Direct synthesis of layer-tunable and transfer-free graphene on technologically important substrates is highly valued for various electronics and device applications.State of the art in the field is currently a two-st...Direct synthesis of layer-tunable and transfer-free graphene on technologically important substrates is highly valued for various electronics and device applications.State of the art in the field is currently a two-step process:a high-quality graphene layer synthesis on metal substrate through chemical vapor deposition(CVD)followed by delicate layer transfer onto device-relevant substrates.Here,we report a novel synthesis approach combining ion implantation for a precise graphene layer control and dual-metal smart Janus substrate for a diffusion-limiting graphene formation to directly synthesize large area,high quality,and layer-tunable graphene films on arbitrary substrates without the post-synthesis layer transfer process.Carbon(C)ion implantation was performed on Cu-Ni film deposited on a variety of device-relevant substrates.A well-controlled number of layers of graphene,primarily monolayer and bilayer,is precisely controlled by the equivalent fluence of the implanted C-atoms(1 monolayer~4×10^(15)C-atoms/cm^(2)).Upon thermal annealing to promote Cu-Ni alloying,the pre-implanted C-atoms in the Ni layer are pushed toward the Ni/substrate interface by the top Cu layer due to the poor C-solubility in Cu.As a result,the expelled C-atoms precipitate into a graphene structure at the interface facilitated by the Cu-like alloy catalysis.After removing the alloyed Cu-like surface layer,the layer-tunable graphene on the desired substrate is directly realized.The layer-selectivity,high quality,and uniformity of the graphene films are not only confirmed with detailed characterizations using a suite of surface analysis techniques but more importantly are successfully demonstrated by the excellent properties and performance of several devices directly fabricated from these graphene films.Molecular dynamics(MD)simulations using the reactive force field(ReaxFF)were performed to elucidate the graphene formation mechanisms in this novel synthesis approach.With the wide use of ion implantation technology in the microelectronics industry,this novel graphene synthesis approach with precise layer-tunability and transfer-free processing has the promise to advance efficient graphene-device manufacturing and expedite their versatile applications in many fields.展开更多
Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition...Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition.However,there is a lack of studies of the yield of NV color centers at the atomic scale.In the molecular dynamics simulations described in this paper,NV color centers are pre-pared by ion implantation in diamond with pre-doped nitrogen and subsequent annealing.The differences between the yields of NV color centers produced by implantation of carbon(C)and nitrogen(N)ions,respectively,are investigated.It is found that C-ion implantation gives a greater yield of NV color centers and superior location accuracy.The effects of different pre-doping concentrations(400–1500 ppm)and implantation energies(1.0–3.0 keV)on the NV color center yield are analyzed,and it is shown that a pre-doping concentra-tion of 1000 ppm with 2 keV C-ion implantation can produce a 13%yield of NV color centers after 1600 K annealing for 7.4 ns.Finally,a brief comparison of the NV color center identification methods is presented,and it is found that the error rate of an analysis utiliz-ing the identify diamond structure coordination analysis method is reduced by about 7%compared with conventional identification+methods.展开更多
The results of experimental study of nanoscale intermetallic formation in surface layer of a metal target at ion implantation are presented. To increase the thickness of the ion implanted surface layer the high intens...The results of experimental study of nanoscale intermetallic formation in surface layer of a metal target at ion implantation are presented. To increase the thickness of the ion implanted surface layer the high intensive ion implantation is used. Compared with the ordinary ion implantation, the high intensive ion implantation allows a much thicker modified surface layer. Pure polycrystalline nickel was chosen as a target. Nickel samples were irradiated with Al ions on the vacuum-arc ion beam and plasma flow source 'Raduga-5'. It was shown that at the high intensity ion implantation the fine dispersed particles of Ni3AI, NiAl intermetallic compounds and solid solution Al in Ni are formed in the nickel surface layer of 200 nm and thicker. The formation of phases takes place in complete correspondence with the Ni-AI phase diagram.展开更多
In order to understand the dnve-in target in a D-D type neutron generator,it is essential to study the mechanism of the interaction between hydrogen ion beams and the hydrogenabsorbing metal film.The present research ...In order to understand the dnve-in target in a D-D type neutron generator,it is essential to study the mechanism of the interaction between hydrogen ion beams and the hydrogenabsorbing metal film.The present research concerns the nucleation of hydride within zirconium film implanted with hydrogen ions.Doses of 30 keV hydrogen ions ranging from 4.30×10^(17) to1.43×10^(18) ions cm^(-2) were loaded into the zirconium film through the ion beam implantation technique.Features of the surface morphology and transformation of phase structures were investigated with scanning electron microscopy,atomic force microscopy and x-ray diffraction.Confirmation of the formation of 5 phase zirconium hydride in the implanted samples was first made by x-ray diffraction,and the different stages in the gradual nucleation and growth of zirconium hydride were then observed by atomic force microscope and scanning electron microscopy.展开更多
