期刊文献+
共找到39,167篇文章
< 1 2 250 >
每页显示 20 50 100
Modified scaled distance regression analysis approach for prediction of blast-induced ground vibration in multi-hole blasting 被引量:11
1
作者 Hemant Agrawal A.K.Mishra 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第1期202-207,共6页
The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of m... The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of monitoring as the major factors for predicting the peak particle velocity(PPV). It is established that the PPV is caused by the maximum charge per delay which varies with the distance of monitoring and site geology. While conducting a production blasting, the waves induced by blasting of different holes interfere destructively with each other, which may result in higher PPV than the predicted value with scaled distance regression analysis. This phenomenon of interference/superimposition of waves is not considered while using scaled distance regression analysis. In this paper, an attempt has been made to compare the predicted values of blast-induced ground vibration using multi-hole trial blasting with single-hole blasting in an opencast coal mine under the same geological condition. Further,the modified prediction equation for the multi-hole trial blasting was obtained using single-hole regression analysis. The error between predicted and actual values of multi-hole blast-induced ground vibration was found to be reduced by 8.5%. 展开更多
关键词 Peak particle velocity(PPV) blast-induced ground vibration Scaled distance regression analysis Wave SUPERIMPOSITION SINGLE-HOLE blasting
下载PDF
Mathematical Model to Locate Interference of Blast Waves from Multi-Hole Blasting Rounds 被引量:4
2
作者 Sujit Kumar Mandal 《Engineering(科研)》 2012年第3期146-154,共9页
Maximum charge per delay in a blasting round is universally accepted as the influencing parameter to quantify magni-tude of vibration for any distance of concern. However, for any blasting round experimental data reve... Maximum charge per delay in a blasting round is universally accepted as the influencing parameter to quantify magni-tude of vibration for any distance of concern. However, for any blasting round experimental data reveals that for same charge per delay magnitude of vibration varies with total charge. Considering linear transmission of blast waves, the paper firstly investigates into the influence of explosive weight, blast design parameters and geology of strata on magnitude and characteristics of vibration parameters and thereafter communicates that possibly interference of blast waves generated from same and different holes of a blasting round result into variation in vibration magnitude. The paper lastly developed a mathematical model to evaluate points of interference of blast waves generated from single- and multi-hole blasting round. 展开更多
关键词 blast WAVES P-WAVE Velocity COOPERATION of blast WAVES
下载PDF
Adjustment mechanism of blasting dynamic-static action in the water decoupling charge
3
作者 Hao Zhang Xueyang Xing +3 位作者 Yiteng Du Tingchun Li Jianxin Yu Qingwen Zhu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期821-836,共16页
Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and qu... Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and quasi-static pressure.However,the quantitative relationship between the two contributions is unclear,and it is difficult to provide reasonable theoretical support for the design of water decoupling blasting.In this study,a theoretical model of blasting fracturing partitioning is established.The mechanical mechanism and determination method of the optimal decoupling coefficient are obtained.The reliability is verified through model experiments and a field test.The results show that with the increasing of decoupling coefficient,the rock breaking ability of blasting dynamic action decreases,while quasi-static action increases and then decreases.The ability of quasi-static action to wedge into cracks changes due to the spatial adjustment of the blast hole and crushed zone.The quasi-static action plays a leading role in the fracturing range,determining an optimal decoupling coefficient.The optimal water decoupling coefficient is not a fixed value,which can be obtained by the proposed theoretical model.Compared with the theoretical results,the maximum error in the model experiment results is 8.03%,and the error in the field test result is 3.04%. 展开更多
关键词 Water decoupling blasting blasting dynamic-static action Optimal decoupling coefficient Adjustment mechanism
下载PDF
Wetting front migration model of ion-adsorption rare earth during the multi-hole unsaturated liquid injection
4
作者 Yu Wang Xiaojun Wang +8 位作者 Yuchen Qiu Hao Wang Gang Li Kaijian Hu Wen Zhong Zhongqun Guo Bing Li Chunlei Zhang Guangxiang Ye 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期483-496,共14页
