In Wireless Sensor Network (WSNs), sensor nodes collect data and send them to a Base Station (BS) for further processing. One of the most issues in WSNs that researchers have proposed a hundred of technique to solve i...In Wireless Sensor Network (WSNs), sensor nodes collect data and send them to a Base Station (BS) for further processing. One of the most issues in WSNs that researchers have proposed a hundred of technique to solve its impact is the energy constraint since sensor nodes have small battery, small memory and less data processing with low computational capabilities. However, many researches efforts have focused on how to prolong the battery lifetime of sensor nodes by proposing different routing, MAC, localization, data aggregation, topology construction techniques. In this paper, we will focus on routing techniques which aim to prolonging the network lifetime. Hence, we propose an Energy-Efficient Routing technique in WSNs based on Stationary and Mobile nodes (EERSM). Sensing filed is divided into intersected circles which contain Mobile Nodes (MN). The proposed data aggregation technique via the circular topology will eliminate the redundant data to be sent to the Base Station (BS). MN in each circle will rout packets for their source nodes, and move to the intersected area where another MN is waiting (sleep mode) to receive the transmitted packet, and then the packet will be delivered to the next intersected area until the packet is arrived to the BS. Our proposed EERSM technique is simulated using MATLAB and compared with conventional multi-hop techniques under different network models and scenarios. In the simulation, we will show how the proposed EERSM technique overcomes many routing protocols in terms of the number of hops counted when sending packets from a source node to the destination (i.e. BS), the average residual energy, number of sent packets to the BS, and the number of a live sensor nodes verse the simulation rounds.展开更多
In recent years,the demands of high traffic transmission motivate the rapid development of wireless access techniques,and it becomes promising to design the fifth generation(5G)wireless networks.Essential requirements...In recent years,the demands of high traffic transmission motivate the rapid development of wireless access techniques,and it becomes promising to design the fifth generation(5G)wireless networks.Essential requirements for 5G involve higher traffic volume,indoor or hotspot traffic,and spectrum,energy,and cost efficien-展开更多
In today’s information technology(IT)world,the multi-hop wireless sensor networks(MHWSNs)are considered the building block for the Internet of Things(IoT)enabled communication systems for controlling everyday tasks o...In today’s information technology(IT)world,the multi-hop wireless sensor networks(MHWSNs)are considered the building block for the Internet of Things(IoT)enabled communication systems for controlling everyday tasks of organizations and industry to provide quality of service(QoS)in a stipulated time slot to end-user over the Internet.Smart city(SC)is an example of one such application which can automate a group of civil services like automatic control of traffic lights,weather prediction,surveillance,etc.,in our daily life.These IoT-based networks with multi-hop communication and multiple sink nodes provide efficient communication in terms of performance parameters such as throughput,energy efficiency,and end-to-end delay,wherein low latency is considered a challenging issue in next-generation networks(NGN).This paper introduces a single and parallels stable server queuing model with amulti-class of packets and native and coded packet flowto illustrate the simple chain topology and complexmultiway relay(MWR)node with specific neighbor topology.Further,for improving data transmission capacity inMHWSNs,an analytical framework for packet transmission using network coding at the MWR node in the network layer with opportunistic listening is performed by considering bi-directional network flow at the MWR node.Finally,the accuracy of the proposed multi-server multi-class queuing model is evaluated with and without network coding at the network layer by transmitting data packets.The results of the proposed analytical framework are validated and proved effective by comparing these analytical results to simulation results.展开更多
In order to provide a novel and more effective alternative to the commonly used relay protection testing device that outputs only the sinusoidal testing signals, the concept of fault waveform regenerator is proposed i...In order to provide a novel and more effective alternative to the commonly used relay protection testing device that outputs only the sinusoidal testing signals, the concept of fault waveform regenerator is proposed in this paper, together with its hardware structure and software flow chart. Fault waveform regenerator mainly depends on its power amplifiers (PAs) to regenerate the fault waveforms recorded by digital fault recorder (DFR). To counteract the PA’s inherent nonlinear distortions, a digital closed-loop modification technique that is different from the predistortion technique is conceived. And the experimental results verify the effectiveness of the fault waveform regenerator based on the digital closed-loop modification technique.展开更多
