Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same g...Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method.展开更多
Extracting valuable information frombiomedical texts is one of the current research hotspots of concern to a wide range of scholars.The biomedical corpus contains numerous complex long sentences and overlapping relati...Extracting valuable information frombiomedical texts is one of the current research hotspots of concern to a wide range of scholars.The biomedical corpus contains numerous complex long sentences and overlapping relational triples,making most generalized domain joint modeling methods difficult to apply effectively in this field.For a complex semantic environment in biomedical texts,in this paper,we propose a novel perspective to perform joint entity and relation extraction;existing studies divide the relation triples into several steps or modules.However,the three elements in the relation triples are interdependent and inseparable,so we regard joint extraction as a tripartite classification problem.At the same time,fromthe perspective of triple classification,we design amulti-granularity 2D convolution to refine the word pair table and better utilize the dependencies between biomedical word pairs.Finally,we use a biaffine predictor to assist in predicting the labels of word pairs for relation extraction.Our model(MCTPL)Multi-granularity Convolutional Tokens Pairs of Labeling better utilizes the elements of triples and improves the ability to extract overlapping triples compared to previous approaches.Finally,we evaluated our model on two publicly accessible datasets.The experimental results show that our model’s ability to extract relation triples on the CPI dataset improves the F1 score by 2.34%compared to the current optimal model.On the DDI dataset,the F1 value improves the F1 value by 1.68%compared to the current optimal model.Our model achieved state-of-the-art performance compared to other baseline models in biomedical text entity relation extraction.展开更多
The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborho...The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborhood rough sets to two universes multi-granularity fuzzy rough sets, and discusses the two-universes multi-granularity neighborhood fuzzy rough set model. Firstly, the upper and lower approximation operators are defined in the two universes multi-granularity neighborhood fuzzy rough set model. Secondly, the properties of the upper and lower approximation operators are discussed. Finally, the properties of the two universes multi-granularity neighborhood fuzzy rough set model are verified through case studies.展开更多
To effectively deal with fuzzy and uncertain information in public engineering emergencies,an emergency decision-making method based on multi-granularity language information is proposed.Firstly,decision makers select...To effectively deal with fuzzy and uncertain information in public engineering emergencies,an emergency decision-making method based on multi-granularity language information is proposed.Firstly,decision makers select the appropriate language phrase set according to their own situation,give the preference information of the weight of each key indicator,and then transform the multi-granularity language information through consistency.On this basis,the sequential optimization technology of the approximately ideal scheme is introduced to obtain the weight coefficient of each key indicator.Subsequently,the weighted average operator is used to aggregate the preference information of each alternative scheme with the relative importance of decision-makers and the weight of key indicators in sequence,and the comprehensive evaluation value of each scheme is obtained to determine the optimal scheme.Lastly,the effectiveness and practicability of the method are verified by taking the earthwork collapse accident in the construction of a reservoir as an example.展开更多
In view of the complexity of emergencies and the subjectivity of decision-makers,a method of determining key emergency indicators based on multi-granularity uncertainty language is proposed.Firstly,decision members us...In view of the complexity of emergencies and the subjectivity of decision-makers,a method of determining key emergency indicators based on multi-granularity uncertainty language is proposed.Firstly,decision members use preferred uncertain language phrases to represent the importance of each key indicator and use transformation functions to carry out the consistent transformation of this multi-granularity uncertain language information.Secondly,the group evaluation vector is obtained by using the extended weighted average operator of uncertainty,and then the weight vector of each key index is obtained by using the decision theory of uncertain language.Finally,an example is given to verify the practicability and effectiveness of the proposed method.展开更多
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
