There are two main theories, the 'temperature-raising' theory and the 'precipitation-based regulation' theory, which guide the optimum sowing time of the plastic-film corn. The former was applied in th...There are two main theories, the 'temperature-raising' theory and the 'precipitation-based regulation' theory, which guide the optimum sowing time of the plastic-film corn. The former was applied in the humid or semi-humid ecotope and on irrigated or half-shaded land in the arid and semi-arid ecotopes, while the latter was suitable for the dry-farming land in the semi-arid ecotope. The results of experiments and investigations for many years showed that the corn output was increased by 69.2% when the former theory was applied to guide the optimum sowing time for plastic-film corn in the semi-humid ecotope, and by 60. 0% when the latter theory was applied in the semi-arid ecotope. In the semi-arid ecotope, however, the output was increased only by 15.7% when the former theory was applied, and even dropped by 14.4% when the latter theory was applied.展开更多
Rice breeding for maximum yield is a hot topic today in the rice community of the world, and a hard nut to crack into the bargain. For many years, we have been devoted to the subject. In 1987 we discussed the subject ...Rice breeding for maximum yield is a hot topic today in the rice community of the world, and a hard nut to crack into the bargain. For many years, we have been devoted to the subject. In 1987 we discussed the subject in publications at home and abroad, in which we first introduced the general strategy of combining ideal plant morphology with the use of vigor. Afterward, drawing on the wisdoms of other researchers, we experimented with test materials featuring "rather short stalks" and "rather big panicles", but the results were not very satisfactory. Then, we switched from the "two rathers" to the "three optimums" (plant height, panicle size, and tillering ability). Three years’ (1991-1993) verification, especially the demonstra展开更多
By the optimum theory, a new cutting analytical method of the membrane structure is developed. The B-spline curve is applied to make smooth the boundary of the membrane strip. By this method, the cutting accuracy is i...By the optimum theory, a new cutting analytical method of the membrane structure is developed. The B-spline curve is applied to make smooth the boundary of the membrane strip. By this method, the cutting accuracy is improved. Finally, a cutting analysis example of a tension membrane structure is given.展开更多
Multi-layer pressure vessels are widely used in every field of high pressure technology.For the purpose of enhancing a vessels' load bearing capacity,a beneficial process like shrink-fit is usually employed.However,f...Multi-layer pressure vessels are widely used in every field of high pressure technology.For the purpose of enhancing a vessels' load bearing capacity,a beneficial process like shrink-fit is usually employed.However,few documents on optimum design for multi-layer shrink-fit vessels made of different strength materials can be found,available data are mainly on two-layer vessels.In this paper,an optimum design approach is developed for shrink-fit multi-layer vessels under ultrahigh pressure by using different materials.Maximum shear stress theory is applied as design criteria.The inner and outer radii of a multi-layer vessel,as well as the material of each layer,are assumed to be known.The optimization mathematical model is,thereby,built.Lagrange multipliers method is required to obtain the optimal design formula of wall ratio(ratio of outer to inner radii) of each layer,from which the optimum formulas of shrinkage pressure and radial interference are derived with the superposition principle employed.These formulas are applicable for the optimization design of all multi-layer vessels made of different materials,or same materials.The formulas of the limit working pressure and the contact pressure show that the optimum wall ratio of each layer and limit working pressure are only related to all selected material strength and unrelated to the position of the layer placement in the vessel.However,shrinkage pressure is related to the position of the layer placement in the vessel.Optimization design of an open ended shrink-fit three-layer vessel using different materials and comparisons proved that the optimized multi-layer vessels have outstanding characteristics of small radial interference and are easier for assembly.When the stress of each layer is distributed more evenly and appropriately,the load bearing capability and safety of vessels are enhanced.Therefore,this design is material-saving and cost-effective,and has prospect of engineering application.展开更多
As multi-discipline coupling and components interference often affect the aircraft configuration decision-making and analysis during conceptual design process, this article presents an approach of multidimensional gam...As multi-discipline coupling and components interference often affect the aircraft configuration decision-making and analysis during conceptual design process, this article presents an approach of multidimensional game theory based on aircraft compo- nents to deal with this problem. The idea is that the configuration decision-making process is regarded as the game for different disciplines and technologies, and the aircraft components are players. The payoff function with highest total gain means that ac- cording to the game protocols and multidimensional theory, the optimal aircraft configuration within the strategy set will be cho- sen. The decision-making model is applied to conceptual design process of the high altitude long endurance (HALE) unmanned aerial vehicle (UAV) based on the assessment of technological risk. The obtained optimum configuration is quite consistent with the current HALE UAV development trends. Thus, taking into account the coupling and interference factors, the multidimensional gaming model based on aircraft components will be an effective analysis method in the decision-making process of aircraft optimum configuration.展开更多
文摘There are two main theories, the 'temperature-raising' theory and the 'precipitation-based regulation' theory, which guide the optimum sowing time of the plastic-film corn. The former was applied in the humid or semi-humid ecotope and on irrigated or half-shaded land in the arid and semi-arid ecotopes, while the latter was suitable for the dry-farming land in the semi-arid ecotope. The results of experiments and investigations for many years showed that the corn output was increased by 69.2% when the former theory was applied to guide the optimum sowing time for plastic-film corn in the semi-humid ecotope, and by 60. 0% when the latter theory was applied in the semi-arid ecotope. In the semi-arid ecotope, however, the output was increased only by 15.7% when the former theory was applied, and even dropped by 14.4% when the latter theory was applied.