To improve the connectivity of device-to-device(D2D)communication between delay-assisted vehicles,a multi-hop D2D relay selection strategy based on outage probability is proposed.The algorithm firstly clusters the rel...To improve the connectivity of device-to-device(D2D)communication between delay-assisted vehicles,a multi-hop D2D relay selection strategy based on outage probability is proposed.The algorithm firstly clusters the relay users based on the distance of D2D users,and determines the number of one-hop relay nodes through the outage probability threshold.Two-hop relay nodes directly select the same number of relays as one-hop relay nodes according to the descending order of signal noise ratio(SNR)to establish a square matrix.The Hungarian algorithm is used to assign the relay nodes of two clusters to complete the inter relay communication.Finally,the information is sent to the D2D receiver by combining technology.The simulation results show that this algorithm can reduce the cost of relay probing process and the outage probability of system in multi-hop D2D relay communication.展开更多
The additional diversity gain provided by the relays improves the secrecy capacity of communications system significantly. The multiple hops in the relaying system is an important technique to improve this diversity g...The additional diversity gain provided by the relays improves the secrecy capacity of communications system significantly. The multiple hops in the relaying system is an important technique to improve this diversity gain. The development of an analytical mathematical model of ensuring security in multicasting through fading channels incorporating this benefit of multi-hop relaying is still an open problem. Motivated by this issue, this paper considers a secure wireless multicasting scenario employing multi-hop relaying technique over frequency selective Nakagami-m fading channel and develops an analytical mathematical model to ensure the security against multiple eavesdroppers. This mathematical model has been developed based on the closed-form analytical expressions of the probability of non-zero secrecy multicast capacity (PNSMC) and the secure outage probability for multicasting (SOPM) to ensure the security in the presence of multiple eavesdroppers. Moreover, the effects of the fading parameter of multicast channel, the number of hops and eavesdropper are investigated. The results show that the security in multicasting through Nakagami-m fading channel with multi-hop relaying system is more sensitive to the number of hops and eavesdroppers. The fading of multicast channel helps to improve the secrecy multicast capacity and is not the enemy of security in multicasting.展开更多
In this article,a low-cost electromagnetic structure emulating photonic nanojets is utilized to improve the efficiency of wireless relay networks.The spectral element method,due to its high accuracy,is used to verify ...In this article,a low-cost electromagnetic structure emulating photonic nanojets is utilized to improve the efficiency of wireless relay networks.The spectral element method,due to its high accuracy,is used to verify the efficiency of the proposed structure by solving the associate field distribution.The application of optimal single-relay selection method shows that full diversity gain with low complexity can be achieved.In this paper,the proposed technique using smart relays combines the aforementioned two methods to attain the benefits of both methods by achieving the highest coding and diversity gain and enhances the overall network performance in terms of bit error rate(BER).Moreover,we analytically prove the advantage of using the proposed technique.In our simulations,it can be shown that the proposed technique outperforms the best known state-of-the-art single relay selection technique.Furthermore,the BER expressions obtained from the theoretical analysis are perfectly matched to those obtained from the conducted simulations.展开更多