Aluminum alloy 2024 has been implanted with nitrogen ions at various doses by plasma based ion implantation. The introduction of energetic ions causes structural change within the near surface region of the solid. The...Aluminum alloy 2024 has been implanted with nitrogen ions at various doses by plasma based ion implantation. The introduction of energetic ions causes structural change within the near surface region of the solid. The samples have been characterized by X-ray Photoelectron Spectroscopy at various depths. The chemical states of Al and N were identified by deconvolution of the recorded XPS spectra. After plasma based ion implanted nitrogen into aluminum, not only the AlN precipitates but also super saturated solution of nitrogen forms. The presence of aluminum in different chemical states is corresponding to Al, AlN and Al2O3. The majority of nitrogen is in the form of the supersaturated solution. With the increase of nitrogen dose, the amount of AlN precipitates increases.展开更多
By implanting B+ and O+ ions respectively into polycarbonate (PC) plates, the surface mechanical properties of PC have been improved. Measurement by Nano Indenter II showed that the hardness of samples increased 7-25 ...By implanting B+ and O+ ions respectively into polycarbonate (PC) plates, the surface mechanical properties of PC have been improved. Measurement by Nano Indenter II showed that the hardness of samples increased 7-25 times than that before implantation; and the modulus of elasticity raised 2-5 times. The wear-resistance was tested by ball crusher; the width and depth of the wear-streak decreased by 1/3-1/2 or even more. The structure, deformation and appearance were analyzed by using Micro-FTIR Spectra, ESCA method and the steps instrument. These analyses showed that the structure of PC had been modified: a series of new cross-linking yielded, it depends on the Linear Energy Transition (LET) of implanted ions in the high polymer compounds.展开更多
In this paper amino acids synthesis in aqueous solution induced by ion implantation, which was possibly ubiquitous on primitive Earth, is investigated. As a discharge using a graphite rod as the anode under a nitrogen...In this paper amino acids synthesis in aqueous solution induced by ion implantation, which was possibly ubiquitous on primitive Earth, is investigated. As a discharge using a graphite rod as the anode under a nitrogen atmosphere was performed against ammonia water, it was found that three kinds of amino acids were produced. They were glycine, serine and alanine. By introducing ion implantation into the carboxylate solution, ammonia and amino acids were also formed via nitrogen deposition/fixation. Another isotopic experiment showed that both OH and H radicals played a crucial role in the arc-discharge-promoted reactions in aqueous solution Therefore, we believe that the impact of ions in the original atmospheric conditions might have functioned as a promoter in the chemical origin and evolution of life.展开更多
Ar^+ ion beam with low energy of 30 keV was implanted into liquorice (Glycyrrhiza uralensis Fisch) seeds at the doses of 0, 600, 900 and 1200 × (2.6 × 10^13) ions/cm^2, respectively. The seeds were sowe...Ar^+ ion beam with low energy of 30 keV was implanted into liquorice (Glycyrrhiza uralensis Fisch) seeds at the doses of 0, 600, 900 and 1200 × (2.6 × 10^13) ions/cm^2, respectively. The seeds were sowed in pots and after one month the plants were subjected to different drought conditions for two months. Then the plants' morphological and physiological characteristics, antioxidation enzymes and levels of endogenous hormones were investigated. The results showed that ion implantation at a proper dose can greatly enhance the liquorice seedlings' resistance against drought stress.展开更多
The specimens were implanted with aluminum ions with fluence ranging from 1× 10^16 to 1× 10^17 ions/cm^2 to study the effect of aluminum ion implantation on the aqueous corrosion behavior of zircaloy-2 by me...The specimens were implanted with aluminum ions with fluence ranging from 1× 10^16 to 1× 10^17 ions/cm^2 to study the effect of aluminum ion implantation on the aqueous corrosion behavior of zircaloy-2 by metal vapor vacuum arc source (MEVVA) at an extraction voltage of 40 kV. The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. Transmission electron microscopy (TEM) was used to examine the microstructure of the aluminum-implanted samples. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the aluminum ion implantation. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted zircaloy-2 in a 1 M H2SO4 solution. It is found that a significant improvement was achieved in the aqueous corrosion resistance of zircaloy-2 implanted with aluminum ions. Finally, the mechanism of the corrosion behavior of aluminum- implanted zircaloy-2 was discussed.展开更多
