In light of the prevailing issue that the existing convolutional neural network(CNN)power quality disturbance identification method can only extract single-scale features,which leads to a lack of feature information a...In light of the prevailing issue that the existing convolutional neural network(CNN)power quality disturbance identification method can only extract single-scale features,which leads to a lack of feature information and weak anti-noise performance,a new approach for identifying power quality disturbances based on an adaptive Kalman filter(KF)and multi-scale channel attention(MS-CAM)fused convolutional neural network is suggested.Single and composite-disruption signals are generated through simulation.The adaptive maximum likelihood Kalman filter is employed for noise reduction in the initial disturbance signal,and subsequent integration of multi-scale features into the conventional CNN architecture is conducted.The multi-scale features of the signal are captured by convolution kernels of different sizes so that the model can obtain diverse feature expressions.The attention mechanism(ATT)is introduced to adaptively allocate the extracted features,and the features are fused and selected to obtain the new main features.The Softmax classifier is employed for the classification of power quality disturbances.Finally,by comparing the recognition accuracy of the convolutional neural network(CNN),the model using the attention mechanism,the bidirectional long-term and short-term memory network(MS-Bi-LSTM),and the multi-scale convolutional neural network(MSCNN)with the attention mechanism with the proposed method.The simulation results demonstrate that the proposed method is higher than CNN,MS-Bi-LSTM,and MSCNN,and the overall recognition rate exceeds 99%,and the proposed method has significant classification accuracy and robust classification performance.This achievement provides a new perspective for further exploration in the field of power quality disturbance classification.展开更多
Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanne...Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanned Aerial Vehicle(UAV)swarms in harsh environments.This paper proposes an intelligent framework to quickly recover the cooperative coveragemission by aggregating the historical spatio-temporal network with the attention mechanism.The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model.A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction by capturing the temporal network structure.Combined with the corresponding Laplacian matrix as the hyperparameter,a recovery algorithm based on the multi-head attention graph network is designed to achieve rapid recovery.Simulation results showed that the proposed framework can facilitate rapid recovery of the connectivity and coverage more effectively compared to the existing studies.The results demonstrate that the average connectivity and coverage results is improved by 17.92%and 16.96%,respectively compared with the state-of-the-art model.Furthermore,by the ablation study,the contributions of each different improvement are compared.The proposed model can be used to support resilient network design for real-time mission execution.展开更多
The present study examines the impact of short-term public opinion sentiment on the secondary market,with a focus on the potential for such sentiment to cause dramatic stock price fluctuations and increase investment ...The present study examines the impact of short-term public opinion sentiment on the secondary market,with a focus on the potential for such sentiment to cause dramatic stock price fluctuations and increase investment risk.The quantification of investment sentiment indicators and the persistent analysis of their impact has been a complex and significant area of research.In this paper,a structured multi-head attention stock index prediction method based adaptive public opinion sentiment vector is proposed.The proposedmethod utilizes an innovative approach to transform numerous investor comments on social platforms over time into public opinion sentiment vectors expressing complex sentiments.It then analyzes the continuous impact of these vectors on the market through the use of aggregating techniques and public opinion data via a structured multi-head attention mechanism.The experimental results demonstrate that the public opinion sentiment vector can provide more comprehensive feedback on market sentiment than traditional sentiment polarity analysis.Furthermore,the multi-head attention mechanism is shown to improve prediction accuracy through attention convergence on each type of input information separately.Themean absolute percentage error(MAPE)of the proposedmethod is 0.463%,a reduction of 0.294% compared to the benchmark attention algorithm.Additionally,the market backtesting results indicate that the return was 24.560%,an improvement of 8.202% compared to the benchmark algorithm.These results suggest that themarket trading strategy based on thismethod has the potential to improve trading profits.展开更多
