To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,...To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.展开更多
Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a ...Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful.展开更多
在Matlab/Simulink中应用Real-Time Windows Target模块重构状态观测器的实时仿真模型,采用该方法开发的实验系统既便于实现,又能和实际物理系统良好对接,有利于学生掌握状态观测器的相关知识和促进对Matlab的了解和应用。给出的应用实...在Matlab/Simulink中应用Real-Time Windows Target模块重构状态观测器的实时仿真模型,采用该方法开发的实验系统既便于实现,又能和实际物理系统良好对接,有利于学生掌握状态观测器的相关知识和促进对Matlab的了解和应用。给出的应用实例验证了方法的可行性。展开更多
Objective To evaluate the utility of computed tomography perfusion(CTP)both at admission and during delayed cerebral ischemia time-window(DCITW)in the detection of delayed cerebral ischemia(DCI)and the change in CTP p...Objective To evaluate the utility of computed tomography perfusion(CTP)both at admission and during delayed cerebral ischemia time-window(DCITW)in the detection of delayed cerebral ischemia(DCI)and the change in CTP parameters from admission to DCITW following aneurysmal subarachnoid hemorrhage.Methods Eighty patients underwent CTP at admission and during DCITW.The mean and extreme values of all CTP parameters at admission and during DCITW were compared between the DCI group and non-DCI group,and comparisons were also made between admission and DCITW within each group.The qualitative color-coded perfusion maps were recorded.Finally,the relationship between CTP parameters and DCI was assessed by receiver operating characteristic(ROC)analyses.Results With the exception of cerebral blood volume(P=0.295,admission;P=0.682,DCITW),there were significant differences in the mean quantitative CTP parameters between DCI and non-DCI patients both at admission and during DCITW.In the DCI group,the extreme parameters were significantly different between admission and DCITW.The DCI group also showed a deteriorative trend in the qualitative color-coded perfusion maps.For the detection of DCI,mean transit time to the center of the impulse response function(Tmax)at admission and mean time to start(TTS)during DCITW had the largest area under curve(AUC),0.698 and 0.789,respectively.Conclusion Whole-brain CTP can predict the occurrence of DCI at admission and diagnose DCI during DCITW.The extreme quantitative parameters and qualitative color-coded perfusion maps can better reflect the perfusion changes of patients with DCI from admission to DCITW.展开更多
The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithm...The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithms is proposed. This combination absorbs the merits of the two algorithms in solutions construction and optimization separately. In order to improve the efficiency of the insertion procedure, a nearest neighbor selection(NNS) mechanism, an insertion local search procedure and a local optimization procedure are specified in detail. And in order to find a balance between good scouting performance and fast convergence rate, an adaptive pheromone updating strategy is proposed in the MTAS. Computational results confirm the MTAS algorithm's good performance with all these strategies on classic vehicle routing problem with time windows(VRPTW) benchmark instances and the TDVRPTW instances, and some better results especially for the number of vehicles and travel times of the best solutions are obtained in comparison with the previous research.展开更多
The petrol truck routing problem is an important part of the petrol supply chain.This study focuses on determining routes for distributing petrol products from a depot to petrol stations with the objective of minimizi...The petrol truck routing problem is an important part of the petrol supply chain.This study focuses on determining routes for distributing petrol products from a depot to petrol stations with the objective of minimizing the total travel cost and the fixed cost required to use the trucks.We propose a mathematical model that considers petrol trucks returning to a depot multiple times and develop a heuristic algorithm based on a local branch-and-bound search with a tabu list and the Metropolis acceptance criterion.In addition,an approach that accelerates the solution process by adding several valid inequalities is presented.In this study,the trucks are homogeneous and have two compartments,and each truck can execute at most three tasks daily.The sales company arranges the transfer amount and the time windows for each station.The performance of the proposed algorithm is evaluated by comparing its results with the optimal results.In addition,a real-world case of routing petrol trucks in Beijing is studied to demonstrate the effectiveness of the proposed approach.展开更多
Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCA...Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems.展开更多