In order to study the effect of copper ion implantation on the aqueous corrosion behavior of ZIRLO alloy, specimens were implanted with copper ions with fluences ranging from 1×10^16 to 1×10^ ions/cm^2, usin...In order to study the effect of copper ion implantation on the aqueous corrosion behavior of ZIRLO alloy, specimens were implanted with copper ions with fluences ranging from 1×10^16 to 1×10^ ions/cm^2, using a metal vapor vacuum arc source (MEVVA) at an extraction voltage of 40 kV, The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the copper ion implantation. The potcntiodynamic polarization technique was used to evaluate the aqueous corrosion resistance of implanted ZIRLO alloy in a 1 mol/L H2SO4 solution. It was found that a significant improvement was achieved in the aqueous corrosion resistance of ZIRLO alloy implanted with copper ions when the fluence is 5×10^16 ions/cm^2. When the fluence is 1×10^16 or 1×10^17 ions/cm^2, the corrosion resistance of implanted sanaples was bad. Finally, the mechanism of the corrosion behavior of copper-implanted ZIRLO alloy was discussed.展开更多
Objective: Cell and platelet attachment on the multiwalled carbon nanotubes (MWCNTs) were studied by ion implantation. Methods: NH2 ion implantation was performed at the energy of 30 keV with the fluence of 1 x 10...Objective: Cell and platelet attachment on the multiwalled carbon nanotubes (MWCNTs) were studied by ion implantation. Methods: NH2 ion implantation was performed at the energy of 30 keV with the fluence of 1 x 1016 ions/era2 at room temperature. Results: The cell attachment tests showed interesting results in that the number of the platclets adhering on the surface of the MWCNTs was reduced significantly after NH2 ion implantation, whereas, mouse fibroblast cells (L929) cultured on NH2 ion implanted MWCNTs displayed higher cell-viability, proliferation, and stretching compared with MWCNTs. Conclusion: No appreciable change in the tensile strength and the optical transmittance of the implanted samples was observed. X-ray photoelectron spectroscopy (XPS) analysis showed that NH2 ion implantation caused the formation of new N-containing groups.展开更多
The magnetron sputtered La0.7Sr0.3MnO3 films were implanted with different doses (5 ′ 1015 ions×cm?2 and 5 ′ 1016 ions×cm-2) of Al ions at different negative pulsed voltages (30 kV and 50 kV) by plasma bas...The magnetron sputtered La0.7Sr0.3MnO3 films were implanted with different doses (5 ′ 1015 ions×cm?2 and 5 ′ 1016 ions×cm-2) of Al ions at different negative pulsed voltages (30 kV and 50 kV) by plasma based ion implantation and then annealed at 973 K for 1 h in air. The microstructure, surface morphologies, surface roughness, metal-insulator transition and room temperature emittance properties of the post-implantation annealed films were investigated and compared with those of the La0.7Sr0.3MnO3 film annealed at 973 K for 1 h in air. The results indicate that the post- implantation annealed films show single perovskite phase and obvious (100) preferred orientation growth. The Mn-O bond length, surface roughness and metal-insulator transition temperature (TMI) of the films can be effectively adjusted by changing implantation voltage or implantation dose of Al ions. However, the change of implantation parameters just has a small effect on room temperature emittance of the films. Compared with the annealed film, the post-implantation annealed films have shorter Mn-O bond length and lower room temperature emittance. The TMI of the films implanted at low voltage is lower than that of the annealed film, which mainly results from the degradation of oxidization during annealing process and the part displacement of Mn3+-O2+- Mn4+ double exchange channels by Al3+-O2?-Mn4+. The post-implanted annealed film implanted at 50 kV/5 ′ 1016 ions×cm-2 has a higher TMI than the annealed film, which is 247 K. The increase of TMI of the film implanted with high dose of Al ions at high voltage can be attributed to the improvement of microstructure.展开更多
Various doses of nitrogen ions were implanted into the surface of pure titanium, Ti6Al7Nb and Ti6Al4V, by plasma immersion ion implantation. Torsional fretting wear tests involving flat specimens of no-treated and tre...Various doses of nitrogen ions were implanted into the surface of pure titanium, Ti6Al7Nb and Ti6Al4V, by plasma immersion ion implantation. Torsional fretting wear tests involving flat specimens of no-treated and treated titanium, as well as its alloys, against a ZrO2 ball contact were performed on a torsional fretting wear test rig using a simulated physiological medium of serum solution. The treated surfaces were characterized, and the effect of implantation dose on torsional fretting behavior was discussed in detail. The results showed that the torsional fretting running and damage behavior of titanium and its alloys were strongly dependent on the dose of the implanted nitrogen ions and the angular displacement amplitude. The torsional fretting running boundary moved to smaller angular displacement amplitude, and the central light damage zone decreased, as the ion dose increased. The wear mechanisms of titanium and its alloys were oxidative wear, abrasive wear and delamination, with abrasive wear as the most common mechanism of the ion implantation layers.展开更多