The multi-granularity spatial-temporal-related access control(MSTAC) model was proposed to meet the spatial access control requirements for the service-oriented spatial data infrastructure(SDI). MSTAC extends the ...The multi-granularity spatial-temporal-related access control(MSTAC) model was proposed to meet the spatial access control requirements for the service-oriented spatial data infrastructure(SDI). MSTAC extends the attribute constraints of role-based access control(RBAC), which includes the user's location attribute, the role's time constraint, the layer vector constraint of a map class, the scale and time constraints of a geographic layer, the topological constraints of geographic features, the semantic attribute expression constraints of geographic features, and the field constraint of feature views. Through this model, authorized users would be limited to access different granularity spatial datasets, such as the map granularity, the graphic layer granularity, the feature object granularity and the feature view granularity. Finally, the MSTAC model is achieved in a web GIS, which shows the positive and negative authorizations to different services in different data granularities and time periods.展开更多
As a key technology to realize smart services of Internet of Things(IoT), network virtualization technology can support the network diversification and ubiquity, and improve the utilization rate of network resources...As a key technology to realize smart services of Internet of Things(IoT), network virtualization technology can support the network diversification and ubiquity, and improve the utilization rate of network resources. This paper studies the service-ori- ented network virtualization architecture for loT services. Firstly the semantic description method for loT services is proposed, then the resource representation model and resource management model in the environment of network virtualization are presented. Based on the above models, the service-oriented virtual network architecture for loT is established. Finally, a smart campus system is designed and deployed based on the service-oriented virtual network architecture. Moreover, the proposed architecture and models are verified in experiments.展开更多
Network Functions Virtualization(NFV) is an attempt to help operators more effectively manage their networks by implementing traditional network functions embedded in specialized hardware platforms in term of virtuali...Network Functions Virtualization(NFV) is an attempt to help operators more effectively manage their networks by implementing traditional network functions embedded in specialized hardware platforms in term of virtualized software instances. But, existing novel network appliances designed for NFV infrastructure are always architected on a general-purpose x86 server, which makes the performance of network functions limited by the hosted single server. To address this challenge, we propose ApplianceB ricks, a novel NFV-enable network appliance architecture that is used to explore the way of consolidating multiple physical network functions into a clustered network appliance, which is able to improve the processing capability of NFV-enabled network appliances.展开更多
Visible-infrared Cross-modality Person Re-identification(VI-ReID)is a critical technology in smart public facilities such as cities,campuses and libraries.It aims to match pedestrians in visible light and infrared ima...Visible-infrared Cross-modality Person Re-identification(VI-ReID)is a critical technology in smart public facilities such as cities,campuses and libraries.It aims to match pedestrians in visible light and infrared images for video surveillance,which poses a challenge in exploring cross-modal shared information accurately and efficiently.Therefore,multi-granularity feature learning methods have been applied in VI-ReID to extract potential multi-granularity semantic information related to pedestrian body structure attributes.However,existing research mainly uses traditional dual-stream fusion networks and overlooks the core of cross-modal learning networks,the fusion module.This paper introduces a novel network called the Augmented Deep Multi-Granularity Pose-Aware Feature Fusion Network(ADMPFF-Net),incorporating the Multi-Granularity Pose-Aware Feature Fusion(MPFF)module to generate discriminative representations.MPFF efficiently explores and learns global and local features with multi-level semantic information by inserting disentangling and duplicating blocks into the fusion module of the backbone network.ADMPFF-Net also provides a new perspective for designing multi-granularity learning networks.By incorporating the multi-granularity feature disentanglement(mGFD)and posture information segmentation(pIS)strategies,it extracts more representative features concerning body structure information.The Local Information Enhancement(LIE)module augments high-performance features in VI-ReID,and the multi-granularity joint loss supervises model training for objective feature learning.Experimental results on two public datasets show that ADMPFF-Net efficiently constructs pedestrian feature representations and enhances the accuracy of VI-ReID.展开更多