Cognitive radio networks(CRNs) are expected to improve spectrum utilization efficiently by allowing secondary users(SUs) to opportunistically access the licensed spectrum of primary users(PUs).In CRNs,source and desti...Cognitive radio networks(CRNs) are expected to improve spectrum utilization efficiently by allowing secondary users(SUs) to opportunistically access the licensed spectrum of primary users(PUs).In CRNs,source and destination SUs may achieve information interaction in an ad hoc manner.In the case that no direct transmission link between the SU transmission pairs is available,multi-hop relay SUs can be applied to forward information for the source and destination SUs,resulting in multi-hop CRNs.In this paper,we consider a multi-hop CRN consisting of multiple PUs,SU transmission pairs and relay SUs.Stressing the importance of transmission hops and the tradeoff between data rate and power consumption,we propose an energy efficient constrained shortest path first(CSPF)-based joint resource allocation and route selection algorithm,which consists of two sub-algorithms,i.e.,CSPF-based route selection sub-algorithm and energy efficient resource allocation sub-algorithm.More specifically,we first apply CSPF-based route selection sub-algorithm to obtain the shortest candidate routes(SCRs) between the SU pair under the transmission constraints.Then,an energy efficient resource allocation problem of the SCRs is formulated and solved by applying iterative algorithm and Lagrange dual method.Simu-lation results demonstrate the effectiveness of the proposed algorithm.展开更多
The minimum energy per bit(EPB)as the energy efficiency(EE)metric in an automatic retransmission request(ARQ)based multi-hop system is analyzed under power and throughput constraints.Two ARQ protocols including type-I...The minimum energy per bit(EPB)as the energy efficiency(EE)metric in an automatic retransmission request(ARQ)based multi-hop system is analyzed under power and throughput constraints.Two ARQ protocols including type-I(ARQ-I)and repetition redundancy(ARQ-RR)are considered and expressions for the optimal power allocation(PA)are obtained.Using the obtained optimal powers,the EE-throughput tradeoff(EETT)is analyzed and the EETT closed-form expressions for both ARQ protocols and in arbitrary average channel gain values are obtained.It is shown that how different throughput requirements,especially the high levels,affect the EE performance.Additionally,asymptotic analysis is made in the feasible high throughput values and lower and upper EETT bounds are derived for ARQ-I protocol.To evaluate the EE a distributed PA scenario,as a benchmark,is presented and the energy savinggain obtained from the optimal PA in comparison with the distributed PA for ARQ-I and ARQ-RR protocols is discussed in different throughput values and node locations.展开更多
In this article,we introduce a new bi-directional dual-relay selection strategy with its bit error rate(BER)performance analysis.During the first step of the proposed strategy,two relays out of a set of N relay-nodes ...In this article,we introduce a new bi-directional dual-relay selection strategy with its bit error rate(BER)performance analysis.During the first step of the proposed strategy,two relays out of a set of N relay-nodes are selected in a way to optimize the system performance in terms of BER,based on the suggested algorithm which checks if the selected relays using the maxmin criterion are the best ones.In the second step,the chosen relay-nodes perform an orthogonal space-time coding scheme using the two-phase relaying protocol to establish a bi-directional communication between the communicating terminals,leading to a significant improvement in the achievable coding and diversity gain.To further improve the overall system performance,the selected relay-nodes apply also a digital network coding scheme.Furthermore,this paper discusses the analytical approximation of the BER performance of the proposed strategy,where we prove that the analytical results match almost perfectly the simulated ones.Finally,our simulation results show that the proposed strategy outperforms the current state-of-the-art ones.展开更多
In this paper,the throughput and delay of cooperative communications are derived when solar energy is used and relay node is selected using a timer.The source and relays harvest energy from sun using a photo voltaic s...In this paper,the throughput and delay of cooperative communications are derived when solar energy is used and relay node is selected using a timer.The source and relays harvest energy from sun using a photo voltaic system.The harvested power is used by the source to transmit data to the relays.Then,a selected relay amplifies the signal to the destination.Opportunistic,partial and reactive relay selection are used.The relay transmits when its timer elapses.The timer is set to a value proportional to the inverse of its Signal to Noise Ratio(SNR).Therefore,the relay with largest SNR will transmit first and its signal will be detected by the other relays that will remain idle to avoid collisions.Harvesting duration is optimized to maximize the throughput.Packet’s waiting time and total delay are also computed.We also derive the statistics of SNR when solar energy is used.The harvested power from sun is proportional to the sum of a deterministic radiation intensity and a random attenuation due to weather effects and clouds occlusion.The fixed radiation intensity depends on season,month and time t in hour.The throughput of cooperative communications with energy harvesting from sun was not yet studied.展开更多