The multitrip pickup and delivery problem with time windows and manpower planning(MTPDPTW-MP)determines a set of ambulance routes and finds staff assignment for a hospital. It involves different stakeholders with dive...The multitrip pickup and delivery problem with time windows and manpower planning(MTPDPTW-MP)determines a set of ambulance routes and finds staff assignment for a hospital. It involves different stakeholders with diverse interests and objectives. This study firstly introduces a multiobjective MTPDPTW-MP(MO-MTPDPTWMP) with three objectives to better describe the real-world scenario. A multiobjective iterated local search algorithm with adaptive neighborhood selection(MOILS-ANS) is proposed to solve the problem. MOILS-ANS can generate a diverse set of alternative solutions for decision makers to meet their requirements. To better explore the search space, problem-specific neighborhood structures and an adaptive neighborhood selection strategy are carefully designed in MOILS-ANS. Experimental results show that the proposed MOILS-ANS significantly outperforms the other two multiobjective algorithms. Besides, the nature of objective functions and the properties of the problem are analyzed. Finally, the proposed MOILS-ANS is compared with the previous single-objective algorithm and the benefits of multiobjective optimization are discussed.展开更多
As a new variant of vehicle routing problem( VRP),a finished vehicle routing problem with time windows in finished vehicle logistics( FVRPTW) is modeled and solved. An optimization model for FVRPTW is presented with t...As a new variant of vehicle routing problem( VRP),a finished vehicle routing problem with time windows in finished vehicle logistics( FVRPTW) is modeled and solved. An optimization model for FVRPTW is presented with the objective of scheduling multiple transport routes considering loading constraints along with time penalty function to minimize the total cost. Then a genetic algorithm( GA) is developed. The specific encoding and genetic operators for FVRPTW are devised.Especially,in order to accelerate its convergence,an improved termination condition is given. Finally,a case study is used to evaluate the effectiveness of the proposed algorithm and a series of experiments are conducted over a set of finished vehicle routing problems. The results demonstrate that the proposed approach has superior performance and satisfies users in practice. Contributions of the study are the modeling and solving of a complex FVRPTW in logistics industry.展开更多
With the expansion of the application scope of social computing problems,many path problems in real life have evolved from pure path optimization problems to social computing problems that take into account various so...With the expansion of the application scope of social computing problems,many path problems in real life have evolved from pure path optimization problems to social computing problems that take into account various social attributes,cultures,and the emotional needs of customers.The actual soft time window vehicle routing problem,speeding up the response of customer needs,improving distribution efficiency,and reducing operating costs is the focus of current social computing problems.Therefore,designing fast and effective algorithms to solve this problem has certain theoretical and practical significance.In this paper,considering the time delay problem of customer demand,the compensation problem is given,and the mathematical model of vehicle path problem with soft time window is given.This paper proposes a hybrid tabu search(TS)&scatter search(SS)algorithm for vehicle routing problem with soft time windows(VRPSTW),which mainly embeds the TS dynamic tabu mechanism into the SS algorithm framework.TS uses the scattering of SS to avoid the dependence on the quality of the initial solution,and SS uses the climbing ability of TS improves the ability of optimizing,so that the quality of search for the optimal solution can be significantly improved.The hybrid algorithm is still based on the basic framework of SS.In particular,TS is mainly used for solution improvement and combination to generate new solutions.In the solution process,both the quality and the dispersion of the solution are considered.A simulation experiments verify the influence of the number of vehicles and maximum value of tabu length on solution,parameters’control over the degree of convergence,and the influence of the number of diverse solutions on algorithm performance.Based on the determined parameters,simulation experiment is carried out in this paper to further prove the algorithm feasibility and effectiveness.The results of this paper provide further ideas for solving vehicle routing problems with time windows and improving the efficiency of vehicle routing problems and have strong applicability.展开更多
The scheduling efficiency of the tracking and data relay satellite system(TDRSS)is strictly limited by the scheduling degrees of freedom(DoF),including time DoF defined by jobs' flexible time windows and spatial ...The scheduling efficiency of the tracking and data relay satellite system(TDRSS)is strictly limited by the scheduling degrees of freedom(DoF),including time DoF defined by jobs' flexible time windows and spatial DoF brought by multiple servable tracking and data relay satellites(TDRSs).In this paper,ageneralized multiple time windows(GMTW)model is proposed to fully exploit the time and spatial DoF.Then,the improvements of service capability and job-completion probability based on the GMTW are theoretically proved.Further,an asymmetric path-relinking(APR)based heuristic job scheduling framework is presented to maximize the usage of DoF provided by the GMTW.Simulation results show that by using our proposal 11%improvement of average jobcompletion probability can be obtained.Meanwhile,the computing time of the time-to-target can be shorten to 1/9 of the GRASP.展开更多