In the process of ion-adsorption rare earth ore leaching,the migration characteristics of the wetting front in multi-hole injection holes and the influence of wetting front intersection effect on the migration distanc... In the process of ion-adsorption rare earth ore leaching,the migration characteristics of the wetting front in multi-hole injection holes and the influence of wetting front intersection effect on the migration distance of wetting fronts are still unclear.Besides,wetting front migration distance and leaching time are usually required to optimize the leaching process.In this study,wetting front migration tests of ionadsorption rare earth ores during the multi-hole fluid injection(the spacing between injection holes was 10 cm,12 cm and 14 cm)and single-hole fluid injection were completed under the constant water head height.At the pre-intersection stage,the wetting front migration laws of ion-adsorption rare earth ores during the multi-hole fluid injection and single-hole fluid injection were identical.At the postintersection stage,the intersection accelerated the wetting front migration.By using the Darcy’s law,the intersection effect of wetting fronts during the multi-hole liquid injection was transformed into the water head height directly above the intersection.Finally,based on the Green-Ampt model,a wetting front migration model of ion-adsorption rare earth ores during the multi-hole unsaturated liquid injection was established.Error analysis results showed that the proposed model can accurately simulate the infiltration process under experimental conditions.The research results enrich the infiltration law and theory of ion-adsorption rare earth ores during the multi-hole liquid injection,and this study provides a scientific basis for optimizing the liquid injection well pattern parameters of ion-adsorption rare earth in situ leaching in the future. 展开更多
关键词 Ion-adsorption rare earth ore multi-hole unsaturated liquid injection In situ leaching Intersection effect Calculation model
下载PDF
A Secure and Cost-Effective Training Framework Atop Serverless Computing for Object Detection in Blasting
5
作者 Tianming Zhang Zebin Chen +4 位作者 Haonan Guo Bojun Ren Quanmin Xie Mengke Tian Yong Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2139-2154,共16页
The data analysis of blasting sites has always been the research goal of relevant researchers.The rise of mobile blasting robots has aroused many researchers’interest in machine learning methods for target detection ... The data analysis of blasting sites has always been the research goal of relevant researchers.The rise of mobile blasting robots has aroused many researchers’interest in machine learning methods for target detection in the field of blasting.Serverless Computing can provide a variety of computing services for people without hardware foundations and rich software development experience,which has aroused people’s interest in how to use it in the field ofmachine learning.In this paper,we design a distributedmachine learning training application based on the AWS Lambda platform.Based on data parallelism,the data aggregation and training synchronization in Function as a Service(FaaS)are effectively realized.It also encrypts the data set,effectively reducing the risk of data leakage.We rent a cloud server and a Lambda,and then we conduct experiments to evaluate our applications.Our results indicate the effectiveness,rapidity,and economy of distributed training on FaaS. 展开更多
关键词 Serverless computing object detection blasting
下载PDF
Effects of the initiation position on the damage and fracture characteristics of linear-charge blasting in rock
6
作者 Chenxi Ding Renshu Yang +3 位作者 Xiao Guo Zhe Sui Chenglong Xiao Liyun Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期443-451,共9页
To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and thre... To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and three-dimensional reconstruction methods. The fractal damage theory was used to quantify the crack distribution and damage degree of sandstone specimens after blasting. The results showed that regardless of an inverse or top initiation, due to compression deformation and sliding frictional resistance, the plugging medium of the borehole is effective. The energy of the explosive gas near the top of the borehole is consumed. This affects the effective crushing of rocks near the top of the borehole, where the extent of damage to Sections Ⅰ and Ⅱ is less than that of Sections Ⅲ and Ⅳ. In addition, the analysis revealed that under conditions of top initiation, the reflected tensile damage of the rock at the free face of the top of the borehole and the compression deformation of the plug and friction consume more blasting energy, resulting in lower blasting energy efficiency for top initiation. As a result, the overall damage degree of the specimens in the top-initiation group was significantly smaller than that in the inverse-initiation group. Under conditions of inverse initiation, the blasting energy efficiency is greater, causing the specimen to experience greater damage. Therefore, in the engineering practice of rock tunnel cut blasting, to utilize blasting energy effectively and enhance the effects of rock fragmentation, using the inverse-initiation method is recommended. In addition, in three-dimensional(3D) rock blasting, the bottom of the borehole has obvious end effects under the conditions of inverse initiation, and the crack distribution at the bottom of the borehole is trumpet-shaped. The occurrence of an end effect in the 3D linear-charge blasting model experiment is related to the initiation position and the blocking condition. 展开更多
