A slotted orifice has many superiorities over a standard orifice. For single-phase flow measurement, its flow coefficient is insensitive to the upstream velocity profile. For two phase flow measurement, various charac...A slotted orifice has many superiorities over a standard orifice. For single-phase flow measurement, its flow coefficient is insensitive to the upstream velocity profile. For two phase flow measurement, various characteristics of its differential pressure (DP) are stable and closely correlated with the mass flow rate of gas and liquid. The complex relationships between the signal features and the two-phase flow rate are established through the use of a back propagation (BP) neural network. Experiments were carried out in the horizontal tubes with 50ram inner diameter, ooerated with water flow rate in the range of 0.2m^3·h^-1 to 4m3·h^-1, gas flow rate in the range of 100m^3·h^-1 to 1000m^3·h^-1, and pressure at 400kPa and 850kPa respectively, where the temperature is ambient temperature. This article includes the principle of wet gas meter development, the experimental matrix, the signal processing techniques and the achieved results. On the basis of the results it is suggested that the slotted orifice couple with a trained neural network may provide a simple but efficient solution to the wet gas meter development.展开更多
Fluid-flow measurements of petroleum can be performed using a variety of equipment such as orifice meters and wellhead chokes.It is useful to understand the relationship between flow rate through orifice meters(Qv)and...Fluid-flow measurements of petroleum can be performed using a variety of equipment such as orifice meters and wellhead chokes.It is useful to understand the relationship between flow rate through orifice meters(Qv)and the five fluid-flow influencing input variables:pressure(P),temperature(T),viscosity(μ),square root of differential pressure(ΔP^0.5),and oil specific gravity(SG).Here we evaluate these relationships using a range of machine-learning algorithms applied to orifice meter data from a pipeline flowing from the Cheshmeh Khosh Iranian oil field.Correlation coefficients indicate that(Qv)has weak to moderate positive correlations with T,P,andμ,a strong positive correlation with theΔP^0.5,and a weak negative correlation with oil specific gravity.In order to predict the flow rate with reliable accuracy,five machine-learning algorithms are applied to a dataset of 1037 data records(830 used for algorithm training;207 used for testing)with the full input variable values for the data set provided.The algorithms evaluated are:Adaptive Neuro Fuzzy Inference System(ANFIS),Least Squares Support Vector Machine(LSSVM),Radial Basis Function(RBF),Multilayer Perceptron(MLP),and Gene expression programming(GEP).The prediction performance analysis reveals that all of the applied methods provide predictions at acceptable levels of accuracy.The MLP algorithm achieves the most accurate predictions of orifice meter flow rates for the dataset studied.GEP and RBF also achieve high levels of accuracy.ANFIS and LSSVM perform less well,particularly in the lower flow rate range(i.e.,<40,000 stb/day).Some machine learning algorithms have the potential to overcome the limitations of idealized streamline analysis applying the Bernoulli equation when predicting flow rate across an orifice meter,particularly at low flow rates and in turbulent flow conditions.Further studies on additional datasets are required to confirm this.展开更多
The slotted-orifice is a new type of flow sensor for gas-liquid two-phase flow measurement,and there is no correlation of two-phase multipliers for the slotted-orifice available.Based on the air-water two-phase flow e...The slotted-orifice is a new type of flow sensor for gas-liquid two-phase flow measurement,and there is no correlation of two-phase multipliers for the slotted-orifice available.Based on the air-water two-phase flow experimental data of slotted-orifice,five typical correlations of the standard throttle device were applied to the data,and the application range and the reason for error involved from these correlations were analyzed.Based on different modeling ideas,three new correlations,which include the Lockhart-Martinelli parameter,gas pressure and gas Froude number,were proposed and used in the study of metering technology of wet gas flow.The accuracy of new correlations can meet the gas industry demands for production based metering.展开更多
基金Supported by the National Natural Science Foundation of China (No.60672003)Shandong Key Technology R&D Program (2004GG2205016).
文摘A slotted orifice has many superiorities over a standard orifice. For single-phase flow measurement, its flow coefficient is insensitive to the upstream velocity profile. For two phase flow measurement, various characteristics of its differential pressure (DP) are stable and closely correlated with the mass flow rate of gas and liquid. The complex relationships between the signal features and the two-phase flow rate are established through the use of a back propagation (BP) neural network. Experiments were carried out in the horizontal tubes with 50ram inner diameter, ooerated with water flow rate in the range of 0.2m^3·h^-1 to 4m3·h^-1, gas flow rate in the range of 100m^3·h^-1 to 1000m^3·h^-1, and pressure at 400kPa and 850kPa respectively, where the temperature is ambient temperature. This article includes the principle of wet gas meter development, the experimental matrix, the signal processing techniques and the achieved results. On the basis of the results it is suggested that the slotted orifice couple with a trained neural network may provide a simple but efficient solution to the wet gas meter development.
文摘Fluid-flow measurements of petroleum can be performed using a variety of equipment such as orifice meters and wellhead chokes.It is useful to understand the relationship between flow rate through orifice meters(Qv)and the five fluid-flow influencing input variables:pressure(P),temperature(T),viscosity(μ),square root of differential pressure(ΔP^0.5),and oil specific gravity(SG).Here we evaluate these relationships using a range of machine-learning algorithms applied to orifice meter data from a pipeline flowing from the Cheshmeh Khosh Iranian oil field.Correlation coefficients indicate that(Qv)has weak to moderate positive correlations with T,P,andμ,a strong positive correlation with theΔP^0.5,and a weak negative correlation with oil specific gravity.In order to predict the flow rate with reliable accuracy,five machine-learning algorithms are applied to a dataset of 1037 data records(830 used for algorithm training;207 used for testing)with the full input variable values for the data set provided.The algorithms evaluated are:Adaptive Neuro Fuzzy Inference System(ANFIS),Least Squares Support Vector Machine(LSSVM),Radial Basis Function(RBF),Multilayer Perceptron(MLP),and Gene expression programming(GEP).The prediction performance analysis reveals that all of the applied methods provide predictions at acceptable levels of accuracy.The MLP algorithm achieves the most accurate predictions of orifice meter flow rates for the dataset studied.GEP and RBF also achieve high levels of accuracy.ANFIS and LSSVM perform less well,particularly in the lower flow rate range(i.e.,<40,000 stb/day).Some machine learning algorithms have the potential to overcome the limitations of idealized streamline analysis applying the Bernoulli equation when predicting flow rate across an orifice meter,particularly at low flow rates and in turbulent flow conditions.Further studies on additional datasets are required to confirm this.
文摘The slotted-orifice is a new type of flow sensor for gas-liquid two-phase flow measurement,and there is no correlation of two-phase multipliers for the slotted-orifice available.Based on the air-water two-phase flow experimental data of slotted-orifice,five typical correlations of the standard throttle device were applied to the data,and the application range and the reason for error involved from these correlations were analyzed.Based on different modeling ideas,three new correlations,which include the Lockhart-Martinelli parameter,gas pressure and gas Froude number,were proposed and used in the study of metering technology of wet gas flow.The accuracy of new correlations can meet the gas industry demands for production based metering.