This study attempts to solve vehicle routing problem with time window (VRPTW). The study first identifies the real problems and suggests some recommendations on the issues. The technique used in this study is Genetic ...This study attempts to solve vehicle routing problem with time window (VRPTW). The study first identifies the real problems and suggests some recommendations on the issues. The technique used in this study is Genetic Algorithm (GA) and initialization applied is random population method. The objective of the study is to assign a number of vehicles to routes that connect customers and depot such that the overall distance travelled is minimized and the delivery operations are completed within the time windows requested by the customers. The analysis reveals that the problems experienced in vehicle routing with time window can be solved by GA and retrieved for optimal solutions. After a thorough study on VRPTW, it is highly recommended that a company should implement the optimal routes derived from the study to increase the efficiency and accuracy of delivery with time insertion.展开更多
Aim to the manufacturing supply chain optimization problem with time windows,presents an improved orthogonal genetic algorithm to solve it. At first,we decompose this problem into two sub-problems (distribution and ro...Aim to the manufacturing supply chain optimization problem with time windows,presents an improved orthogonal genetic algorithm to solve it. At first,we decompose this problem into two sub-problems (distribution and routing) plus an interface mechanism to allow the two algorithms to collaborate in a master-slave fashion,with the distribution algorithm driving the routing algorithm. At second,we describe the proposed improved orthogonal genetic algorithm for solving giving problem detailedly. Finally,the examples suggest that this proposed approach is feasible,correct and valid.展开更多
An LMS adaptive time delay estimation method with two windows is presented. This method can reduce the superfluous calculation greatly when the time of correlation is long. It is suitable for the time delay estimation...An LMS adaptive time delay estimation method with two windows is presented. This method can reduce the superfluous calculation greatly when the time of correlation is long. It is suitable for the time delay estimation of white band-limited random signals. The feasibility and the performances of this method are also studied.展开更多
A novel genetic algorithm with multiple species in dynamic region is proposed,each of which occupies a dynamic region determined by the weight vector of a fuzzy adaptive Hamming neural network. Through learning and cl...A novel genetic algorithm with multiple species in dynamic region is proposed,each of which occupies a dynamic region determined by the weight vector of a fuzzy adaptive Hamming neural network. Through learning and classification of genetic individuals in the evolutionary procedure,the neural network distributes multiple species into different regions of the search space. Furthermore,the neural network dynamically expands each search region or establishes new region for good offspring individuals to continuously keep the diversification of the genetic population. As a result,the premature problem inherent in genetic algorithm is alleviated and better tradeoff between the ability of exploration and exploitation can be obtained. The experimental results on the vehicle routing problem with time windows also show the good performance of the proposed genetic algorithm.展开更多
In this paper, we present a new algorithm of the time-dependent shortest path problem with time windows. Give a directed graph , where V is a set of nodes, E is a set of edges with a non-negative transit-time function...In this paper, we present a new algorithm of the time-dependent shortest path problem with time windows. Give a directed graph , where V is a set of nodes, E is a set of edges with a non-negative transit-time function . For each node , a time window ?within which the node may be visited and ?, is non-negative of the service and leaving time of the node. A source node s, a destination node d and a departure time?t0, the time-dependent shortest path problem with time windows asks to find an s, d-path that leaves a source node s at a departure time t0;and minimizes the total arrival time at a destination node d. This formulation generalizes the classical shortest path problem in which ce are constants. Our algorithm of the time windows gave the generalization of the ALT algorithm and A* algorithm for the classical problem according to Goldberg and Harrelson [1], Dreyfus [2] and Hart et al. [3].展开更多
