语义角色标注的传统方法采用基于句法特征的统计机器学习方法。由于依存句法可以表示词语之间的语义关系,故在语义角色标注中取得了较好的性能;但该方法存在特征抽取过程繁琐,难以捕捉句子中长距离依赖等问题。随着深度学习的兴起,研究...语义角色标注的传统方法采用基于句法特征的统计机器学习方法。由于依存句法可以表示词语之间的语义关系,故在语义角色标注中取得了较好的性能;但该方法存在特征抽取过程繁琐,难以捕捉句子中长距离依赖等问题。随着深度学习的兴起,研究者将基于双向长短时记忆(Bidirectional Long Short-Term Memory,Bi-LSTM)神经网络模型用于语义角色标注。该模型可以自动学习特征,并对词与词之间的远距离依赖关系进行有效建模。本文提出融合Bi-LSTM-CRF模型与依存句法特征的方法,并且引入Gate过滤机制对词向量表示进行调整,以达到利用句法特征提高语义角色标注精度的同时,规避特征工程的繁琐。CPB上的实验结果表明,利用本文所提方法的汉语语义角色标注的F1值达到79.53%,比前人的方法有了较为显著的提升。展开更多
为准确预测电力市场中的短期电价,将最大信息系数(maximal information coefficient,MIC)相关性分析与改进多层级门控长短期记忆网络(multi-hierachy gated long shortterm memory,MHG-LSTM)相结合,提出一种新型短期电价预测方法。该方...为准确预测电力市场中的短期电价,将最大信息系数(maximal information coefficient,MIC)相关性分析与改进多层级门控长短期记忆网络(multi-hierachy gated long shortterm memory,MHG-LSTM)相结合,提出一种新型短期电价预测方法。该方法首先对备选序列与预测电价序列做MIC相关性分析,在此基础上筛选备选序列并经小波变换合成神经网络输入序列,有效增加了输入中与预测电价相关的信息密度;其次,对传统LSTM进行创新性改进,提出用两级遗忘门和输入门替换传统的一级门控机构的MHG-LSTM模型,提高了神经网络选择和提取高频电价序列特征的能力。在PJM市场日前电价数据集上对所提方法进行仿真实验,实验结果表明,该方法的预测误差仅为4.506%,相比已有预测方法有效提升了短期电价的预测精度,且具有很强的普适性,可应用于电力市场短期电价预测,为市场参与者和监管机构提供有力决策依据。展开更多
Effective smart healthcare frameworks contain novel and emerging solutions for remote disease diagnostics,which aid in the prevention of several diseases including heart-related abnormalities.In this context,regular m...Effective smart healthcare frameworks contain novel and emerging solutions for remote disease diagnostics,which aid in the prevention of several diseases including heart-related abnormalities.In this context,regular monitoring of cardiac patients through smart healthcare systems based on Electrocardiogram(ECG)signals has the potential to save many lives.In existing studies,several heart disease diagnostic systems are proposed by employing different state-of-the-art methods,however,improving such methods is always an intriguing area of research.Hence,in this research,a smart healthcare system is proposed for the diagnosis of heart disease using ECG signals.The proposed framework extracts both linear and time-series information on the ECG signals and fuses them into a single framework concurrently.The linear characteristics of ECG signals are extracted by convolution layers followed by Gaussian Error Linear Units(GeLu)and time series characteristics of ECG beats are extracted by Vanilla Long Short-Term Memory Networks(LSTM).Following on,the feature reduction of linear information is done with the help of ID Generalized Gated Pooling(GGP).In addition,data misbalancing issues are also addressed with the help of the Synthetic Minority Oversampling Technique(SMOTE).The performance assessment of the proposed model is done over the two publicly available datasets named MIT-BIH arrhythmia database(MITDB)and PTB Diagnostic ECG database(PTBDB).The proposed framework achieves an average accuracy performance of 99.14%along with a 95%recall value.展开更多
文摘语义角色标注的传统方法采用基于句法特征的统计机器学习方法。由于依存句法可以表示词语之间的语义关系,故在语义角色标注中取得了较好的性能;但该方法存在特征抽取过程繁琐,难以捕捉句子中长距离依赖等问题。随着深度学习的兴起,研究者将基于双向长短时记忆(Bidirectional Long Short-Term Memory,Bi-LSTM)神经网络模型用于语义角色标注。该模型可以自动学习特征,并对词与词之间的远距离依赖关系进行有效建模。本文提出融合Bi-LSTM-CRF模型与依存句法特征的方法,并且引入Gate过滤机制对词向量表示进行调整,以达到利用句法特征提高语义角色标注精度的同时,规避特征工程的繁琐。CPB上的实验结果表明,利用本文所提方法的汉语语义角色标注的F1值达到79.53%,比前人的方法有了较为显著的提升。
文摘为准确预测电力市场中的短期电价,将最大信息系数(maximal information coefficient,MIC)相关性分析与改进多层级门控长短期记忆网络(multi-hierachy gated long shortterm memory,MHG-LSTM)相结合,提出一种新型短期电价预测方法。该方法首先对备选序列与预测电价序列做MIC相关性分析,在此基础上筛选备选序列并经小波变换合成神经网络输入序列,有效增加了输入中与预测电价相关的信息密度;其次,对传统LSTM进行创新性改进,提出用两级遗忘门和输入门替换传统的一级门控机构的MHG-LSTM模型,提高了神经网络选择和提取高频电价序列特征的能力。在PJM市场日前电价数据集上对所提方法进行仿真实验,实验结果表明,该方法的预测误差仅为4.506%,相比已有预测方法有效提升了短期电价的预测精度,且具有很强的普适性,可应用于电力市场短期电价预测,为市场参与者和监管机构提供有力决策依据。
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)Support Program(IITP-2023-2018-0-01799)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)and also the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1F1A1063134).
文摘Effective smart healthcare frameworks contain novel and emerging solutions for remote disease diagnostics,which aid in the prevention of several diseases including heart-related abnormalities.In this context,regular monitoring of cardiac patients through smart healthcare systems based on Electrocardiogram(ECG)signals has the potential to save many lives.In existing studies,several heart disease diagnostic systems are proposed by employing different state-of-the-art methods,however,improving such methods is always an intriguing area of research.Hence,in this research,a smart healthcare system is proposed for the diagnosis of heart disease using ECG signals.The proposed framework extracts both linear and time-series information on the ECG signals and fuses them into a single framework concurrently.The linear characteristics of ECG signals are extracted by convolution layers followed by Gaussian Error Linear Units(GeLu)and time series characteristics of ECG beats are extracted by Vanilla Long Short-Term Memory Networks(LSTM).Following on,the feature reduction of linear information is done with the help of ID Generalized Gated Pooling(GGP).In addition,data misbalancing issues are also addressed with the help of the Synthetic Minority Oversampling Technique(SMOTE).The performance assessment of the proposed model is done over the two publicly available datasets named MIT-BIH arrhythmia database(MITDB)and PTB Diagnostic ECG database(PTBDB).The proposed framework achieves an average accuracy performance of 99.14%along with a 95%recall value.