Since virtualization technology enables the abstraction and sharing of resources in a flexible management way, the overall expenses of network deployment can be significantly reduced. Therefore, the technology has bee...Since virtualization technology enables the abstraction and sharing of resources in a flexible management way, the overall expenses of network deployment can be significantly reduced. Therefore, the technology has been widely applied in the core network. With the tremendous growth in mobile traffic and services, it is natural to extend virtualization technology to the cloud computing based radio access networks(CCRANs) for achieving high spectral efficiency with low cost.In this paper, the virtualization technologies in CC-RANs are surveyed, including the system architecture, key enabling techniques, challenges, and open issues. The enabling key technologies for virtualization in CC-RANs mainly including virtual resource allocation, radio access network(RAN) slicing, mobility management, and social-awareness have been comprehensively surveyed to satisfy the isolation, customization and high-efficiency utilization of radio resources. The challenges and open issues mainly focus on virtualization levels for CC-RANs, signaling design for CC-RAN virtualization, performance analysis for CC-RAN virtualization, and network security for virtualized CC-RANs.展开更多
The concept of virtualization machines is not new, but it is increasing vastly and gaining popularity in the IT world. Hypervisors are also popular for security as a means of isolation. The virtualization of informati...The concept of virtualization machines is not new, but it is increasing vastly and gaining popularity in the IT world. Hypervisors are also popular for security as a means of isolation. The virtualization of information technology infrastructure creates the enablement of IT resources to be shared and used on several other devices and applications;this increases the growth of business needs. The environment created by virtualization is not restricted to any configuration physically or execution. The resources of a computer are shared logically. Hypervisors help in virtualization of hardware that is a software interact with the physical system, enabling or providing virtualized hardware environment to support multiple running operating system simultaneously utilizing one physical server. This paper explores the benefits, types and security issues of Virtualization Hypervisor in virtualized hardware environment.展开更多
This paper proposes a content addres sable storage optimization method, VDeskCAS, for desktop virtualization storage based disaster backup storage system. The method implements a blocklevel storage optimization, by em...This paper proposes a content addres sable storage optimization method, VDeskCAS, for desktop virtualization storage based disaster backup storage system. The method implements a blocklevel storage optimization, by employing the algorithms of chunking image file into blocks, the blockffmger calculation and the block dedup li cation. A File system in Use Space (FUSE) based storage process for VDeskCAS is also introduced which optimizes current direct storage to suit our content addressable storage. An interface level modification makes our system easy to extend. Experiments on virtual desktop image files and normal files verify the effectiveness of our method and above 60% storage volume decrease is a chieved for Red Hat Enterprise Linux image files. Key words: disaster backup; desktop virtualization; storage optimization; content addressable storage展开更多
The evolution of airborne tactical networks(ATNs)is impeded by the network ossification problem.As a solution,network virtualization(NV)can provide a flexible and scalable architecture where virtual network embedding(...The evolution of airborne tactical networks(ATNs)is impeded by the network ossification problem.As a solution,network virtualization(NV)can provide a flexible and scalable architecture where virtual network embedding(VNE)is a key part.However,existing VNE algorithms cannot be optimally adopted in the virtualization of ATN due to the complex interference in aircombat field.In this context,a highly reliable VNE algorithm based on the transmission rate for ATN virtualization(TR-ATVNE)is proposed to adapt well to the specific electromagnetic environment of ATN.Our algorithm coordinates node and link mapping.In the node mapping,transmission-rate resource is firstly defined to effectively evaluate the ranking value of substrate nodes under the interference of both environmental noises and enemy attacks.Meanwhile,a feasible splitting rule is proposed for path splitting in the link mapping,considering the interference between wireless links.Simulation results reveal that our algorithm is able to improve the acceptance ratio of virtual network requests while maintaining a high revenue-to-cost ratio under the complex electromagnetic interference.展开更多
It is absolutely critical that trusted configuration management which significantly affects trust chain establishment, sealing storage and remote attestation, especially in trusted virtualization platform like Xen who...It is absolutely critical that trusted configuration management which significantly affects trust chain establishment, sealing storage and remote attestation, especially in trusted virtualization platform like Xen whose system configuration changes easily. TPM (trusted platform module) context manager is presented to carry out dynamic configuration management for virtual machine. It manages the TPM command requests and VM (virtual machine) configurations. The dynamic configuration representa- tion method based on Merkle hash tree is explicitly proposed against TCG (trusted computing group) static configuration representation. It reflects the true VM status in real time even if the configuration has changed, and it eliminates the invalidation of configuration representation, sealing storage and remote attestation. TPM context manager supports TCG storage protection, remote attestation etc, which greatly enhances the security on trusted virtualization platform.展开更多