This study evaluated the impact of Ghana’s Integrated Customs Management System (ICUMS), implemented within the National Single Window initiative, on the efficiency of issuing Delivery Orders (DO) at Tema Port. Filli...This study evaluated the impact of Ghana’s Integrated Customs Management System (ICUMS), implemented within the National Single Window initiative, on the efficiency of issuing Delivery Orders (DO) at Tema Port. Filling a gap in the existing literature, the research employed a quantitative approach to assess a specific time-related aspect of the cargo clearance process. Employing an Independent t-test on a dataset spanning 2026 Delivery Orders (924 pre-ICUMS and 1102 post-ICUMS) from July 2020 to July 2023, the study investigated ICUMS’s effectiveness in reducing DO issuance time. Results indicate a noteworthy decrease in average DO issuance time, from 11 days pre-implementation to approximately 9 days post-implementation, a reduction validated by statistical analysis through the independent t-test. In light of these findings, the study recommends ongoing refinement of the implementation, reinforcement of trade facilitation measures, and the adoption of best practices from successful global ports. Continuous stakeholder training and regular assessments of ICUMS performance are also endorsed. The study’s implications support the theoretical framework for Single Window systems and carry significant policy implications, emphasizing the need for collaborative efforts to streamline trade facilitation processes driven by Information Technology. Practically, the results serve as a management tool for stakeholders, highlighting areas for targeted interventions to reduce DO issuance times. Methodologically, this research contributes by applying robust statistical analysis to a specific component within the Time Release Study framework, offering a nuanced understanding of trade facilitation systems’ effectiveness in improving cargo clearance processes.展开更多
Consensus of creativity research suggests that the measurement of both originality and valuableness is necessary when designing creativity tasks.However,few studies have emphasized valuableness when exploring underlyi...Consensus of creativity research suggests that the measurement of both originality and valuableness is necessary when designing creativity tasks.However,few studies have emphasized valuableness when exploring underlying neural substrates of creative thinking.The present study employs product-based creativity tasks that measure both originality and valuableness in an exploration of the dynamic relationship between the default mode(DMN),executive control(ECN),and salience(SN)networks through time windows.This methodology highlights relevance,or valuableness,in creativity evaluation as opposed to divergent thinking tasks solely measuring originality.The researchers identified seven brain regions belonging to the ECN,DMN,and SN as regions of interest(ROIs),as well as four representative seeds to analyze functional connectivity in 25 college student participants.Results showed that all of the identified ROIs were involved during the creative task.The insula,precuneus,and ventrolateral prefrontal cortex(vlPFC)remained active across all stages of product-based creative thinking.Moreover,the connectivity analyses revealed varied interaction patterns of DMN,ECN,and SN at different thinking stages.The integrated findings of the whole brain,ROI,and connectivity analyses suggest a trend that the DMN and SN(which relate to bottom-up thinking)attenuate as time proceeds,whereas the vlPFC(which relates to top-down thinking)gets stronger at later stages;these findings reflect the nature of our creativity tasks and decision-making of valuableness in later stages.Based on brain region activation throughout execution of the task,we propose that product-based creative process may include three stages:exploration and association,incubation and insight,and finally,evaluation and decision making.This model provides a thinking frame for further research and classroom instruction.展开更多
Our research focuses on the development of two cooperative approaches for resolution of the multi-item capacitated lot-sizing problems with time windows and setup times (MICLSP-TW-ST). In this paper we combine variabl...Our research focuses on the development of two cooperative approaches for resolution of the multi-item capacitated lot-sizing problems with time windows and setup times (MICLSP-TW-ST). In this paper we combine variable neighborhood search and accurate mixed integer programming (VNS-MIP) to solve MICLSP-TW-ST. It concerns so a particularly important and difficult problem in production planning. This problem is NP-hard in the strong sense. Moreover, it is very difficult to solve with an exact method;it is for that reason we have made use of the approximate methods. We improved the variable neighborhood search (VNS) algorithm, which is efficient for solving hard combinatorial optimization problems. This problem can be viewed as an optimization problem with mixed variables (binary variables and real variables). The new VNS algorithm was tested against 540 benchmark problems. The performance of most of our approaches was satisfactory and performed better than the algorithms already proposed in the literature.展开更多
基金supported by Natural Science Foundation Project of Gansu Provincial Science and Technology Department(No.1506RJZA084)Gansu Provincial Education Department Scientific Research Fund Grant Project(No.1204-13).