A low-complexity multi-antenna relaying scheme is proposed for Orthogonal Frequency Division Multiplexing (OFDM) in the presence of Class-A Impulsive Noise (IN). One way and two way relaying are considered. The signal...A low-complexity multi-antenna relaying scheme is proposed for Orthogonal Frequency Division Multiplexing (OFDM) in the presence of Class-A Impulsive Noise (IN). One way and two way relaying are considered. The signal is transmitted and received by two terminal nodes, each with a single antenna in two time phases. In the proposed design, the processing at the relay consists of Maximal-Ratio Combining (MRC) or Power-based Selection Combining (PSC) for receive combining, Amplify and Forward (AF) for power scaling, and Space Time Block Coding (STBC) for transmit diversity. Channel State Information (CSI), Discrete Fourier Transform (DFT), and Inverse Discrete Fourier Transform (IDFT) are not needed. The Selective Mapping (SLM) technique is used at the transmitter to reduce the Peak-to-Average Power Ratio (PAPR) of the OFDM signal. Then, at the receiver, the clipping technique is used to reduce the impulses that result from the impulsive noise. The proposed system reduces the complexity of the conventional system, which uses multi-relay with a single antenna. Simulation results show that the Bit Error Rate (BER) of the proposed scheme outperforms that of the conventional scheme due to the diversity inherent in the proposed scheme.展开更多
Co-ordination of directional over current relays(DOCR) requires the selection and setting of relays so as to sequentially isolate only that portion of the power system where an abnormality has occurred.The problem of ...Co-ordination of directional over current relays(DOCR) requires the selection and setting of relays so as to sequentially isolate only that portion of the power system where an abnormality has occurred.The problem of coordinating protective relays in electrical power systems consists of selecting suitable settings such that their fundamental protective function is met,given operational requirements of sensitivity,selectivity,reliability and speed.Directional over current relays are best suited for protection of an interconnected sub-station transmission system.One of the major problems associated with this type of protection is the difficulty in coordinating relays.To insure proper coordination,all the main/back up relay pairs must be determined.This paper presents an effective algorithm to determine the minimum number of break points and main/back up relay pairs using relative sequence matrix(RSM).A novel optimization technique based on evolutionary programming was developed using these main/back up relay pairs for directional over current relay coordination in multi-loop networks.Since the problem has multi-optimum points,conventional mathematics based optimization techniques may sometimes fail.Hence evolutionary programming(EP) was used,as it is a stochastic multi-point search optimization algorithm capable of escaping from the local optimum problem,giving a better chance of reaching a global optimum.The method developed was tested on an existing 6 bus,7 line system and better results were obtained than with conventional methods.展开更多
文摘In Wireless Sensor Network (WSNs), sensor nodes collect data and send them to a Base Station (BS) for further processing. One of the most issues in WSNs that researchers have proposed a hundred of technique to solve its impact is the energy constraint since sensor nodes have small battery, small memory and less data processing with low computational capabilities. However, many researches efforts have focused on how to prolong the battery lifetime of sensor nodes by proposing different routing, MAC, localization, data aggregation, topology construction techniques. In this paper, we will focus on routing techniques which aim to prolonging the network lifetime. Hence, we propose an Energy-Efficient Routing technique in WSNs based on Stationary and Mobile nodes (EERSM). Sensing filed is divided into intersected circles which contain Mobile Nodes (MN). The proposed data aggregation technique via the circular topology will eliminate the redundant data to be sent to the Base Station (BS). MN in each circle will rout packets for their source nodes, and move to the intersected area where another MN is waiting (sleep mode) to receive the transmitted packet, and then the packet will be delivered to the next intersected area until the packet is arrived to the BS. Our proposed EERSM technique is simulated using MATLAB and compared with conventional multi-hop techniques under different network models and scenarios. In the simulation, we will show how the proposed EERSM technique overcomes many routing protocols in terms of the number of hops counted when sending packets from a source node to the destination (i.e. BS), the average residual energy, number of sent packets to the BS, and the number of a live sensor nodes verse the simulation rounds.