The biological effects during seed germination were investigated after the dry seeds of Stevia rebaudianum Bertoni were implanted with carbon ion beam of 75 keV and 10 14 ions/cm 2. The results showed that the g...The biological effects during seed germination were investigated after the dry seeds of Stevia rebaudianum Bertoni were implanted with carbon ion beam of 75 keV and 10 14 ions/cm 2. The results showed that the germination rate of carbon ion implanted seeds was slightly higher than that of the control, but the survival rate of the treated seedlings, on the contrary, was lower than that of the control (P<0.02), while the height of the treated seedlings was significantly higher than that of the control (P<0.01). On the 4th day after germination, the leaf cell wall in the treated group was thick, some high electron_dense substance deposited in the enlarged plasmodesma; Cell membrane creased with high electron_dense granules deposited on it. The plasma membrane protruded towards cell wall, and the granules shifted via plasmodesma or deposited onto cell wall. These phenomena may be related to the conveyance of implanted ions across cell wall, or be related to the accumulation of callose. In addition, the implantation of carbon ions could increase the lamellae of the chloroplast and cause high development of the chloroplast which sometimes contained two plastid centers in an individual chloroplast. Also, the highly developed cristae, abundant mitochondria and typical crystalloid structure in microbody could be found. All these results indicated that the anabolic and catabolic activities in the seedlings implanted with carbon ions before germination were obviously more active than those in the controls.展开更多
[Objective] This study was to investigate the effect of N+ ion beam implantation on the survival rate and mutation rate of biocontrol strain Bacillus subtilis. [Method] The factors influencing B. subtilis ion beam im...[Objective] This study was to investigate the effect of N+ ion beam implantation on the survival rate and mutation rate of biocontrol strain Bacillus subtilis. [Method] The factors influencing B. subtilis ion beam implantation, including culture time, dilution concentration, solvent, drying time of mycoderm were optimized. B. subtilis cells were implanted by using ion beam at dose of 2.0×10^14~4.0×10^14 ions/cm2 and the energy of 30 kev. Then the methods of culturing colonies confronting each other on plate and Oxford cup diffusion were used to screening strains. [Result] The optimal parameters were found as follows: culture in liquid for 20-24 h, dilution with sterile water to 106 cells/ml and drying time of 60 min for sample preparation; the optimal N+ ion beam implantation dose of 2.0×10^14~4.0×10^14 ions/cm2 at the energy of 30 kev, the survival rate of 8.43%-26.71% and the mutation rate of 3.50%-5.43%. [Conclusion] This study provided reference for ion beam implantation mutation of B. subtilis.展开更多
A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relat...A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relationship between turn- off time and forward voltage drop is improved.At the same time,the forward volta ge drop and turn-off time of such device are researched,when localized lifetime control region place near the p+-n junction,even in p+ anode.The results s how for the first time,helium ions,which stop in the p+ anode,also contribute to the forward voltage drop increasing and turn-off time reducing.展开更多
The technology of He ion implantation for improving the catastrophic optical damage (COD) level of 980nm semiconductor lasers is introduced.After He ion implantation,p-GaAs obtain higher resistivity than before.About...The technology of He ion implantation for improving the catastrophic optical damage (COD) level of 980nm semiconductor lasers is introduced.After He ion implantation,p-GaAs obtain higher resistivity than before.About 25μm-long current non-injection regions are introduced near both facets,where the injection current is blocked by high resistivity area.The current non-injection regions can reduce carriers inject to facets,and the rate of the non-radiative recombination are reduced.So the COD level is higher than before.The He ion implantation LDs exhibit no COD failure until the rollover occure at a mean maximum power of 440.5mW.Mean COD level of conventional LDs is given as 407.5mW.Compared to conventional LDs,the mean maximum output power level of He ion implantation LDs is improved by 8%.展开更多
Polycrystalline diamond thin films are deposited on an n-type Si substrates by hot filament chemical vapor deposition,and then are implanted with boron ions in a 200keV ion implanter.In order to achieve a better distr...Polycrystalline diamond thin films are deposited on an n-type Si substrates by hot filament chemical vapor deposition,and then are implanted with boron ions in a 200keV ion implanter.In order to achieve a better distribution of the implanted element,boron ions are implanted by two steps:implanting boron ions with the energy of 70keV first,and then with the energy of 100keV.The homogeneous distribution of the B ion is gained.The current-voltage characteristics of the samples are studied.It is found that the p-n heterojunction effect is achieved in these samples.展开更多
Synthetic silicides with good properties were prepared,as Y ions were implanted into silicon using metal vapor vacuum arc (MEVVA) ion implantor and annealed by Rapid Thermal Annealing (RTA).The structure of synthetic ...Synthetic silicides with good properties were prepared,as Y ions were implanted into silicon using metal vapor vacuum arc (MEVVA) ion implantor and annealed by Rapid Thermal Annealing (RTA).The structure of synthetic silicides has been investigated with the analysis of channeled low angle emergence and TEM.Three layers could be observed in the implanted region as the implanting ion flux is selected as 25μA/cm\+2.The thickness of the silicide layer is about 60—80nm.The defect density N \-d and sheet resistance R \-s decrease with the increase of the ion flux.After RTA annealing of the implanted sample,the N\-d and R\-s decreased obviously.R\-s decreased from 54Ω/□ to 14Ω/□.The minimum of resistivity is 84μΩ·cm.It is evident that electrical properties of the Y silicides can be improved by RTA.The formation of the silicides with YSi and YSi\-2 are confirmed by X\|ray diffraction (XRD) analysis.With the analysis of low angle emergence,important information exposed from the depth profiles of atoms and lattice distortion in an implanted region would be used to study the synthesis of silicides.展开更多