文摘To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.
基金The National Natural Science Foundation of China(No.61074147)the Natural Science Foundation of Guangdong Province(No.S2011010005059)+2 种基金the Foundation of Enterprise-University-Research Institute Cooperation from Guangdong Province and Ministry of Education of China(No.2012B091000171,2011B090400460)the Science and Technology Program of Guangdong Province(No.2012B050600028)the Science and Technology Program of Huadu District,Guangzhou(No.HD14ZD001)
文摘Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful.
基金supported by the National Natural Science Foundation of China,Research on Brain Magnetic Resonance Image Segmentation Based on Particle Computation(No.61672386).
文摘Objective To evaluate the utility of computed tomography perfusion(CTP)both at admission and during delayed cerebral ischemia time-window(DCITW)in the detection of delayed cerebral ischemia(DCI)and the change in CTP parameters from admission to DCITW following aneurysmal subarachnoid hemorrhage.Methods Eighty patients underwent CTP at admission and during DCITW.The mean and extreme values of all CTP parameters at admission and during DCITW were compared between the DCI group and non-DCI group,and comparisons were also made between admission and DCITW within each group.The qualitative color-coded perfusion maps were recorded.Finally,the relationship between CTP parameters and DCI was assessed by receiver operating characteristic(ROC)analyses.Results With the exception of cerebral blood volume(P=0.295,admission;P=0.682,DCITW),there were significant differences in the mean quantitative CTP parameters between DCI and non-DCI patients both at admission and during DCITW.In the DCI group,the extreme parameters were significantly different between admission and DCITW.The DCI group also showed a deteriorative trend in the qualitative color-coded perfusion maps.For the detection of DCI,mean transit time to the center of the impulse response function(Tmax)at admission and mean time to start(TTS)during DCITW had the largest area under curve(AUC),0.698 and 0.789,respectively.Conclusion Whole-brain CTP can predict the occurrence of DCI at admission and diagnose DCI during DCITW.The extreme quantitative parameters and qualitative color-coded perfusion maps can better reflect the perfusion changes of patients with DCI from admission to DCITW.
文摘The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithms is proposed. This combination absorbs the merits of the two algorithms in solutions construction and optimization separately. In order to improve the efficiency of the insertion procedure, a nearest neighbor selection(NNS) mechanism, an insertion local search procedure and a local optimization procedure are specified in detail. And in order to find a balance between good scouting performance and fast convergence rate, an adaptive pheromone updating strategy is proposed in the MTAS. Computational results confirm the MTAS algorithm's good performance with all these strategies on classic vehicle routing problem with time windows(VRPTW) benchmark instances and the TDVRPTW instances, and some better results especially for the number of vehicles and travel times of the best solutions are obtained in comparison with the previous research.