5G is a new generation of mobile networking that aims to achieve unparalleled speed and performance. To accomplish this, three technologies, Device-to-Device communication (D2D), multi-access edge computing (MEC) and ...5G is a new generation of mobile networking that aims to achieve unparalleled speed and performance. To accomplish this, three technologies, Device-to-Device communication (D2D), multi-access edge computing (MEC) and network function virtualization (NFV) with ClickOS, have been a significant part of 5G, and this paper mainly discusses them. D2D enables direct communication between devices without the relay of base station. In 5G, a two-tier cellular network composed of traditional cellular network system and D2D is an efficient method for realizing high-speed communication. MEC unloads work from end devices and clouds platforms to widespread nodes, and connects the nodes together with outside devices and third-party providers, in order to diminish the overloading effect on any device caused by enormous applications and improve users’ quality of experience (QoE). There is also a NFV method in order to fulfill the 5G requirements. In this part, an optimized virtual machine for middle-boxes named ClickOS is introduced, and it is evaluated in several aspects. Some middle boxes are being implemented in the ClickOS and proved to have outstanding performances.展开更多
Virtualization has gained great acceptance in the server and cloud computing arena. In recent years, it has also been widely applied to real-time embedded systems with stringent timing constraints. We present a compre...Virtualization has gained great acceptance in the server and cloud computing arena. In recent years, it has also been widely applied to real-time embedded systems with stringent timing constraints. We present a comprehensive survey on real-time issues in virtualization for embedded systems, covering popular virtualization systems including KVM, Xen, L4 and others.展开更多
In order to reduce cost and complexity,fiber-wireless(FiWi) networks emerge,combining the huge amount of available bandwidth of fiber networks and the flexibility,mobility of wireless networks.However,there is still a...In order to reduce cost and complexity,fiber-wireless(FiWi) networks emerge,combining the huge amount of available bandwidth of fiber networks and the flexibility,mobility of wireless networks.However,there is still a long way to go before taking fiber and wireless systems as fully integrated networks.In this paper,we propose a network visualization based seamless networking scheme for FiWi networks,including hierarchical model,service model,service implementation and dynamic bandwidth assignment(DBA).Then,we evaluate the performance changes after network virtualization is introduced.Throughput for nodes,bandwidth for links and overheads leaded by network virtualization are analyzed.The performance of our proposed networking scheme is evaluated by simulation and real implementations,respectively.The results show that,compared to traditional networking scheme,our scheme has a better performance.展开更多
Three kinds of vulnerabilities that may exist in some of current virtualization-based security monitoring systems were proposed: page mapping problem,lack of overall protection,and inherent limitations. Aiming at the...Three kinds of vulnerabilities that may exist in some of current virtualization-based security monitoring systems were proposed: page mapping problem,lack of overall protection,and inherent limitations. Aiming at these vulnerabilities,relative attack methods were presented in detail. Our experiments show that the attack methods,such as page mapping attack,data attack,and non-behavior detection attack,can attack simulated or original security monitors successfully. Defenders,who need to effectively strengthen their security monitors,can get an inspiration from these attack methods and find some appropriate solutions.展开更多
Current rates of mental illness are worrisome.Mental illness mainly affects females and younger age groups.The use of the internet to deliver mental health care has been growing since 2020 and includes the implementat...Current rates of mental illness are worrisome.Mental illness mainly affects females and younger age groups.The use of the internet to deliver mental health care has been growing since 2020 and includes the implementation of novel mental health treatments using virtual reality,augmented reality,and artificial intelligence.A new three dimensional digital environment,known as the metaverse,has emerged as the next version of the Internet.Artificial intelligence,augmented reality,and virtual reality will create fully immersive,experiential,and interactive online environments in the metaverse.People will use a unique avatar to do anything they do in their“real”lives,including seeking and receiving mental health care.In this opinion review,we reflect on how the metaverse could reshape how we deliver mental health treatment,its opportunities,and its challenges.展开更多
基金funded by the Fujian Province Science and Technology Plan,China(Grant Number 2019H0017).
