)space and consider all the SR theory as a theory of C<sup>3</sup> alone. On the other hand, the complex time defined within the C<sup>3</sup> theory is interpreted and modeled by the single separate C<sup>1</sup> complex plane. The possibility for application of the C<sup>3</sup> model to quantum mechanics is suggested. As such, the model C<sup>3</sup> seems to have unifying abilities for application to different physical theories.
基金This project is supported by the NSFC(10271041)Tianyuan Youth Foundation of Mathematics.
文摘A submanifold in a complex space form is called slant if it has constant Wirtinger angles. B. Y. Chen and Y. Tazawa proved that there do not exist minimal proper slant surfaces in CP2 and CH2. So it seems that the slant immersion has some interesting properties. The authors have great interest to consider slant immersions satisfying some additional conditions, such as unfull first normal bundles or Chen’s equality holding. They prove that there do not exist n-dimensional Kaehlerian slant immersions in CPn and CHn with unfull first normal bundles. Next, it is seen that every Kaehlerian slant submanifold satisfying an equality of Chen is minimal which is similar to that of Lagrangian immersions. But in contrast, it is shown that a large class of slant immersions do not exist thoroughly. Finally, they give an application of Chen’s inequality to general slant immersions in a complex projective space, which generalizes a result of Chen.
基金co-supported by the National Basic Research Program of China(Grant No.2011CB201103)the National Science and Technology Major Project(Grant No.2011ZX05004003)
文摘Secondary storage spaces with very complex geometries are well developed in Ordovician carbonate reservoirs in the Tarim Basin,which is taken as a study case in this paper.It is still not clear how the secondary storage space shape influences the P-& S-wave velocities (or elastic properties) in complex carbonate reservoirs.In this paper,three classical rock physics models (Wyllie timeaverage equation,Gassmann equation and the Kuster-Toks z model) are comparably analyzed for their construction principles and actual velocity prediction results,aiming at determining the most favourable rock physics model to consider the influence of secondary storage space shape.Then relationships between the P-& S-wave velocities in carbonate reservoirs and geometric shapes of secondary storage spaces are discussed from different aspects based on actual well data by employing the favourable rock physics model.To explain the influence of secondary storage space shape on V P-V S relationship,it is analyzed for the differences of S-wave velocities between derived from common empirical relationships (including Castagna's mud rock line and Greenberg-Castagna V P-V S relationship) and predicted by the rock physics model.We advocate that V P-V S relationship for complex carbonate reservoirs should be built for different storage space types.For the carbonate reservoirs in the Tarim Basin,the V P-V S relationships for fractured,fractured-cavernous,and fractured-hole-vuggy reservoirs are respectively built on the basis of velocity prediction and secondary storage space type determination.Through the discussion above,it is expected that the velocity prediction and the V P-V S relationships for complex carbonate reservoirs should fully consider the influence of secondary storage space shape,thus providing more reasonable constraints for prestack inversion,further building a foundation for realizing carbonate reservoir prediction and fluid prediction.
基金the Natural Science Foundation of Education Committee of Anhui Province(2004kj166zd)Foundation for Younger Teachers of Anhui Normal University(2005xqn01).
文摘This paper studies the relationship between the pseudo-umbilical totally real submanifolds and the minimal totally real submanifolds in a complex projective space. Two theo- rems which claim that some types of pseudo-umbilical totally real submanifolds must be minimal submanifolds are proved.
文摘A class B of complex functions is introduced and several existence theorems of unique(common) fixed points for mappings satisfying a B-implicit contraction are presented.Moreover, the existence results of common fixed points for two mappings on a nonempty set with two complex valued metrics are provided. Our outcomes generalize and improve some known results, especially, for instance, Banach contraction principle, Chatterjea-type fixed point theorem and the corresponding fixed point theorems.
基金Supported by the NNSF of China(11971165)the Natural Science Foundation of Zhejiang Province(LY21A010003)。
文摘Let C be the familiar class of normalized close-to-convex functions in the unit disk.In[17],Koepf demonstrated that,as to a function■in the class C,■By applying this inequality,it can be proven that‖a3|-|a2‖≤1 for close-to-convex functions.Now we generalized the above conclusions to a subclass of close-to-starlike mappings defined on the unit ball of a complex Banach space.
文摘In this paper, by the definition of almost spirallike mappings of type β and order α and the geometric property of the spirallike mapping of type β, we prove that the generalized Roper-Suffridge extension operator preserves almost spirallikeness of type β and order α in complex Banach spaces. Key words:
文摘We consider the space X of all analytic functionsof two complex variables s1 and s2, equipping it with the natural locally convex topology and using the growth parameter, the order of f as defined recently by the authors. Under this topology X becomes a Frechet space Apart from finding the characterization of continuous linear functionals, linear transformation on X, we have obtained the necessary and sufficient conditions for a double sequence in X to be a proper bases.
文摘In this paper we extend the results obtained in [3], where are investigated the general settings of the two-dimensional complex Finsler manifolds, with respect to a local complex Berwahl frame. The geometry of such manifolds is controlled by three real invari- ants which live on T'M: two horizontal curvature invariants K and W and one vertical curvature invariant I. By means of these invariants are defined both the horizontal and the vertical holomorphic sectional curvatures. The complex Landsberg and Berwald spaces are of particular into, rest. Complex Berwald spaces coincide with K/ihler spaces, in the two - dimensional case, We establish the necessary and sufficient condition under which K is a constant and we obtain a characterization for the Kghler purely Hermitian spaces by the fact K = W=constant and I = 0. For the class of complex Berwald spaces we have K =W = 0. Finally, a classitication of two-dimensional complex Finsler spaces for which the horizontal curvature satisfies a special property is obtained.