文摘In recent years,the demands of high traffic transmission motivate the rapid development of wireless access techniques,and it becomes promising to design the fifth generation(5G)wireless networks.Essential requirements for 5G involve higher traffic volume,indoor or hotspot traffic,and spectrum,energy,and cost efficien-
文摘In today’s information technology(IT)world,the multi-hop wireless sensor networks(MHWSNs)are considered the building block for the Internet of Things(IoT)enabled communication systems for controlling everyday tasks of organizations and industry to provide quality of service(QoS)in a stipulated time slot to end-user over the Internet.Smart city(SC)is an example of one such application which can automate a group of civil services like automatic control of traffic lights,weather prediction,surveillance,etc.,in our daily life.These IoT-based networks with multi-hop communication and multiple sink nodes provide efficient communication in terms of performance parameters such as throughput,energy efficiency,and end-to-end delay,wherein low latency is considered a challenging issue in next-generation networks(NGN).This paper introduces a single and parallels stable server queuing model with amulti-class of packets and native and coded packet flowto illustrate the simple chain topology and complexmultiway relay(MWR)node with specific neighbor topology.Further,for improving data transmission capacity inMHWSNs,an analytical framework for packet transmission using network coding at the MWR node in the network layer with opportunistic listening is performed by considering bi-directional network flow at the MWR node.Finally,the accuracy of the proposed multi-server multi-class queuing model is evaluated with and without network coding at the network layer by transmitting data packets.The results of the proposed analytical framework are validated and proved effective by comparing these analytical results to simulation results.
文摘In order to provide a novel and more effective alternative to the commonly used relay protection testing device that outputs only the sinusoidal testing signals, the concept of fault waveform regenerator is proposed in this paper, together with its hardware structure and software flow chart. Fault waveform regenerator mainly depends on its power amplifiers (PAs) to regenerate the fault waveforms recorded by digital fault recorder (DFR). To counteract the PA’s inherent nonlinear distortions, a digital closed-loop modification technique that is different from the predistortion technique is conceived. And the experimental results verify the effectiveness of the fault waveform regenerator based on the digital closed-loop modification technique.
基金National Natural Science Foundation of China(No.61801106)。
文摘To improve the connectivity of device-to-device(D2D)communication between delay-assisted vehicles,a multi-hop D2D relay selection strategy based on outage probability is proposed.The algorithm firstly clusters the relay users based on the distance of D2D users,and determines the number of one-hop relay nodes through the outage probability threshold.Two-hop relay nodes directly select the same number of relays as one-hop relay nodes according to the descending order of signal noise ratio(SNR)to establish a square matrix.The Hungarian algorithm is used to assign the relay nodes of two clusters to complete the inter relay communication.Finally,the information is sent to the D2D receiver by combining technology.The simulation results show that this algorithm can reduce the cost of relay probing process and the outage probability of system in multi-hop D2D relay communication.
文摘The additional diversity gain provided by the relays improves the secrecy capacity of communications system significantly. The multiple hops in the relaying system is an important technique to improve this diversity gain. The development of an analytical mathematical model of ensuring security in multicasting through fading channels incorporating this benefit of multi-hop relaying is still an open problem. Motivated by this issue, this paper considers a secure wireless multicasting scenario employing multi-hop relaying technique over frequency selective Nakagami-m fading channel and develops an analytical mathematical model to ensure the security against multiple eavesdroppers. This mathematical model has been developed based on the closed-form analytical expressions of the probability of non-zero secrecy multicast capacity (PNSMC) and the secure outage probability for multicasting (SOPM) to ensure the security in the presence of multiple eavesdroppers. Moreover, the effects of the fading parameter of multicast channel, the number of hops and eavesdropper are investigated. The results show that the security in multicasting through Nakagami-m fading channel with multi-hop relaying system is more sensitive to the number of hops and eavesdroppers. The fading of multicast channel helps to improve the secrecy multicast capacity and is not the enemy of security in multicasting.
基金This work was supported by College of Engineering and Technology,the American University of the Middle East,Kuwait.Homepage:https://www.aum.edu.kw.