基金supported by the National Key R&D Program of China(No.2022YFA1203400)the National Natural Science Foundation of China under Grant(Nos.62174093 and 12075307)+7 种基金the Ningbo Youth Science and Technology Innovation Leading Talent Project under Grant(No.2023QL006)the Open Research Fund of China National Key Laboratory of Materials for Integrated Circuits(No.NKLJC-K2023-01)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110628)the support by LDRD Seedling ER project at Los Alamos National Laboratory,NM,USA(No.20210867ER)partially supported by Guangdong Provincial Key Laboratory of Computational Science and Material Design(No.2019B030301001)supported by Center for Computational Science and Engineering at Southern University of Science and TechnologyShanghai Rising-Star Program(No.21QA1410900)the support from the Youth Innovation Promotion Association CAS
文摘Direct synthesis of layer-tunable and transfer-free graphene on technologically important substrates is highly valued for various electronics and device applications.State of the art in the field is currently a two-step process:a high-quality graphene layer synthesis on metal substrate through chemical vapor deposition(CVD)followed by delicate layer transfer onto device-relevant substrates.Here,we report a novel synthesis approach combining ion implantation for a precise graphene layer control and dual-metal smart Janus substrate for a diffusion-limiting graphene formation to directly synthesize large area,high quality,and layer-tunable graphene films on arbitrary substrates without the post-synthesis layer transfer process.Carbon(C)ion implantation was performed on Cu-Ni film deposited on a variety of device-relevant substrates.A well-controlled number of layers of graphene,primarily monolayer and bilayer,is precisely controlled by the equivalent fluence of the implanted C-atoms(1 monolayer~4×10^(15)C-atoms/cm^(2)).Upon thermal annealing to promote Cu-Ni alloying,the pre-implanted C-atoms in the Ni layer are pushed toward the Ni/substrate interface by the top Cu layer due to the poor C-solubility in Cu.As a result,the expelled C-atoms precipitate into a graphene structure at the interface facilitated by the Cu-like alloy catalysis.After removing the alloyed Cu-like surface layer,the layer-tunable graphene on the desired substrate is directly realized.The layer-selectivity,high quality,and uniformity of the graphene films are not only confirmed with detailed characterizations using a suite of surface analysis techniques but more importantly are successfully demonstrated by the excellent properties and performance of several devices directly fabricated from these graphene films.Molecular dynamics(MD)simulations using the reactive force field(ReaxFF)were performed to elucidate the graphene formation mechanisms in this novel synthesis approach.With the wide use of ion implantation technology in the microelectronics industry,this novel graphene synthesis approach with precise layer-tunability and transfer-free processing has the promise to advance efficient graphene-device manufacturing and expedite their versatile applications in many fields.
基金supported by the National Natural Science Foundation of China(Grant Nos.52035009 and 51761135106)the State Key Laboratory of Precision Measuring Technology and Instruments(Pilt1705)+1 种基金the Henan Key Laboratory of Intelligent Manufacturing Equipment Integration for Superhard Materials(JDKJ2022-01)the“111”project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China(Grant No.B07014).
文摘Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition.However,there is a lack of studies of the yield of NV color centers at the atomic scale.In the molecular dynamics simulations described in this paper,NV color centers are pre-pared by ion implantation in diamond with pre-doped nitrogen and subsequent annealing.The differences between the yields of NV color centers produced by implantation of carbon(C)and nitrogen(N)ions,respectively,are investigated.It is found that C-ion implantation gives a greater yield of NV color centers and superior location accuracy.The effects of different pre-doping concentrations(400–1500 ppm)and implantation energies(1.0–3.0 keV)on the NV color center yield are analyzed,and it is shown that a pre-doping concentra-tion of 1000 ppm with 2 keV C-ion implantation can produce a 13%yield of NV color centers after 1600 K annealing for 7.4 ns.Finally,a brief comparison of the NV color center identification methods is presented,and it is found that the error rate of an analysis utiliz-ing the identify diamond structure coordination analysis method is reduced by about 7%compared with conventional identification+methods.
文摘The results of experimental study of nanoscale intermetallic formation in surface layer of a metal target at ion implantation are presented. To increase the thickness of the ion implanted surface layer the high intensive ion implantation is used. Compared with the ordinary ion implantation, the high intensive ion implantation allows a much thicker modified surface layer. Pure polycrystalline nickel was chosen as a target. Nickel samples were irradiated with Al ions on the vacuum-arc ion beam and plasma flow source 'Raduga-5'. It was shown that at the high intensity ion implantation the fine dispersed particles of Ni3AI, NiAl intermetallic compounds and solid solution Al in Ni are formed in the nickel surface layer of 200 nm and thicker. The formation of phases takes place in complete correspondence with the Ni-AI phase diagram.