Cardiovascular disease is the leading cause of death globally.This disease causes loss of heart muscles and is also responsible for the death of heart cells,sometimes damaging their functionality.A person’s life may ...Cardiovascular disease is the leading cause of death globally.This disease causes loss of heart muscles and is also responsible for the death of heart cells,sometimes damaging their functionality.A person’s life may depend on receiving timely assistance as soon as possible.Thus,minimizing the death ratio can be achieved by early detection of heart attack(HA)symptoms.In the United States alone,an estimated 610,000 people die fromheart attacks each year,accounting for one in every four fatalities.However,by identifying and reporting heart attack symptoms early on,it is possible to reduce damage and save many lives significantly.Our objective is to devise an algorithm aimed at helping individuals,particularly elderly individuals living independently,to safeguard their lives.To address these challenges,we employ deep learning techniques.We have utilized a vision transformer(ViT)to address this problem.However,it has a significant overhead cost due to its memory consumption and computational complexity because of scaling dot-product attention.Also,since transformer performance typically relies on large-scale or adequate data,adapting ViT for smaller datasets is more challenging.In response,we propose a three-in-one steam model,theMulti-Head Attention Vision Hybrid(MHAVH).Thismodel integrates a real-time posture recognition framework to identify chest pain postures indicative of heart attacks using transfer learning techniques,such as ResNet-50 and VGG-16,renowned for their robust feature extraction capabilities.By incorporatingmultiple heads into the vision transformer to generate additional metrics and enhance heart-detection capabilities,we leverage a 2019 posture-based dataset comprising RGB images,a novel creation by the author that marks the first dataset tailored for posture-based heart attack detection.Given the limited online data availability,we segmented this dataset into gender categories(male and female)and conducted testing on both segmented and original datasets.The training accuracy of our model reached an impressive 99.77%.Upon testing,the accuracy for male and female datasets was recorded at 92.87%and 75.47%,respectively.The combined dataset accuracy is 93.96%,showcasing a commendable performance overall.Our proposed approach demonstrates versatility in accommodating small and large datasets,offering promising prospects for real-world applications.展开更多
Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction acc...Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction accuracy of most existing models, which simply stack temporal and spatial modules and fail to capture spatial-temporal features effectively. To improve the prediction accuracy, a multi-head attention spatial-temporal graph neural network (MSTNet) is proposed in this paper. First, the traffic data is decomposed into unique time spans that conform to positive rules, and valuable traffic node attributes are mined through an adaptive graph structure. Second, time and spatial features are captured using a multi-head attention spatial-temporal module. Finally, a multi-step prediction module is used to achieve future traffic condition prediction. Numerical experiments were conducted on an open-source dataset, and the results demonstrate that MSTNet performs well in spatial-temporal feature extraction and achieves more positive forecasting results than the baseline methods.展开更多
Event detection(ED)is aimed at detecting event occurrences and categorizing them.This task has been previously solved via recognition and classification of event triggers(ETs),which are defined as the phrase or word m...Event detection(ED)is aimed at detecting event occurrences and categorizing them.This task has been previously solved via recognition and classification of event triggers(ETs),which are defined as the phrase or word most clearly expressing event occurrence.Thus,current approaches require both annotated triggers as well as event types in training data.Nevertheless,triggers are non-essential in ED,and it is time-wasting for annotators to identify the“most clearly”word from a sentence,particularly in longer sentences.To decrease manual effort,we evaluate event detectionwithout triggers.We propose a novel framework that combines Type-aware Attention and Graph Convolutional Networks(TA-GCN)for event detection.Specifically,the task is identified as a multi-label classification problem.We first encode the input sentence using a novel type-aware neural network with attention mechanisms.Then,a Graph Convolutional Networks(GCN)-based multilabel classification model is exploited for event detection.Experimental results demonstrate the effectiveness.展开更多
The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine ...The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine Learning(ML)have been used in road infrastructure and construction,particularly with the Internet of Things(IoT)devices.Object detection in Computer Vision also plays a key role in improving road infrastructure and addressing trafficrelated problems.This study aims to use You Only Look Once version 7(YOLOv7),Convolutional Block Attention Module(CBAM),the most optimized object-detection algorithm,to detect and identify traffic signs,and analyze effective combinations of adaptive optimizers like Adaptive Moment estimation(Adam),Root Mean Squared Propagation(RMSprop)and Stochastic Gradient Descent(SGD)with the YOLOv7.Using a portion of German traffic signs for training,the study investigates the feasibility of adopting smaller datasets while maintaining high accuracy.The model proposed in this study not only improves traffic safety by detecting traffic signs but also has the potential to contribute to the rapid development of autonomous vehicle systems.The study results showed an impressive accuracy of 99.7%when using a batch size of 8 and the Adam optimizer.This high level of accuracy demonstrates the effectiveness of the proposed model for the image classification task of traffic sign recognition.展开更多