文摘Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method.
基金supported by the National Natural Science Foundation of China(Nos.62002206 and 62202373)the open topic of the Green Development Big Data Decision-Making Key Laboratory(DM202003).
文摘Extracting valuable information frombiomedical texts is one of the current research hotspots of concern to a wide range of scholars.The biomedical corpus contains numerous complex long sentences and overlapping relational triples,making most generalized domain joint modeling methods difficult to apply effectively in this field.For a complex semantic environment in biomedical texts,in this paper,we propose a novel perspective to perform joint entity and relation extraction;existing studies divide the relation triples into several steps or modules.However,the three elements in the relation triples are interdependent and inseparable,so we regard joint extraction as a tripartite classification problem.At the same time,fromthe perspective of triple classification,we design amulti-granularity 2D convolution to refine the word pair table and better utilize the dependencies between biomedical word pairs.Finally,we use a biaffine predictor to assist in predicting the labels of word pairs for relation extraction.Our model(MCTPL)Multi-granularity Convolutional Tokens Pairs of Labeling better utilizes the elements of triples and improves the ability to extract overlapping triples compared to previous approaches.Finally,we evaluated our model on two publicly accessible datasets.The experimental results show that our model’s ability to extract relation triples on the CPI dataset improves the F1 score by 2.34%compared to the current optimal model.On the DDI dataset,the F1 value improves the F1 value by 1.68%compared to the current optimal model.Our model achieved state-of-the-art performance compared to other baseline models in biomedical text entity relation extraction.
文摘The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborhood rough sets to two universes multi-granularity fuzzy rough sets, and discusses the two-universes multi-granularity neighborhood fuzzy rough set model. Firstly, the upper and lower approximation operators are defined in the two universes multi-granularity neighborhood fuzzy rough set model. Secondly, the properties of the upper and lower approximation operators are discussed. Finally, the properties of the two universes multi-granularity neighborhood fuzzy rough set model are verified through case studies.
文摘To effectively deal with fuzzy and uncertain information in public engineering emergencies,an emergency decision-making method based on multi-granularity language information is proposed.Firstly,decision makers select the appropriate language phrase set according to their own situation,give the preference information of the weight of each key indicator,and then transform the multi-granularity language information through consistency.On this basis,the sequential optimization technology of the approximately ideal scheme is introduced to obtain the weight coefficient of each key indicator.Subsequently,the weighted average operator is used to aggregate the preference information of each alternative scheme with the relative importance of decision-makers and the weight of key indicators in sequence,and the comprehensive evaluation value of each scheme is obtained to determine the optimal scheme.Lastly,the effectiveness and practicability of the method are verified by taking the earthwork collapse accident in the construction of a reservoir as an example.
文摘In view of the complexity of emergencies and the subjectivity of decision-makers,a method of determining key emergency indicators based on multi-granularity uncertainty language is proposed.Firstly,decision members use preferred uncertain language phrases to represent the importance of each key indicator and use transformation functions to carry out the consistent transformation of this multi-granularity uncertain language information.Secondly,the group evaluation vector is obtained by using the extended weighted average operator of uncertainty,and then the weight vector of each key index is obtained by using the decision theory of uncertain language.Finally,an example is given to verify the practicability and effectiveness of the proposed method.