关键词 blasting linear charge initiation position computed tomography three-dimensional reconstruction damage
下载PDF
Performance of water-coupled charge blasting under different in-situ stresses
7
作者 ZHOU Zi-long WANG Zhen +2 位作者 CHENG Rui-shan CAI Xin LAN Ri-yan 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2300-2320,共21页
Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by ... Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses. 展开更多
关键词 water-coupled blasting in-situ stress water-coupled charge coefficient rock type borehole-connection angle
下载PDF
Modified Sadowski formula-based model for the slope shape amplification effect under multistage slope blasting vibration
8
作者 Xiaogang Wu Mingyang Wang +2 位作者 Hao Lu Yongjun Zhang Wen Nie 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期631-641,共11页
Blasting operations,which are crucial to open-pit mine production due to their simplicity and efficiency,require precise control through accurate vibration velocity calculations.The conventional Sadowski formula mainl... Blasting operations,which are crucial to open-pit mine production due to their simplicity and efficiency,require precise control through accurate vibration velocity calculations.The conventional Sadowski formula mainly focuses on blast center distance but neglects the amplification effect of blasting vibration waves by terraced terrain,from which the calculated blasting vibration velocities are smaller than the actual values,affecting the safety of the project.To address this issue,our model introduces the influences of slope and time into Sadowski formula to measure safety through blast vibration displacement.In the northern section of the open-pit quartz mine in Jinchang City,Gansu Province,China,the data of a continuous blasting slope project are referred to.Our findings reveal a noticeable vibration amplification effect during blasting when a multi-stage slope platform undergoes a sudden cross-sectional change near the upper overhanging surface.The amplification vibration coefficient increases with height,while vibration waves within rocks decrease from bottom to top.Conversely,platforms without distinct crosssectional changes exhibit no pronounced amplification during blasting.In addition,the vibration intensity decreases with distance as the rock height difference change propagates.The results obtained by the proposed blast vibration displacement equation incorporating slope shape influence closely agree with real-world scenarios.According to Pearson correlation coefficient(PPMCC)analysis,the average accuracy rate of our model is 88.84%,which exceeds the conventional Sadowski formula(46.92%). 展开更多
关键词 Multistage slope Slope shape influence factor Continuous blasting Sadowski formula Amplification effect
下载PDF
Effect of Blasting Stress Wave on Dynamic Crack Propagation
9
作者 Huizhen Liu Duanying Wan +2 位作者 Meng Wang Zheming Zhu Liyun Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期349-368,共20页
Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical charact... Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical characteristics of crack propagation is of great significance for engineering blasting.In this study,ANSYS/LS-DYNA was used for blasting numerical simulation,in which the propagation characteristics of blasting stress waves and stress field distribution at the crack tip were closely observed.Moreover,ABAQUS was applied for simulating the crack propagation path and calculating dynamic stress intensity factors(DSIFs).The universal function was calculated by the fractalmethod.The results show that:the compressive wave causes the crack to close and the reflected tensile wave drives the crack to initiate and propagate,and failure mode is mainly tensile failure.The crack propagation velocity varies with time,which increases at first and then decreases,and the crack arrest occurs due to the attenuation of stress waves and dissipation of the blasting energy.In addition,crack arrest toughness is smaller than the crack initiation toughness,applied pressure waveforms(such as the peak pressure,duration,waveforms,wavelengths and loading rates)have a great influence on DSIFs.It is conducive to our deep understanding or the study of blasting stress waves dominated fracture,suggesting a broad reference for the further development of rock blasting in engineering practice. 展开更多
关键词 Crack propagation blasting stress wave dynamic stress intensity factor pressure waveform numerical simulation
下载PDF
Prediction of Ground Vibration Induced by Rock Blasting Based on Optimized Support Vector Regression Models
10
作者 Yifan Huang Zikang Zhou +1 位作者 Mingyu Li Xuedong Luo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3147-3165,共19页
Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management.In this study,Tuna Swarm Optimization(TSO),Whale Optimization Algorithm(WOA),and Cuckoo Search(CS)were u... Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management.In this study,Tuna Swarm Optimization(TSO),Whale Optimization Algorithm(WOA),and Cuckoo Search(CS)were used to optimize two hyperparameters in support vector regression(SVR).Based on these methods,three hybrid models to predict peak particle velocity(PPV)for bench blasting were developed.Eighty-eight samples were collected to establish the PPV database,eight initial blasting parameters were chosen as input parameters for the predictionmodel,and the PPV was the output parameter.As predictive performance evaluation indicators,the coefficient of determination(R2),rootmean square error(RMSE),mean absolute error(MAE),and a10-index were selected.The normalizedmutual information value is then used to evaluate the impact of various input parameters on the PPV prediction outcomes.According to the research findings,TSO,WOA,and CS can all enhance the predictive performance of the SVR model.The TSO-SVR model provides the most accurate predictions.The performances of the optimized hybrid SVR models are superior to the unoptimized traditional prediction model.The maximum charge per delay impacts the PPV prediction value the most. 展开更多
关键词 blasting vibration metaheuristic algorithms support vector regression peak particle velocity normalized mutual information
下载PDF
Combined blasting for protection of gob-side roadway with thick and hard roof
11
作者 Qiang Fu Jun Yang +4 位作者 Yubing Gao Changjiang Li Hongxu Song Yuxuan Liu Xing Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3165-3180,共16页
The deformation control of surrounding rock in gobside roadway with thick and hard roof poses a significant challenge to the safety and efficiency of coal mining.To address this issue,a novel approach combining direct... The deformation control of surrounding rock in gobside roadway with thick and hard roof poses a significant challenge to the safety and efficiency of coal mining.To address this issue,a novel approach combining directional and non-directional blasting techniques,known as combined blasting,was proposed.This study focuses on the experimental investigation of the proposed method in the 122108 working face in Caojiatan Coal Mine as the engineering background.The initial phase of the study involves physical model experiments to reveal the underlying mechanisms of combined blasting for protecting gob-side roadway with thick and hard roof.The results demonstrate that this approach effectively accelerates the collapse of thick and hard roofs,enhances the fragmentation and expansion coefficient of gangue,facilitates the filling of the goaf with gangue,and provides support to the overlying strata,thus reducing the subsidence of the overlying strata above the goaf.Additionally,the method involves cutting the main roof into shorter beams to decrease the stress and disrupt stress transmission pathways.Subsequent numerical simulations were conducted to corroborate the findings of the physical model experiments,thus validating the accuracy of the experimental results.Furthermore,field engineering experiments were performed,affirming the efficacy of the combined blasting method in mitigating the deformation of surrounding rock and achieving the desired protection of the gob-side roadway. 展开更多
关键词 Thick and hard roof Surrounding rock control Combined blasting Fragmentation and expansion support stress relief
下载PDF
Assessing the range of blasting-induced cracks in the surrounding rock of deeply buried tunnels based on the unified strength theory
12
作者 LI Liang CHEN Jia-jun +3 位作者 ZHAO Lian-heng HE Ke-pei HU Shi-hong LI Hua-long 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2341-2364,共24页
Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-in... Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed. 展开更多
关键词 deep drilling and blasting cracks in surrounding rock unified strength theory intermediate principle stress in-situ stress cavity expansion dilatancy characteristics
下载PDF
Vibration reduction technology and the mechanisms of surrounding rock damage from blasting in neighborhood tunnels with small clearance 被引量:2
13
作者 Xiaodong Wu Min Gong +2 位作者 Haojun Wu Guangfeng Hu Sijie Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第5期625-637,共13页
Interlaid rock is an important component in the construction of neighborhood tunnels that supports and reinforces the area between two tunnels.However,the blasting load during excavation can sometimes damage the inter... Interlaid rock is an important component in the construction of neighborhood tunnels that supports and reinforces the area between two tunnels.However,the blasting load during excavation can sometimes damage the interlaid rock and threaten the stability of a tunnel’s structure.This paper presents a case study of the small clearance section of the Liantang highway tunnel project in Shenzhen,China,where the minimum distance between the two tunnels involved is only 0.5 m.To reduce the damage to the interlaid rock caused by blasting loads,we proposed a four-part excavation method with a vibrationcushioning rock layer in the following tunnel of neighborhood tunnels.Numerical simulation was used to model the damage prevention mechanism of the vibration-cushioning rock layer and to better understand the propagation of cracks in the interlaid rock.Furthermore,based on the simulation results,combined microseismic controlled-blasting technology was implemented,using innovative blasting patterns combined with different charge structures and blasting equipment designed according to the varying thickness of the interlaid rock.Finally,this implementation succeeded in protecting interlaid rock during blasting operations. 展开更多