Fraud cases have been a risk in society and people’s property security has been greatly threatened.In recent studies,many promising algorithms have been developed for social media offensive text recognition as well a...Fraud cases have been a risk in society and people’s property security has been greatly threatened.In recent studies,many promising algorithms have been developed for social media offensive text recognition as well as sentiment analysis.These algorithms are also suitable for fraudulent phone text recognition.Compared to these tasks,the semantics of fraudulent words are more complex and more difficult to distinguish.Recurrent Neural Networks(RNN),the variants ofRNN,ConvolutionalNeuralNetworks(CNN),and hybrid neural networks to extract text features are used by most text classification research.However,a single network or a simple network combination cannot obtain rich characteristic knowledge of fraudulent phone texts relatively.Therefore,a new model is proposed in this paper.In the fraudulent phone text,the knowledge that can be learned by the model includes the sequence structure of sentences,the correlation between words,the correlation of contextual semantics,the feature of keywords in sentences,etc.The new model combines a bidirectional Long-Short Term Memory Neural Network(BiLSTM)or a bidirectional Gate Recurrent United(BiGRU)and a Multi-Head attention mechanism module with convolution.A normalization layer is added after the output of the final hidden layer.BiLSTM or BiGRU is used to build the encoding and decoding layer.Multi-head attention mechanism module with convolution(MHAC)enhances the ability of the model to learn global interaction information and multi-granularity local interaction information in fraudulent sentences.A fraudulent phone text dataset is produced by us in this paper.The THUCNews data sets and fraudulent phone text data sets are used in experiments.Experiment results show that compared with the baseline model,the proposed model(LMHACL)has the best experiment results in terms of Accuracy,Precision,Recall,and F1 score on the two data sets.And the performance indexes on fraudulent phone text data sets are all above 0.94.展开更多
基金The project is supported by the National Natural Science Foundation of China(52067013)the Key Projects of the Natural Science Foundation of Gansu Provincial Science and Technology Department(22JR5RA318).
文摘In light of the prevailing issue that the existing convolutional neural network(CNN)power quality disturbance identification method can only extract single-scale features,which leads to a lack of feature information and weak anti-noise performance,a new approach for identifying power quality disturbances based on an adaptive Kalman filter(KF)and multi-scale channel attention(MS-CAM)fused convolutional neural network is suggested.Single and composite-disruption signals are generated through simulation.The adaptive maximum likelihood Kalman filter is employed for noise reduction in the initial disturbance signal,and subsequent integration of multi-scale features into the conventional CNN architecture is conducted.The multi-scale features of the signal are captured by convolution kernels of different sizes so that the model can obtain diverse feature expressions.The attention mechanism(ATT)is introduced to adaptively allocate the extracted features,and the features are fused and selected to obtain the new main features.The Softmax classifier is employed for the classification of power quality disturbances.Finally,by comparing the recognition accuracy of the convolutional neural network(CNN),the model using the attention mechanism,the bidirectional long-term and short-term memory network(MS-Bi-LSTM),and the multi-scale convolutional neural network(MSCNN)with the attention mechanism with the proposed method.The simulation results demonstrate that the proposed method is higher than CNN,MS-Bi-LSTM,and MSCNN,and the overall recognition rate exceeds 99%,and the proposed method has significant classification accuracy and robust classification performance.This achievement provides a new perspective for further exploration in the field of power quality disturbance classification.
基金the National Natural Science Foundation of China(NNSFC)(Grant Nos.72001213 and 72301292)the National Social Science Fund of China(Grant No.19BGL297)the Basic Research Program of Natural Science in Shaanxi Province(Grant No.2021JQ-369).
文摘Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanned Aerial Vehicle(UAV)swarms in harsh environments.This paper proposes an intelligent framework to quickly recover the cooperative coveragemission by aggregating the historical spatio-temporal network with the attention mechanism.The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model.A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction by capturing the temporal network structure.Combined with the corresponding Laplacian matrix as the hyperparameter,a recovery algorithm based on the multi-head attention graph network is designed to achieve rapid recovery.Simulation results showed that the proposed framework can facilitate rapid recovery of the connectivity and coverage more effectively compared to the existing studies.The results demonstrate that the average connectivity and coverage results is improved by 17.92%and 16.96%,respectively compared with the state-of-the-art model.Furthermore,by the ablation study,the contributions of each different improvement are compared.The proposed model can be used to support resilient network design for real-time mission execution.