基金the Program of “Study on Optimization and Supply-side Reliability of Oil Product Supply Chain Logistics System” funded under the National Natural Science Foundation of China, Grant Number 51874325
文摘The petrol truck routing problem is an important part of the petrol supply chain.This study focuses on determining routes for distributing petrol products from a depot to petrol stations with the objective of minimizing the total travel cost and the fixed cost required to use the trucks.We propose a mathematical model that considers petrol trucks returning to a depot multiple times and develop a heuristic algorithm based on a local branch-and-bound search with a tabu list and the Metropolis acceptance criterion.In addition,an approach that accelerates the solution process by adding several valid inequalities is presented.In this study,the trucks are homogeneous and have two compartments,and each truck can execute at most three tasks daily.The sales company arranges the transfer amount and the time windows for each station.The performance of the proposed algorithm is evaluated by comparing its results with the optimal results.In addition,a real-world case of routing petrol trucks in Beijing is studied to demonstrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(7147117571471174)
文摘Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems.
基金supported by the National Key R&D Program of China(2018AAA0101203)the National Natural Science Foundation of China(61673403,71601191)the JSPS KAKENHI(JP17K12751)。
文摘The multitrip pickup and delivery problem with time windows and manpower planning(MTPDPTW-MP)determines a set of ambulance routes and finds staff assignment for a hospital. It involves different stakeholders with diverse interests and objectives. This study firstly introduces a multiobjective MTPDPTW-MP(MO-MTPDPTWMP) with three objectives to better describe the real-world scenario. A multiobjective iterated local search algorithm with adaptive neighborhood selection(MOILS-ANS) is proposed to solve the problem. MOILS-ANS can generate a diverse set of alternative solutions for decision makers to meet their requirements. To better explore the search space, problem-specific neighborhood structures and an adaptive neighborhood selection strategy are carefully designed in MOILS-ANS. Experimental results show that the proposed MOILS-ANS significantly outperforms the other two multiobjective algorithms. Besides, the nature of objective functions and the properties of the problem are analyzed. Finally, the proposed MOILS-ANS is compared with the previous single-objective algorithm and the benefits of multiobjective optimization are discussed.
基金Supported by the National Natural Science Foundation of China(No.51565036)
文摘As a new variant of vehicle routing problem( VRP),a finished vehicle routing problem with time windows in finished vehicle logistics( FVRPTW) is modeled and solved. An optimization model for FVRPTW is presented with the objective of scheduling multiple transport routes considering loading constraints along with time penalty function to minimize the total cost. Then a genetic algorithm( GA) is developed. The specific encoding and genetic operators for FVRPTW are devised.Especially,in order to accelerate its convergence,an improved termination condition is given. Finally,a case study is used to evaluate the effectiveness of the proposed algorithm and a series of experiments are conducted over a set of finished vehicle routing problems. The results demonstrate that the proposed approach has superior performance and satisfies users in practice. Contributions of the study are the modeling and solving of a complex FVRPTW in logistics industry.
基金This work was supported by the National Natural Science Foundation of China(61772196,61472136)the Hunan Provincial Focus Social Science Fund(2016ZDB006)Thanks to Professor Weijin Jiang for his guidance and suggestions on this research.Funding Statement。
文摘With the expansion of the application scope of social computing problems,many path problems in real life have evolved from pure path optimization problems to social computing problems that take into account various social attributes,cultures,and the emotional needs of customers.The actual soft time window vehicle routing problem,speeding up the response of customer needs,improving distribution efficiency,and reducing operating costs is the focus of current social computing problems.Therefore,designing fast and effective algorithms to solve this problem has certain theoretical and practical significance.In this paper,considering the time delay problem of customer demand,the compensation problem is given,and the mathematical model of vehicle path problem with soft time window is given.This paper proposes a hybrid tabu search(TS)&scatter search(SS)algorithm for vehicle routing problem with soft time windows(VRPSTW),which mainly embeds the TS dynamic tabu mechanism into the SS algorithm framework.TS uses the scattering of SS to avoid the dependence on the quality of the initial solution,and SS uses the climbing ability of TS improves the ability of optimizing,so that the quality of search for the optimal solution can be significantly improved.The hybrid algorithm is still based on the basic framework of SS.In particular,TS is mainly used for solution improvement and combination to generate new solutions.In the solution process,both the quality and the dispersion of the solution are considered.A simulation experiments verify the influence of the number of vehicles and maximum value of tabu length on solution,parameters’control over the degree of convergence,and the influence of the number of diverse solutions on algorithm performance.Based on the determined parameters,simulation experiment is carried out in this paper to further prove the algorithm feasibility and effectiveness.The results of this paper provide further ideas for solving vehicle routing problems with time windows and improving the efficiency of vehicle routing problems and have strong applicability.