关键词 Neighborhood tunnels Interlaid rock Rock damage blasting design Ground vibration
下载PDF
A case study of blasting vibration attenuation based on wave component characteristics 被引量:1
14
作者 Chong Yu Haibo Li +2 位作者 Haozhen Yue Xiaohu Wang Xiang Xia 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1298-1311,共14页
A typical blasting vibration wave is a composite wave,and its attenuation law is affected by the type of dominant wave component.The purpose of the present study is to establish an attenuation equation of the peak par... A typical blasting vibration wave is a composite wave,and its attenuation law is affected by the type of dominant wave component.The purpose of the present study is to establish an attenuation equation of the peak particle velocity(PPV),taking into account the attenuation characteristics of P-,S-and R-waves in the blasting vibration wave.Field blasting tests were carried out as a case to specifically apply the proposed equation.In view of the fact that the discrete properties of rock mass will inevitably cause the uncertainty of blasting vibration,we also carried out a probability analysis of PPV uncertainty,and introduced the concept of reliability to evaluate blasting vibration.The results showed that the established attenuation equation had a higher prediction accuracy,and can be considered as a promising equation implemented on more complex sites.The adopted uncertainty analysis method can comprehensively take account of the attenuation law of blasting vibration measured on site and discrete properties of rock masses.The obtained distribution of the PPV uncertainty factor can quantitatively evaluate the reliability of blasting vibration,which is a powerful and necessary supplement to the PPV attenuation equation. 展开更多
关键词 blasting vibration Wave component Field blasting tests Attenuation equation Uncertainty analysis Bayesian theory
下载PDF
Numerical modeling of destress blasting for strata separation 被引量:1
15
作者 Petr Konicek Tuo Chen Hani S.Mitri 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2238-2249,共12页
Destress blasting(DB)implemented along the perimeter of safety pillars is a special application of destressing in coal longwall mining.The goal is to separate relatively more deformed mined areas from safety pillars,s... Destress blasting(DB)implemented along the perimeter of safety pillars is a special application of destressing in coal longwall mining.The goal is to separate relatively more deformed mined areas from safety pillars,such as shaft pillars or cross-cut pillars,to reduce the transfer of high stresses to the protective pillar.This case study aims to numerically simulate selected destress blasts in the Czech part of the Upper Silesian Coal Basin and examine its impact on stress transfer to the safety pillar area.To separate the area between the protective pillar and the longwall(LW),two fans of five 93-mm blast holes(length of 93e100 m)were drilled from the gate roads into the overburden strata.Each set of blast holes was fired separately in two stages without time delay.The explosive charge(gelatin-type of explosive)of each stage is 3450 kg.The two DB stages were fired when the longwall face was approximately 158 m and 152 m away from the blast.A 3D mine-wide model is built and validated with in situ stress measured with hydrofracturing.Mining and destressing in three 5-m thick coal seams are simulated in the region.Numerical modeling of DB is successfully conducted using a rock fragmentation factor a of 0.05 and a stress reduction/dissipation factor β of 0.95.Buffering of transfer of additional stress from the mining area into the safety pillar is evaluated by comparison of yielding volume before and after DB.It is shown that yielding volume drops after DB by nearly 80%in the area of the destressing panel and near the safety shaft pillar. 展开更多
关键词 Rockburst hazard Destress blasting(DB) Strata separation Safety pillar Numerical modeling Fragmentation factor Stress dissipation factor Longwall mining
下载PDF
Theoretical and numerical simulation investigation of deep hole dispersed charge cut blasting
16
作者 Chengxiao Li Renshu Yang +3 位作者 Yanbing Wang Yiqiang Kang Yuantong Zhang Pin Xie 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第1期87-107,共21页