基金Financial support from National Natural Science Foundation of China(nos 11205136 and 11505145)the Research Fund for Doctoral Program of Southwest University of Science and Technology(no.l4zx7166)
文摘In order to understand the dnve-in target in a D-D type neutron generator,it is essential to study the mechanism of the interaction between hydrogen ion beams and the hydrogenabsorbing metal film.The present research concerns the nucleation of hydride within zirconium film implanted with hydrogen ions.Doses of 30 keV hydrogen ions ranging from 4.30×10^(17) to1.43×10^(18) ions cm^(-2) were loaded into the zirconium film through the ion beam implantation technique.Features of the surface morphology and transformation of phase structures were investigated with scanning electron microscopy,atomic force microscopy and x-ray diffraction.Confirmation of the formation of 5 phase zirconium hydride in the implanted samples was first made by x-ray diffraction,and the different stages in the gradual nucleation and growth of zirconium hydride were then observed by atomic force microscope and scanning electron microscopy.
文摘Aluminum alloy 2024 has been implanted with nitrogen ions at various doses by plasma based ion implantation. The introduction of energetic ions causes structural change within the near surface region of the solid. The samples have been characterized by X-ray Photoelectron Spectroscopy at various depths. The chemical states of Al and N were identified by deconvolution of the recorded XPS spectra. After plasma based ion implanted nitrogen into aluminum, not only the AlN precipitates but also super saturated solution of nitrogen forms. The presence of aluminum in different chemical states is corresponding to Al, AlN and Al2O3. The majority of nitrogen is in the form of the supersaturated solution. With the increase of nitrogen dose, the amount of AlN precipitates increases.
基金This work was supported by MOE Key Laboratory for Heavy Ion Physics, Peking University.
文摘By implanting B+ and O+ ions respectively into polycarbonate (PC) plates, the surface mechanical properties of PC have been improved. Measurement by Nano Indenter II showed that the hardness of samples increased 7-25 times than that before implantation; and the modulus of elasticity raised 2-5 times. The wear-resistance was tested by ball crusher; the width and depth of the wear-streak decreased by 1/3-1/2 or even more. The structure, deformation and appearance were analyzed by using Micro-FTIR Spectra, ESCA method and the steps instrument. These analyses showed that the structure of PC had been modified: a series of new cross-linking yielded, it depends on the Linear Energy Transition (LET) of implanted ions in the high polymer compounds.
基金the National Natural Science Foundation of China(No.29772033)
文摘In this paper amino acids synthesis in aqueous solution induced by ion implantation, which was possibly ubiquitous on primitive Earth, is investigated. As a discharge using a graphite rod as the anode under a nitrogen atmosphere was performed against ammonia water, it was found that three kinds of amino acids were produced. They were glycine, serine and alanine. By introducing ion implantation into the carboxylate solution, ammonia and amino acids were also formed via nitrogen deposition/fixation. Another isotopic experiment showed that both OH and H radicals played a crucial role in the arc-discharge-promoted reactions in aqueous solution Therefore, we believe that the impact of ions in the original atmospheric conditions might have functioned as a promoter in the chemical origin and evolution of life.
基金High Tech Research and Development(863)Program(Nos.2002AA327070,2004AA32G060)
文摘Ar^+ ion beam with low energy of 30 keV was implanted into liquorice (Glycyrrhiza uralensis Fisch) seeds at the doses of 0, 600, 900 and 1200 × (2.6 × 10^13) ions/cm^2, respectively. The seeds were sowed in pots and after one month the plants were subjected to different drought conditions for two months. Then the plants' morphological and physiological characteristics, antioxidation enzymes and levels of endogenous hormones were investigated. The results showed that ion implantation at a proper dose can greatly enhance the liquorice seedlings' resistance against drought stress.
基金the National Natural Science Foundation of China (No.50501011, G 2000067207-1)Postdoctoral Research Foundation of China (37th batch, No.2005037079)
文摘The specimens were implanted with aluminum ions with fluence ranging from 1× 10^16 to 1× 10^17 ions/cm^2 to study the effect of aluminum ion implantation on the aqueous corrosion behavior of zircaloy-2 by metal vapor vacuum arc source (MEVVA) at an extraction voltage of 40 kV. The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. Transmission electron microscopy (TEM) was used to examine the microstructure of the aluminum-implanted samples. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the aluminum ion implantation. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted zircaloy-2 in a 1 M H2SO4 solution. It is found that a significant improvement was achieved in the aqueous corrosion resistance of zircaloy-2 implanted with aluminum ions. Finally, the mechanism of the corrosion behavior of aluminum- implanted zircaloy-2 was discussed.