基金funded by the Major Humanities and Social Sciences Research Projects in Zhejiang higher education institutions,grant number 2023QN082,awarded to Cheng ZhaoThe National Natural Science Foundation of China also provided funding,grant number 61902349,awarded to Cheng Zhao.
文摘The present study examines the impact of short-term public opinion sentiment on the secondary market,with a focus on the potential for such sentiment to cause dramatic stock price fluctuations and increase investment risk.The quantification of investment sentiment indicators and the persistent analysis of their impact has been a complex and significant area of research.In this paper,a structured multi-head attention stock index prediction method based adaptive public opinion sentiment vector is proposed.The proposedmethod utilizes an innovative approach to transform numerous investor comments on social platforms over time into public opinion sentiment vectors expressing complex sentiments.It then analyzes the continuous impact of these vectors on the market through the use of aggregating techniques and public opinion data via a structured multi-head attention mechanism.The experimental results demonstrate that the public opinion sentiment vector can provide more comprehensive feedback on market sentiment than traditional sentiment polarity analysis.Furthermore,the multi-head attention mechanism is shown to improve prediction accuracy through attention convergence on each type of input information separately.Themean absolute percentage error(MAPE)of the proposedmethod is 0.463%,a reduction of 0.294% compared to the benchmark attention algorithm.Additionally,the market backtesting results indicate that the return was 24.560%,an improvement of 8.202% compared to the benchmark algorithm.These results suggest that themarket trading strategy based on thismethod has the potential to improve trading profits.
基金Researchers Supporting Project Number(RSPD2024R576),King Saud University,Riyadh,Saudi Arabia。
文摘Cardiovascular disease is the leading cause of death globally.This disease causes loss of heart muscles and is also responsible for the death of heart cells,sometimes damaging their functionality.A person’s life may depend on receiving timely assistance as soon as possible.Thus,minimizing the death ratio can be achieved by early detection of heart attack(HA)symptoms.In the United States alone,an estimated 610,000 people die fromheart attacks each year,accounting for one in every four fatalities.However,by identifying and reporting heart attack symptoms early on,it is possible to reduce damage and save many lives significantly.Our objective is to devise an algorithm aimed at helping individuals,particularly elderly individuals living independently,to safeguard their lives.To address these challenges,we employ deep learning techniques.We have utilized a vision transformer(ViT)to address this problem.However,it has a significant overhead cost due to its memory consumption and computational complexity because of scaling dot-product attention.Also,since transformer performance typically relies on large-scale or adequate data,adapting ViT for smaller datasets is more challenging.In response,we propose a three-in-one steam model,theMulti-Head Attention Vision Hybrid(MHAVH).Thismodel integrates a real-time posture recognition framework to identify chest pain postures indicative of heart attacks using transfer learning techniques,such as ResNet-50 and VGG-16,renowned for their robust feature extraction capabilities.By incorporatingmultiple heads into the vision transformer to generate additional metrics and enhance heart-detection capabilities,we leverage a 2019 posture-based dataset comprising RGB images,a novel creation by the author that marks the first dataset tailored for posture-based heart attack detection.Given the limited online data availability,we segmented this dataset into gender categories(male and female)and conducted testing on both segmented and original datasets.The training accuracy of our model reached an impressive 99.77%.Upon testing,the accuracy for male and female datasets was recorded at 92.87%and 75.47%,respectively.The combined dataset accuracy is 93.96%,showcasing a commendable performance overall.Our proposed approach demonstrates versatility in accommodating small and large datasets,offering promising prospects for real-world applications.
文摘Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction accuracy of most existing models, which simply stack temporal and spatial modules and fail to capture spatial-temporal features effectively. To improve the prediction accuracy, a multi-head attention spatial-temporal graph neural network (MSTNet) is proposed in this paper. First, the traffic data is decomposed into unique time spans that conform to positive rules, and valuable traffic node attributes are mined through an adaptive graph structure. Second, time and spatial features are captured using a multi-head attention spatial-temporal module. Finally, a multi-step prediction module is used to achieve future traffic condition prediction. Numerical experiments were conducted on an open-source dataset, and the results demonstrate that MSTNet performs well in spatial-temporal feature extraction and achieves more positive forecasting results than the baseline methods.