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
基金Projects(41074010,41171343)supported by the National Natural Science Foundation of ChinaProject(BK20140185)supported by Jiangsu Province Natural Science Foundation for Youths,China+1 种基金Project(51204185)supported by National Youth Science Foundation of ChinaProject(2014QNA44)supported by Youth Science Fund of China University of Mining and Technology
文摘The multi-granularity spatial-temporal-related access control(MSTAC) model was proposed to meet the spatial access control requirements for the service-oriented spatial data infrastructure(SDI). MSTAC extends the attribute constraints of role-based access control(RBAC), which includes the user's location attribute, the role's time constraint, the layer vector constraint of a map class, the scale and time constraints of a geographic layer, the topological constraints of geographic features, the semantic attribute expression constraints of geographic features, and the field constraint of feature views. Through this model, authorized users would be limited to access different granularity spatial datasets, such as the map granularity, the graphic layer granularity, the feature object granularity and the feature view granularity. Finally, the MSTAC model is achieved in a web GIS, which shows the positive and negative authorizations to different services in different data granularities and time periods.
基金supported by the national 973 project of China under Grants 2013CB329104the Natural Science Foundation of China under Grants 61372124,61427801,61271237,61271236Jiangsu Collaborative Innovation Center for Technology and Application of Internet of Things under Grants SJ213003
文摘As a key technology to realize smart services of Internet of Things(IoT), network virtualization technology can support the network diversification and ubiquity, and improve the utilization rate of network resources. This paper studies the service-ori- ented network virtualization architecture for loT services. Firstly the semantic description method for loT services is proposed, then the resource representation model and resource management model in the environment of network virtualization are presented. Based on the above models, the service-oriented virtual network architecture for loT is established. Finally, a smart campus system is designed and deployed based on the service-oriented virtual network architecture. Moreover, the proposed architecture and models are verified in experiments.
基金supported by Program for National Basic Research Program of China (973 Program) "Reconfigurable Network Emulation Testbed for Basic Network Communication"
文摘Network Functions Virtualization(NFV) is an attempt to help operators more effectively manage their networks by implementing traditional network functions embedded in specialized hardware platforms in term of virtualized software instances. But, existing novel network appliances designed for NFV infrastructure are always architected on a general-purpose x86 server, which makes the performance of network functions limited by the hosted single server. To address this challenge, we propose ApplianceB ricks, a novel NFV-enable network appliance architecture that is used to explore the way of consolidating multiple physical network functions into a clustered network appliance, which is able to improve the processing capability of NFV-enabled network appliances.
基金supported in part by the National Natural Science Foundation of China under Grant 62177029,62307025in part by the Startup Foundation for Introducing Talent of Nanjing University of Posts and Communications under Grant NY221041in part by the General Project of The Natural Science Foundation of Jiangsu Higher Education Institution of China 22KJB520025,23KJD580.
文摘Visible-infrared Cross-modality Person Re-identification(VI-ReID)is a critical technology in smart public facilities such as cities,campuses and libraries.It aims to match pedestrians in visible light and infrared images for video surveillance,which poses a challenge in exploring cross-modal shared information accurately and efficiently.Therefore,multi-granularity feature learning methods have been applied in VI-ReID to extract potential multi-granularity semantic information related to pedestrian body structure attributes.However,existing research mainly uses traditional dual-stream fusion networks and overlooks the core of cross-modal learning networks,the fusion module.This paper introduces a novel network called the Augmented Deep Multi-Granularity Pose-Aware Feature Fusion Network(ADMPFF-Net),incorporating the Multi-Granularity Pose-Aware Feature Fusion(MPFF)module to generate discriminative representations.MPFF efficiently explores and learns global and local features with multi-level semantic information by inserting disentangling and duplicating blocks into the fusion module of the backbone network.ADMPFF-Net also provides a new perspective for designing multi-granularity learning networks.By incorporating the multi-granularity feature disentanglement(mGFD)and posture information segmentation(pIS)strategies,it extracts more representative features concerning body structure information.The Local Information Enhancement(LIE)module augments high-performance features in VI-ReID,and the multi-granularity joint loss supervises model training for objective feature learning.Experimental results on two public datasets show that ADMPFF-Net efficiently constructs pedestrian feature representations and enhances the accuracy of VI-ReID.