基金Supported by the National Natural Science Foundation of China(91338101,91338108,61132002,6132106)Research Fund of Tsinghua University(2011Z05117)Co-innovation Laboratory of Aerospace Broadband Network Technology
文摘The scheduling efficiency of the tracking and data relay satellite system(TDRSS)is strictly limited by the scheduling degrees of freedom(DoF),including time DoF defined by jobs' flexible time windows and spatial DoF brought by multiple servable tracking and data relay satellites(TDRSs).In this paper,ageneralized multiple time windows(GMTW)model is proposed to fully exploit the time and spatial DoF.Then,the improvements of service capability and job-completion probability based on the GMTW are theoretically proved.Further,an asymmetric path-relinking(APR)based heuristic job scheduling framework is presented to maximize the usage of DoF provided by the GMTW.Simulation results show that by using our proposal 11%improvement of average jobcompletion probability can be obtained.Meanwhile,the computing time of the time-to-target can be shorten to 1/9 of the GRASP.
文摘This study attempts to solve vehicle routing problem with time window (VRPTW). The study first identifies the real problems and suggests some recommendations on the issues. The technique used in this study is Genetic Algorithm (GA) and initialization applied is random population method. The objective of the study is to assign a number of vehicles to routes that connect customers and depot such that the overall distance travelled is minimized and the delivery operations are completed within the time windows requested by the customers. The analysis reveals that the problems experienced in vehicle routing with time window can be solved by GA and retrieved for optimal solutions. After a thorough study on VRPTW, it is highly recommended that a company should implement the optimal routes derived from the study to increase the efficiency and accuracy of delivery with time insertion.
文摘Aim to the manufacturing supply chain optimization problem with time windows,presents an improved orthogonal genetic algorithm to solve it. At first,we decompose this problem into two sub-problems (distribution and routing) plus an interface mechanism to allow the two algorithms to collaborate in a master-slave fashion,with the distribution algorithm driving the routing algorithm. At second,we describe the proposed improved orthogonal genetic algorithm for solving giving problem detailedly. Finally,the examples suggest that this proposed approach is feasible,correct and valid.
文摘An LMS adaptive time delay estimation method with two windows is presented. This method can reduce the superfluous calculation greatly when the time of correlation is long. It is suitable for the time delay estimation of white band-limited random signals. The feasibility and the performances of this method are also studied.
文摘A novel genetic algorithm with multiple species in dynamic region is proposed,each of which occupies a dynamic region determined by the weight vector of a fuzzy adaptive Hamming neural network. Through learning and classification of genetic individuals in the evolutionary procedure,the neural network distributes multiple species into different regions of the search space. Furthermore,the neural network dynamically expands each search region or establishes new region for good offspring individuals to continuously keep the diversification of the genetic population. As a result,the premature problem inherent in genetic algorithm is alleviated and better tradeoff between the ability of exploration and exploitation can be obtained. The experimental results on the vehicle routing problem with time windows also show the good performance of the proposed genetic algorithm.
文摘In this paper, we present a new algorithm of the time-dependent shortest path problem with time windows. Give a directed graph , where V is a set of nodes, E is a set of edges with a non-negative transit-time function . For each node , a time window ?within which the node may be visited and ?, is non-negative of the service and leaving time of the node. A source node s, a destination node d and a departure time?t0, the time-dependent shortest path problem with time windows asks to find an s, d-path that leaves a source node s at a departure time t0;and minimizes the total arrival time at a destination node d. This formulation generalizes the classical shortest path problem in which ce are constants. Our algorithm of the time windows gave the generalization of the ALT algorithm and A* algorithm for the classical problem according to Goldberg and Harrelson [1], Dreyfus [2] and Hart et al. [3].