基金This work was financially supported by the National Natural Science Foundation of China (No.50501011), the Ministry of Science andTechnology of China for Research Founding (MSTC No.G 2000067207-1), and the Postdoctoral Research Foundation of China (37thbatch, No.2005037079).
文摘In order to study the effect of copper ion implantation on the aqueous corrosion behavior of ZIRLO alloy, specimens were implanted with copper ions with fluences ranging from 1×10^16 to 1×10^ ions/cm^2, using a metal vapor vacuum arc source (MEVVA) at an extraction voltage of 40 kV, The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the copper ion implantation. The potcntiodynamic polarization technique was used to evaluate the aqueous corrosion resistance of implanted ZIRLO alloy in a 1 mol/L H2SO4 solution. It was found that a significant improvement was achieved in the aqueous corrosion resistance of ZIRLO alloy implanted with copper ions when the fluence is 5×10^16 ions/cm^2. When the fluence is 1×10^16 or 1×10^17 ions/cm^2, the corrosion resistance of implanted sanaples was bad. Finally, the mechanism of the corrosion behavior of copper-implanted ZIRLO alloy was discussed.
基金National Natural Science Foundation of China grant number: 51272176 and 11075116+3 种基金National Basic Research Program of China (973 program) grant number: 2012CB933604The Open Research Fund of the State Key Laboratory of Bioelectronics, Southeast Universitythe Key Laboratory of Beam Technology and Material Modification of the Ministry of Education,Beijing Normal University, China
文摘Objective: Cell and platelet attachment on the multiwalled carbon nanotubes (MWCNTs) were studied by ion implantation. Methods: NH2 ion implantation was performed at the energy of 30 keV with the fluence of 1 x 1016 ions/era2 at room temperature. Results: The cell attachment tests showed interesting results in that the number of the platclets adhering on the surface of the MWCNTs was reduced significantly after NH2 ion implantation, whereas, mouse fibroblast cells (L929) cultured on NH2 ion implanted MWCNTs displayed higher cell-viability, proliferation, and stretching compared with MWCNTs. Conclusion: No appreciable change in the tensile strength and the optical transmittance of the implanted samples was observed. X-ray photoelectron spectroscopy (XPS) analysis showed that NH2 ion implantation caused the formation of new N-containing groups.
文摘The magnetron sputtered La0.7Sr0.3MnO3 films were implanted with different doses (5 ′ 1015 ions×cm?2 and 5 ′ 1016 ions×cm-2) of Al ions at different negative pulsed voltages (30 kV and 50 kV) by plasma based ion implantation and then annealed at 973 K for 1 h in air. The microstructure, surface morphologies, surface roughness, metal-insulator transition and room temperature emittance properties of the post-implantation annealed films were investigated and compared with those of the La0.7Sr0.3MnO3 film annealed at 973 K for 1 h in air. The results indicate that the post- implantation annealed films show single perovskite phase and obvious (100) preferred orientation growth. The Mn-O bond length, surface roughness and metal-insulator transition temperature (TMI) of the films can be effectively adjusted by changing implantation voltage or implantation dose of Al ions. However, the change of implantation parameters just has a small effect on room temperature emittance of the films. Compared with the annealed film, the post-implantation annealed films have shorter Mn-O bond length and lower room temperature emittance. The TMI of the films implanted at low voltage is lower than that of the annealed film, which mainly results from the degradation of oxidization during annealing process and the part displacement of Mn3+-O2+- Mn4+ double exchange channels by Al3+-O2?-Mn4+. The post-implanted annealed film implanted at 50 kV/5 ′ 1016 ions×cm-2 has a higher TMI than the annealed film, which is 247 K. The increase of TMI of the film implanted with high dose of Al ions at high voltage can be attributed to the improvement of microstructure.
基金Supported by the Natural Science Foundation of China (No. 10375044, 10435060) and by Specialized Research Fund for the Doctoral Program of Higher Education (No. 20050486054). L. P. Guo greatfully acknowledges the support of K. C. Wong Education Foundation, HongKong.
基金Projects(U1530136,51375407)supported by the National Natural Science Foundation of China
文摘Various doses of nitrogen ions were implanted into the surface of pure titanium, Ti6Al7Nb and Ti6Al4V, by plasma immersion ion implantation. Torsional fretting wear tests involving flat specimens of no-treated and treated titanium, as well as its alloys, against a ZrO2 ball contact were performed on a torsional fretting wear test rig using a simulated physiological medium of serum solution. The treated surfaces were characterized, and the effect of implantation dose on torsional fretting behavior was discussed in detail. The results showed that the torsional fretting running and damage behavior of titanium and its alloys were strongly dependent on the dose of the implanted nitrogen ions and the angular displacement amplitude. The torsional fretting running boundary moved to smaller angular displacement amplitude, and the central light damage zone decreased, as the ion dose increased. The wear mechanisms of titanium and its alloys were oxidative wear, abrasive wear and delamination, with abrasive wear as the most common mechanism of the ion implantation layers.