文摘Rice breeding for maximum yield is a hot topic today in the rice community of the world, and a hard nut to crack into the bargain. For many years, we have been devoted to the subject. In 1987 we discussed the subject in publications at home and abroad, in which we first introduced the general strategy of combining ideal plant morphology with the use of vigor. Afterward, drawing on the wisdoms of other researchers, we experimented with test materials featuring "rather short stalks" and "rather big panicles", but the results were not very satisfactory. Then, we switched from the "two rathers" to the "three optimums" (plant height, panicle size, and tillering ability). Three years’ (1991-1993) verification, especially the demonstra
文摘By the optimum theory, a new cutting analytical method of the membrane structure is developed. The B-spline curve is applied to make smooth the boundary of the membrane strip. By this method, the cutting accuracy is improved. Finally, a cutting analysis example of a tension membrane structure is given.
基金supported by Key Scientific Research Project of Baoji University of Arts and Sciences of China (Grant No.ZK0727)Shanxi Provincial Special Foundation Project of Key Discipline Construction of China
文摘Multi-layer pressure vessels are widely used in every field of high pressure technology.For the purpose of enhancing a vessels' load bearing capacity,a beneficial process like shrink-fit is usually employed.However,few documents on optimum design for multi-layer shrink-fit vessels made of different strength materials can be found,available data are mainly on two-layer vessels.In this paper,an optimum design approach is developed for shrink-fit multi-layer vessels under ultrahigh pressure by using different materials.Maximum shear stress theory is applied as design criteria.The inner and outer radii of a multi-layer vessel,as well as the material of each layer,are assumed to be known.The optimization mathematical model is,thereby,built.Lagrange multipliers method is required to obtain the optimal design formula of wall ratio(ratio of outer to inner radii) of each layer,from which the optimum formulas of shrinkage pressure and radial interference are derived with the superposition principle employed.These formulas are applicable for the optimization design of all multi-layer vessels made of different materials,or same materials.The formulas of the limit working pressure and the contact pressure show that the optimum wall ratio of each layer and limit working pressure are only related to all selected material strength and unrelated to the position of the layer placement in the vessel.However,shrinkage pressure is related to the position of the layer placement in the vessel.Optimization design of an open ended shrink-fit three-layer vessel using different materials and comparisons proved that the optimized multi-layer vessels have outstanding characteristics of small radial interference and are easier for assembly.When the stress of each layer is distributed more evenly and appropriately,the load bearing capability and safety of vessels are enhanced.Therefore,this design is material-saving and cost-effective,and has prospect of engineering application.
文摘As multi-discipline coupling and components interference often affect the aircraft configuration decision-making and analysis during conceptual design process, this article presents an approach of multidimensional game theory based on aircraft compo- nents to deal with this problem. The idea is that the configuration decision-making process is regarded as the game for different disciplines and technologies, and the aircraft components are players. The payoff function with highest total gain means that ac- cording to the game protocols and multidimensional theory, the optimal aircraft configuration within the strategy set will be cho- sen. The decision-making model is applied to conceptual design process of the high altitude long endurance (HALE) unmanned aerial vehicle (UAV) based on the assessment of technological risk. The obtained optimum configuration is quite consistent with the current HALE UAV development trends. Thus, taking into account the coupling and interference factors, the multidimensional gaming model based on aircraft components will be an effective analysis method in the decision-making process of aircraft optimum configuration.
文摘水产动物多性状复合育种技术已发展成为国内水产选择育种的重要技术体系。在限定的近交水平下,如何选种和配种实现遗传进展最大化是当前该体系亟待解决的一个突出问题。在动植物选择育种中,最佳遗传贡献理论(Optimum Contribution,OC)已成为平衡育种核心群长期遗传进展与近交水平的有效工具。本文论述了OC理论的提出背景和发展过程、不同优化算法的特点和该理论在动植物选择育种中的应用进展,并进一步综述了基于基因组信息的OC理论研究新进展。遗传贡献目标函数的优化算法主要包括拉格朗日乘数法、半正定规划法和差分进化算法等。基于拉格朗日乘数法,执行OC选择10代后获得的遗传进展要比最佳线性无偏预测法(Best Linear Unbiased Prediction,BLUP)育种值直接选择高21%-60%。针对水产动物等高繁殖力大群体,育种学家进一步改进了算法,利用候选亲本父母本群体的加性遗传相关矩阵来计算候选亲本群体的加性遗传相关矩阵和逆矩阵,降低了逆矩阵的维数,提高了最佳遗传贡献值的计算效率。但是拉格朗日乘数法并不能保证求解出的遗传贡献值为全局最大值,而半正定规划方法利用内点算法可以获得候选亲本的最佳遗传贡献值,与前者相比遗传进展可进一步提高1.5%-9%。差分进化算法可将遗传进展、遗传多样性、后代近交、场间遗传联系、多阶段选择、分子标记利用和成本等多种因素纳入目标函数进行优化,同时完成个体选择和交配方案制定两个关键任务。复合系谱和基因组信息,在限定的近交水平下,可以获得更为准确的遗传贡献值,遗传进展可进一步提高。OC选择已经应用在畜牧、林木育种研究中,育种群体的近交水平得到了有效控制,与BLUP直接选择相比,目标性状的遗传进展进一步提高(17%-30%)。针对水产动物多性状复合育种技术体系的特点,本文分析了OC理论应用的紧迫性和可行性,提出了亟待解决的关键技术问题和解决方案,为下一步在水产动物选择育种中应用OC理论提供借鉴和指导。