文摘This study evaluated the impact of Ghana’s Integrated Customs Management System (ICUMS), implemented within the National Single Window initiative, on the efficiency of issuing Delivery Orders (DO) at Tema Port. Filling a gap in the existing literature, the research employed a quantitative approach to assess a specific time-related aspect of the cargo clearance process. Employing an Independent t-test on a dataset spanning 2026 Delivery Orders (924 pre-ICUMS and 1102 post-ICUMS) from July 2020 to July 2023, the study investigated ICUMS’s effectiveness in reducing DO issuance time. Results indicate a noteworthy decrease in average DO issuance time, from 11 days pre-implementation to approximately 9 days post-implementation, a reduction validated by statistical analysis through the independent t-test. In light of these findings, the study recommends ongoing refinement of the implementation, reinforcement of trade facilitation measures, and the adoption of best practices from successful global ports. Continuous stakeholder training and regular assessments of ICUMS performance are also endorsed. The study’s implications support the theoretical framework for Single Window systems and carry significant policy implications, emphasizing the need for collaborative efforts to streamline trade facilitation processes driven by Information Technology. Practically, the results serve as a management tool for stakeholders, highlighting areas for targeted interventions to reduce DO issuance times. Methodologically, this research contributes by applying robust statistical analysis to a specific component within the Time Release Study framework, offering a nuanced understanding of trade facilitation systems’ effectiveness in improving cargo clearance processes.
文摘Consensus of creativity research suggests that the measurement of both originality and valuableness is necessary when designing creativity tasks.However,few studies have emphasized valuableness when exploring underlying neural substrates of creative thinking.The present study employs product-based creativity tasks that measure both originality and valuableness in an exploration of the dynamic relationship between the default mode(DMN),executive control(ECN),and salience(SN)networks through time windows.This methodology highlights relevance,or valuableness,in creativity evaluation as opposed to divergent thinking tasks solely measuring originality.The researchers identified seven brain regions belonging to the ECN,DMN,and SN as regions of interest(ROIs),as well as four representative seeds to analyze functional connectivity in 25 college student participants.Results showed that all of the identified ROIs were involved during the creative task.The insula,precuneus,and ventrolateral prefrontal cortex(vlPFC)remained active across all stages of product-based creative thinking.Moreover,the connectivity analyses revealed varied interaction patterns of DMN,ECN,and SN at different thinking stages.The integrated findings of the whole brain,ROI,and connectivity analyses suggest a trend that the DMN and SN(which relate to bottom-up thinking)attenuate as time proceeds,whereas the vlPFC(which relates to top-down thinking)gets stronger at later stages;these findings reflect the nature of our creativity tasks and decision-making of valuableness in later stages.Based on brain region activation throughout execution of the task,we propose that product-based creative process may include three stages:exploration and association,incubation and insight,and finally,evaluation and decision making.This model provides a thinking frame for further research and classroom instruction.
文摘Our research focuses on the development of two cooperative approaches for resolution of the multi-item capacitated lot-sizing problems with time windows and setup times (MICLSP-TW-ST). In this paper we combine variable neighborhood search and accurate mixed integer programming (VNS-MIP) to solve MICLSP-TW-ST. It concerns so a particularly important and difficult problem in production planning. This problem is NP-hard in the strong sense. Moreover, it is very difficult to solve with an exact method;it is for that reason we have made use of the approximate methods. We improved the variable neighborhood search (VNS) algorithm, which is efficient for solving hard combinatorial optimization problems. This problem can be viewed as an optimization problem with mixed variables (binary variables and real variables). The new VNS algorithm was tested against 540 benchmark problems. The performance of most of our approaches was satisfactory and performed better than the algorithms already proposed in the literature.