Drilling and blasting methods have been used as a common driving technique for shallow-hole driving and blasting in rock roadways.With the advent of digital electronic detonators and the need for increased production ... Drilling and blasting methods have been used as a common driving technique for shallow-hole driving and blasting in rock roadways.With the advent of digital electronic detonators and the need for increased production efciency,the traditional blasting design is no longer suitable for deep hole blasting.In this paper,a disperse charge cut blasting method was proposed to address the issues of low excavation depth and high block rate in deep hole undercut blasting.First,a blasting model was used to illustrate the mechanism of the deep hole dispersive charge cut blasting process.Then,continuous charge and dispersed charge blasting models were developed using the smooth particle hydrodynamics-fnite element method(SPHFEM).The cutting parameters were determined theoretically,and the cutting efciency was introduced to evaluate the cutting efect.The blasting efects of the two charging models were analyzed utilizing the evolution law of rock damage,the number of rock particles thrown,and the cutting efciency.The results show that using a dispersed charge improves the cutting efciency by about 20%and the rock breakage for the deep hole cut blasting compared to the traditional continuous charge.In addition,important parameters such as cutting hole spacing,cutting hole depth and upper charge proportion also have a signifcant impact on the cutting efect.Finally,the deep hole dispersed charge cut blasting technology is combined with the digital electronic detonator through the feld engineering practice.It provides a reference for the subsequent deep hole cutting blasting and the use of electronic detonators in rock roadways. 展开更多
关键词 Deep hole blasting Cut blasting Dispersed charge SPH-FEM Digital electronic detonator
下载PDF
Double-face intelligent hole position planning method for precision blasting in roadways using a computer-controlled drill jumbo
17
作者 Haojun Wu Min Gong +2 位作者 Renshu Yang Xiaodong Wu Xiangyu Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1025-1037,共13页
To solve the uneven burden of same-type holes reducing the blasting efficiency due to the limitation of drilling equipment,we need a double-face program-controlled planning method for hole position parameters used on ... To solve the uneven burden of same-type holes reducing the blasting efficiency due to the limitation of drilling equipment,we need a double-face program-controlled planning method for hole position parameters used on a computer-controlled drilling jumbo.The cross-section splits into even and uneven areas.It also considers the uneven burden at the hole’s entrance and bottom.In the uneven area,various qualifying factors are made to optimize the hole spacing and maximize the burden uniformity,combined with the features of the area edges and gridbased segmentation methods.The hole position coordinates and angles in the even area are derived using recursion and iteration algorithms.As a case,this method presents all holes in a 4.8 m wide and 3.6 m high cross-section.Compared with the design produced by the drawing method,our planning in the uneven area improved the standard deviation of the hole burden by 40%.The improved hole layout facilitates the evolution of precise,efficient,and intelligent blasting in underground mines. 展开更多
关键词 drill and blast method green mine blast design drilling jumbo BURDEN
下载PDF
Transient response of doubly-curved bio-inspired composite shells resting on viscoelastic foundation subject to blast load using improved first-order shear theory and isogeometric approach 被引量:1
18
作者 Thuy Tran Thi Thu Tu Nguyen Anh +1 位作者 Hue Nguyen Thi Hong Nguyen Thi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期171-193,共23页
Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties... Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures. 展开更多
关键词 blast load Modified first-order shear theory Biological composite structures
下载PDF
Geopolymer-based modification of blasting sealing materials and optimization of blasting block size in coal seams of open pit mines
19
作者 Xiaohua Ding Zhongchen Ao +5 位作者 Wei Zhou Hao Qin Zhongao Yang Wen An Xiaoshuang Li Honglin Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第12期1551-1562,共12页
This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study f... This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages. 展开更多
关键词 Open pit coal mine Coal seam blasting Sealing materials Block size optimization Numerical simulation
下载PDF
Research progress and future prospects in the service security of key blast furnace equipment
20
作者 Yanxiang Liu Kexin Jiao +3 位作者 Jianliang Zhang Cui Wang Lei Zhang Xiaoyue Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2121-2135,共15页
The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneve... The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneven distribution of cooling water in parallel pipes based on hydrodynamic principles,discusses the feasible methods for the improvement of BF cooling intensity,and reviews the pre-paration process,performance,and damage characteristics of three key equipment pieces:coolers,tuyeres,and hearth refractories.Fur-thermoere,to attain better control of these critical components under high-temperature working conditions,we propose the application of optimized technologies,such as BF operation and maintenance technology,self-repair technology,and full-lifecycle management techno-logy.Finally,we propose further researches on safety assessments and predictions for key BF equipment under new operating conditions. 展开更多
关键词 blast furnace EQUIPMENT service security blast furnace campaign SELF-REPAIR
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部