文摘Since virtualization technology enables the abstraction and sharing of resources in a flexible management way, the overall expenses of network deployment can be significantly reduced. Therefore, the technology has been widely applied in the core network. With the tremendous growth in mobile traffic and services, it is natural to extend virtualization technology to the cloud computing based radio access networks(CCRANs) for achieving high spectral efficiency with low cost.In this paper, the virtualization technologies in CC-RANs are surveyed, including the system architecture, key enabling techniques, challenges, and open issues. The enabling key technologies for virtualization in CC-RANs mainly including virtual resource allocation, radio access network(RAN) slicing, mobility management, and social-awareness have been comprehensively surveyed to satisfy the isolation, customization and high-efficiency utilization of radio resources. The challenges and open issues mainly focus on virtualization levels for CC-RANs, signaling design for CC-RAN virtualization, performance analysis for CC-RAN virtualization, and network security for virtualized CC-RANs.
文摘The concept of virtualization machines is not new, but it is increasing vastly and gaining popularity in the IT world. Hypervisors are also popular for security as a means of isolation. The virtualization of information technology infrastructure creates the enablement of IT resources to be shared and used on several other devices and applications;this increases the growth of business needs. The environment created by virtualization is not restricted to any configuration physically or execution. The resources of a computer are shared logically. Hypervisors help in virtualization of hardware that is a software interact with the physical system, enabling or providing virtualized hardware environment to support multiple running operating system simultaneously utilizing one physical server. This paper explores the benefits, types and security issues of Virtualization Hypervisor in virtualized hardware environment.
基金the Hi-tech Research and Development Program of China,the National Natural Science Foundation of China,the Beijing Natural Science Foundation,the Fundamental Research Funds for the Central Universities,the Fund of the State Key Laboratory of Software Development Environment
文摘This paper proposes a content addres sable storage optimization method, VDeskCAS, for desktop virtualization storage based disaster backup storage system. The method implements a blocklevel storage optimization, by employing the algorithms of chunking image file into blocks, the blockffmger calculation and the block dedup li cation. A File system in Use Space (FUSE) based storage process for VDeskCAS is also introduced which optimizes current direct storage to suit our content addressable storage. An interface level modification makes our system easy to extend. Experiments on virtual desktop image files and normal files verify the effectiveness of our method and above 60% storage volume decrease is a chieved for Red Hat Enterprise Linux image files. Key words: disaster backup; desktop virtualization; storage optimization; content addressable storage
基金supported by the National Natural Science Foundation of China(61701521)the Shaanxi Provincial Natural Science Foundation(2018JQ6074)。
文摘The evolution of airborne tactical networks(ATNs)is impeded by the network ossification problem.As a solution,network virtualization(NV)can provide a flexible and scalable architecture where virtual network embedding(VNE)is a key part.However,existing VNE algorithms cannot be optimally adopted in the virtualization of ATN due to the complex interference in aircombat field.In this context,a highly reliable VNE algorithm based on the transmission rate for ATN virtualization(TR-ATVNE)is proposed to adapt well to the specific electromagnetic environment of ATN.Our algorithm coordinates node and link mapping.In the node mapping,transmission-rate resource is firstly defined to effectively evaluate the ranking value of substrate nodes under the interference of both environmental noises and enemy attacks.Meanwhile,a feasible splitting rule is proposed for path splitting in the link mapping,considering the interference between wireless links.Simulation results reveal that our algorithm is able to improve the acceptance ratio of virtual network requests while maintaining a high revenue-to-cost ratio under the complex electromagnetic interference.
基金the National High Technology Research and Development Program of China (2007AA01Z412)
文摘It is absolutely critical that trusted configuration management which significantly affects trust chain establishment, sealing storage and remote attestation, especially in trusted virtualization platform like Xen whose system configuration changes easily. TPM (trusted platform module) context manager is presented to carry out dynamic configuration management for virtual machine. It manages the TPM command requests and VM (virtual machine) configurations. The dynamic configuration representa- tion method based on Merkle hash tree is explicitly proposed against TCG (trusted computing group) static configuration representation. It reflects the true VM status in real time even if the configuration has changed, and it eliminates the invalidation of configuration representation, sealing storage and remote attestation. TPM context manager supports TCG storage protection, remote attestation etc, which greatly enhances the security on trusted virtualization platform.