文摘The biological effects during seed germination were investigated after the dry seeds of Stevia rebaudianum Bertoni were implanted with carbon ion beam of 75 keV and 10 14 ions/cm 2. The results showed that the germination rate of carbon ion implanted seeds was slightly higher than that of the control, but the survival rate of the treated seedlings, on the contrary, was lower than that of the control (P<0.02), while the height of the treated seedlings was significantly higher than that of the control (P<0.01). On the 4th day after germination, the leaf cell wall in the treated group was thick, some high electron_dense substance deposited in the enlarged plasmodesma; Cell membrane creased with high electron_dense granules deposited on it. The plasma membrane protruded towards cell wall, and the granules shifted via plasmodesma or deposited onto cell wall. These phenomena may be related to the conveyance of implanted ions across cell wall, or be related to the accumulation of callose. In addition, the implantation of carbon ions could increase the lamellae of the chloroplast and cause high development of the chloroplast which sometimes contained two plastid centers in an individual chloroplast. Also, the highly developed cristae, abundant mitochondria and typical crystalloid structure in microbody could be found. All these results indicated that the anabolic and catabolic activities in the seedlings implanted with carbon ions before germination were obviously more active than those in the controls.
基金Supported by the"Bud Plan"Project of Beijing Academy of Science and Technology(No.022)~~
文摘[Objective] This study was to investigate the effect of N+ ion beam implantation on the survival rate and mutation rate of biocontrol strain Bacillus subtilis. [Method] The factors influencing B. subtilis ion beam implantation, including culture time, dilution concentration, solvent, drying time of mycoderm were optimized. B. subtilis cells were implanted by using ion beam at dose of 2.0×10^14~4.0×10^14 ions/cm2 and the energy of 30 kev. Then the methods of culturing colonies confronting each other on plate and Oxford cup diffusion were used to screening strains. [Result] The optimal parameters were found as follows: culture in liquid for 20-24 h, dilution with sterile water to 106 cells/ml and drying time of 60 min for sample preparation; the optimal N+ ion beam implantation dose of 2.0×10^14~4.0×10^14 ions/cm2 at the energy of 30 kev, the survival rate of 8.43%-26.71% and the mutation rate of 3.50%-5.43%. [Conclusion] This study provided reference for ion beam implantation mutation of B. subtilis.
文摘A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relationship between turn- off time and forward voltage drop is improved.At the same time,the forward volta ge drop and turn-off time of such device are researched,when localized lifetime control region place near the p+-n junction,even in p+ anode.The results s how for the first time,helium ions,which stop in the p+ anode,also contribute to the forward voltage drop increasing and turn-off time reducing.
文摘The technology of He ion implantation for improving the catastrophic optical damage (COD) level of 980nm semiconductor lasers is introduced.After He ion implantation,p-GaAs obtain higher resistivity than before.About 25μm-long current non-injection regions are introduced near both facets,where the injection current is blocked by high resistivity area.The current non-injection regions can reduce carriers inject to facets,and the rate of the non-radiative recombination are reduced.So the COD level is higher than before.The He ion implantation LDs exhibit no COD failure until the rollover occure at a mean maximum power of 440.5mW.Mean COD level of conventional LDs is given as 407.5mW.Compared to conventional LDs,the mean maximum output power level of He ion implantation LDs is improved by 8%.
文摘Polycrystalline diamond thin films are deposited on an n-type Si substrates by hot filament chemical vapor deposition,and then are implanted with boron ions in a 200keV ion implanter.In order to achieve a better distribution of the implanted element,boron ions are implanted by two steps:implanting boron ions with the energy of 70keV first,and then with the energy of 100keV.The homogeneous distribution of the B ion is gained.The current-voltage characteristics of the samples are studied.It is found that the p-n heterojunction effect is achieved in these samples.
基金Project Supported by National Natural Science Foundation of China ( Grant No.59671 0 51 ) and by National HighTechnology Resea
文摘Synthetic silicides with good properties were prepared,as Y ions were implanted into silicon using metal vapor vacuum arc (MEVVA) ion implantor and annealed by Rapid Thermal Annealing (RTA).The structure of synthetic silicides has been investigated with the analysis of channeled low angle emergence and TEM.Three layers could be observed in the implanted region as the implanting ion flux is selected as 25μA/cm\+2.The thickness of the silicide layer is about 60—80nm.The defect density N \-d and sheet resistance R \-s decrease with the increase of the ion flux.After RTA annealing of the implanted sample,the N\-d and R\-s decreased obviously.R\-s decreased from 54Ω/□ to 14Ω/□.The minimum of resistivity is 84μΩ·cm.It is evident that electrical properties of the Y silicides can be improved by RTA.The formation of the silicides with YSi and YSi\-2 are confirmed by X\|ray diffraction (XRD) analysis.With the analysis of low angle emergence,important information exposed from the depth profiles of atoms and lattice distortion in an implanted region would be used to study the synthesis of silicides.