基金supported by the Hunan Provincial Natural Science Foundation of China(Grant No.2020JJ4624)the National Social Science Fund of China(Grant No.20&ZD047)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department(Grant No.19A020)the National University of Defense Technology Research Project ZK20-46 and the Young Elite Scientists Sponsorship Program 2021-JCJQ-QT-050.
文摘Event detection(ED)is aimed at detecting event occurrences and categorizing them.This task has been previously solved via recognition and classification of event triggers(ETs),which are defined as the phrase or word most clearly expressing event occurrence.Thus,current approaches require both annotated triggers as well as event types in training data.Nevertheless,triggers are non-essential in ED,and it is time-wasting for annotators to identify the“most clearly”word from a sentence,particularly in longer sentences.To decrease manual effort,we evaluate event detectionwithout triggers.We propose a novel framework that combines Type-aware Attention and Graph Convolutional Networks(TA-GCN)for event detection.Specifically,the task is identified as a multi-label classification problem.We first encode the input sentence using a novel type-aware neural network with attention mechanisms.Then,a Graph Convolutional Networks(GCN)-based multilabel classification model is exploited for event detection.Experimental results demonstrate the effectiveness.
文摘The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine Learning(ML)have been used in road infrastructure and construction,particularly with the Internet of Things(IoT)devices.Object detection in Computer Vision also plays a key role in improving road infrastructure and addressing trafficrelated problems.This study aims to use You Only Look Once version 7(YOLOv7),Convolutional Block Attention Module(CBAM),the most optimized object-detection algorithm,to detect and identify traffic signs,and analyze effective combinations of adaptive optimizers like Adaptive Moment estimation(Adam),Root Mean Squared Propagation(RMSprop)and Stochastic Gradient Descent(SGD)with the YOLOv7.Using a portion of German traffic signs for training,the study investigates the feasibility of adopting smaller datasets while maintaining high accuracy.The model proposed in this study not only improves traffic safety by detecting traffic signs but also has the potential to contribute to the rapid development of autonomous vehicle systems.The study results showed an impressive accuracy of 99.7%when using a batch size of 8 and the Adam optimizer.This high level of accuracy demonstrates the effectiveness of the proposed model for the image classification task of traffic sign recognition.
基金This researchwas funded by the Major Science and Technology Innovation Project of Shandong Province in China(2019JZZY010120).
文摘Fraud cases have been a risk in society and people’s property security has been greatly threatened.In recent studies,many promising algorithms have been developed for social media offensive text recognition as well as sentiment analysis.These algorithms are also suitable for fraudulent phone text recognition.Compared to these tasks,the semantics of fraudulent words are more complex and more difficult to distinguish.Recurrent Neural Networks(RNN),the variants ofRNN,ConvolutionalNeuralNetworks(CNN),and hybrid neural networks to extract text features are used by most text classification research.However,a single network or a simple network combination cannot obtain rich characteristic knowledge of fraudulent phone texts relatively.Therefore,a new model is proposed in this paper.In the fraudulent phone text,the knowledge that can be learned by the model includes the sequence structure of sentences,the correlation between words,the correlation of contextual semantics,the feature of keywords in sentences,etc.The new model combines a bidirectional Long-Short Term Memory Neural Network(BiLSTM)or a bidirectional Gate Recurrent United(BiGRU)and a Multi-Head attention mechanism module with convolution.A normalization layer is added after the output of the final hidden layer.BiLSTM or BiGRU is used to build the encoding and decoding layer.Multi-head attention mechanism module with convolution(MHAC)enhances the ability of the model to learn global interaction information and multi-granularity local interaction information in fraudulent sentences.A fraudulent phone text dataset is produced by us in this paper.The THUCNews data sets and fraudulent phone text data sets are used in experiments.Experiment results show that compared with the baseline model,the proposed model(LMHACL)has the best experiment results in terms of Accuracy,Precision,Recall,and F1 score on the two data sets.And the performance indexes on fraudulent phone text data sets are all above 0.94.