文摘5G is a new generation of mobile networking that aims to achieve unparalleled speed and performance. To accomplish this, three technologies, Device-to-Device communication (D2D), multi-access edge computing (MEC) and network function virtualization (NFV) with ClickOS, have been a significant part of 5G, and this paper mainly discusses them. D2D enables direct communication between devices without the relay of base station. In 5G, a two-tier cellular network composed of traditional cellular network system and D2D is an efficient method for realizing high-speed communication. MEC unloads work from end devices and clouds platforms to widespread nodes, and connects the nodes together with outside devices and third-party providers, in order to diminish the overloading effect on any device caused by enormous applications and improve users’ quality of experience (QoE). There is also a NFV method in order to fulfill the 5G requirements. In this part, an optimized virtual machine for middle-boxes named ClickOS is introduced, and it is evaluated in several aspects. Some middle boxes are being implemented in the ClickOS and proved to have outstanding performances.
文摘Virtualization has gained great acceptance in the server and cloud computing arena. In recent years, it has also been widely applied to real-time embedded systems with stringent timing constraints. We present a comprehensive survey on real-time issues in virtualization for embedded systems, covering popular virtualization systems including KVM, Xen, L4 and others.
基金supported by National Natural Science Foundation of China under Grant No.61240040
文摘In order to reduce cost and complexity,fiber-wireless(FiWi) networks emerge,combining the huge amount of available bandwidth of fiber networks and the flexibility,mobility of wireless networks.However,there is still a long way to go before taking fiber and wireless systems as fully integrated networks.In this paper,we propose a network visualization based seamless networking scheme for FiWi networks,including hierarchical model,service model,service implementation and dynamic bandwidth assignment(DBA).Then,we evaluate the performance changes after network virtualization is introduced.Throughput for nodes,bandwidth for links and overheads leaded by network virtualization are analyzed.The performance of our proposed networking scheme is evaluated by simulation and real implementations,respectively.The results show that,compared to traditional networking scheme,our scheme has a better performance.
基金Supported by National 242 Plan Project(2005C48)the Technology Innovation Programme Major Projects of Beijing Institute of Technology(2011CX01015)
文摘Three kinds of vulnerabilities that may exist in some of current virtualization-based security monitoring systems were proposed: page mapping problem,lack of overall protection,and inherent limitations. Aiming at these vulnerabilities,relative attack methods were presented in detail. Our experiments show that the attack methods,such as page mapping attack,data attack,and non-behavior detection attack,can attack simulated or original security monitors successfully. Defenders,who need to effectively strengthen their security monitors,can get an inspiration from these attack methods and find some appropriate solutions.
基金Supported by Instituto de Salud CarlosⅢ(ISCⅢ),with group funds the Research Network on Chronicity,Primary Care and Health Promotion(RICAPPS,RD21/0016/0005)that is part of the Results-Oriented Cooperative Research Networks in Health(RICORS)(CarlosⅢHealth Institute),co-funded by the European Union“NextGeneration EU/PRTR”funds and with group funds Mental health research group in Primary Care(B17_23R),which is part of the Department of Innovation,Research,and University in the Government of Aragón(Spain).
文摘Current rates of mental illness are worrisome.Mental illness mainly affects females and younger age groups.The use of the internet to deliver mental health care has been growing since 2020 and includes the implementation of novel mental health treatments using virtual reality,augmented reality,and artificial intelligence.A new three dimensional digital environment,known as the metaverse,has emerged as the next version of the Internet.Artificial intelligence,augmented reality,and virtual reality will create fully immersive,experiential,and interactive online environments in the metaverse.People will use a unique avatar to do anything they do in their“real”lives,including seeking and receiving mental health care.In this opinion review,we reflect on how the metaverse could reshape how we deliver mental health treatment,its opportunities,and its challenges.