文摘The survivability of computer systems should be guaranteed in order to improve its operation efficiency,especially for the efficiency of its critical functions.This paper proposes a decentralized mechanism based on Software-Defined Architecture(SDA).The concepts of critical functions and critical states are defined,and then,the critical functional parameters of the target system are collected and analyzed.Experiments based on the analysis results are performed for reconfiguring the implementations of the whole system.A formal model is presented for analyzing and improving the survivability of the system,and the problem investigated in this paper is reduced to an optimization problem for increasing the system survival time.
文摘Recent research challenges in the wireless communication include the usage of diversity and efficient coding to improve data transmission quality and spectral efficiency. Space diversity uses multiple transmitting and/or receiving antennas to create independent fading channels without penalty in bandwidth efficiency. Space-time block coding is an encoding scheme for communication over Rayleigh fading channels using multiple transmitting antennas. Space-time block codes from complex orthogonal designs exist only for two transmitting antennas. This paper generalizes a new complex orthogonal space-time block code for four transmitting antennas, whose decoding complexity is very low. Simulations show that the generalized complex orthogonal space-time block code has low bit error rate, full rate and possibly large diversity.
文摘Let M be a n-dimensional compact irreducible complex space with a line bundle L. It is shown that if M is completely intersected with respect to L and dimH0(M, L) = n + 1, then M is biholomorphic to a complex projective space Pn of dimension n.
基金supported by the National Natural Science Foundation of China (No. 11361064)
文摘Abstract. We use the two mappings satisfying II-expansive conditions on complex valued metric spaces to construct the convergent sequences and prove that the unique limit of the sequences is the point of coincidence or common fixed point of the two mappings. Also, we discuss the uniqueness of points of coincidence or common fixed points and give the existence theorems of unique fixed points. The obtained results generalize and improve the corresponding conclusions in references.
文摘Let M be a real hypersurface of a complex space form with almost contact metric structure (φ,ξ,η,g). In this paper, we prove that if the structure Jacobi operator Rξ=(·,ξ) ξ is φ▽ξξ-parallel and Rξ commute with the shape operator, then M is a Hopf hypersurface. Further, if Rξ is φ▽ξξ-parallel and Rξ commute with the Ricci tensor, then M is also a Hopf hypersurface provided that TrRξ is constant.
文摘New objects characterizing the structure of complex linear transformations areintroduced. These new objects yield a new result for the decomposition of complexvector spaces relative to complex lrnear transformations and provide all Jordan basesby which the Jordan canonical form is constructed. Accordingly, they can result in thecelebrated Jordan theorem and the third decomposition theorem of space directly. and,moreover, they can give a new deep insight into the exquisite and subtle structure ofthe Jordan form. The latter indicates that the Jordan canonical form of a complexlinear transformation is an invariant structure associated with double arbitrary. choices.
基金partially supported by NSFC(11771372)K.N.Ospanov was partially supported by project AP05131557 of the Science Committee of Ministry of Education and Science of the Republic of Kazakhstan。
文摘We proved a complex interpolation theorem of noncommutative Hardy spaces associated with semi-finite von Neumann algebras and extend the Riesz type factorization to the semi-finite case.
基金supported by the Foundation for training Young Teachers in University of Shanghai(ZZegd16003)supported by National Natural Science Foundation of China(11271071,11771087)LMNS,Fudan University
文摘We concentrate on using the traceless Ricci tensor and the Bochner curvature tensor to study the rigidity problems for complete K?hler manifolds. We derive some elliptic differential inequalities from Weitzenb?ck formulas for the traceless Ricci tensor of K?hler manifolds with constant scalar curvature and the Bochner tensor of K?hler-Einstein manifolds respectively. Using elliptic estimates and maximum principle, several L^p and L~∞ pinching results are established to characterize K?hler-Einstein manifolds among K?hler manifolds with constant scalar curvature and complex space forms among K?hler-Einstein manifolds.Our results can be regarded as a complex analogues to the rigidity results for Riemannian manifolds. Moreover, our main results especially establish the rigidity theorems for complete noncompact K?hler manifolds and noncompact K?hler-Einstein manifolds under some pointwise pinching conditions or global integral pinching conditions. To the best of our knowledge,these kinds of results have not been reported.
文摘Duality behavior of photons in wave-particle property has posed challenges and opportunities to discover other frontiers of fundamental particles leading to the relativistic and quantum description of matter. The speed of particles faster than the speed of light could not be recognized, and matter was always described as a real number. A new fundamental view on matter as a complex value has been introduced by many authors who present a paradigm that is shifted from real or pure imaginary particles to Complex Matter Space. A new assumption will be imposed that matter has two intrinsic components: i) mass, and ii) charge. The mass will be measured by real number systems and charged by an imaginary unit. The relativistic concept of Complex Matter Space on energy and momentum is investigated and we can conclude that the new Complex Matter Space (CMS) theory will help get one step closer to a better understanding toward: 1) Un-Euclidean description of Minkowski Geometry in the context of the Complex Matter Space, 2) transformation from Euclidean to Minkowski space and its relativistic interpretation. Finally, geometrical foundations are essential to have a real picture of space, matter, and the universe.