文摘In this article,a low-cost electromagnetic structure emulating photonic nanojets is utilized to improve the efficiency of wireless relay networks.The spectral element method,due to its high accuracy,is used to verify the efficiency of the proposed structure by solving the associate field distribution.The application of optimal single-relay selection method shows that full diversity gain with low complexity can be achieved.In this paper,the proposed technique using smart relays combines the aforementioned two methods to attain the benefits of both methods by achieving the highest coding and diversity gain and enhances the overall network performance in terms of bit error rate(BER).Moreover,we analytically prove the advantage of using the proposed technique.In our simulations,it can be shown that the proposed technique outperforms the best known state-of-the-art single relay selection technique.Furthermore,the BER expressions obtained from the theoretical analysis are perfectly matched to those obtained from the conducted simulations.
基金supported by the National Science and Technology Specific Project of China(2016ZX03001010-004)National Natural Science Foundation of China(6140105361571073)+2 种基金the Joint Scientifi c Research Fund Ministry of Education and China Mobile(MCM20160105)the special fund of Chongqing key laboratory(CSTC)the project of Chongqing Municipal Education Commission(Kjzh11206)
文摘Cognitive radio networks(CRNs) are expected to improve spectrum utilization efficiently by allowing secondary users(SUs) to opportunistically access the licensed spectrum of primary users(PUs).In CRNs,source and destination SUs may achieve information interaction in an ad hoc manner.In the case that no direct transmission link between the SU transmission pairs is available,multi-hop relay SUs can be applied to forward information for the source and destination SUs,resulting in multi-hop CRNs.In this paper,we consider a multi-hop CRN consisting of multiple PUs,SU transmission pairs and relay SUs.Stressing the importance of transmission hops and the tradeoff between data rate and power consumption,we propose an energy efficient constrained shortest path first(CSPF)-based joint resource allocation and route selection algorithm,which consists of two sub-algorithms,i.e.,CSPF-based route selection sub-algorithm and energy efficient resource allocation sub-algorithm.More specifically,we first apply CSPF-based route selection sub-algorithm to obtain the shortest candidate routes(SCRs) between the SU pair under the transmission constraints.Then,an energy efficient resource allocation problem of the SCRs is formulated and solved by applying iterative algorithm and Lagrange dual method.Simu-lation results demonstrate the effectiveness of the proposed algorithm.
文摘The minimum energy per bit(EPB)as the energy efficiency(EE)metric in an automatic retransmission request(ARQ)based multi-hop system is analyzed under power and throughput constraints.Two ARQ protocols including type-I(ARQ-I)and repetition redundancy(ARQ-RR)are considered and expressions for the optimal power allocation(PA)are obtained.Using the obtained optimal powers,the EE-throughput tradeoff(EETT)is analyzed and the EETT closed-form expressions for both ARQ protocols and in arbitrary average channel gain values are obtained.It is shown that how different throughput requirements,especially the high levels,affect the EE performance.Additionally,asymptotic analysis is made in the feasible high throughput values and lower and upper EETT bounds are derived for ARQ-I protocol.To evaluate the EE a distributed PA scenario,as a benchmark,is presented and the energy savinggain obtained from the optimal PA in comparison with the distributed PA for ARQ-I and ARQ-RR protocols is discussed in different throughput values and node locations.
基金This work was supported by College of Engineering and Technology,the American University of the Middle East,Kuwait.Homepage:https://www.aum.edu.kw.
文摘In this article,we introduce a new bi-directional dual-relay selection strategy with its bit error rate(BER)performance analysis.During the first step of the proposed strategy,two relays out of a set of N relay-nodes are selected in a way to optimize the system performance in terms of BER,based on the suggested algorithm which checks if the selected relays using the maxmin criterion are the best ones.In the second step,the chosen relay-nodes perform an orthogonal space-time coding scheme using the two-phase relaying protocol to establish a bi-directional communication between the communicating terminals,leading to a significant improvement in the achievable coding and diversity gain.To further improve the overall system performance,the selected relay-nodes apply also a digital network coding scheme.Furthermore,this paper discusses the analytical approximation of the BER performance of the proposed strategy,where we prove that the analytical results match almost perfectly the simulated ones.Finally,our simulation results show that the proposed strategy outperforms the current state-of-the-art ones.
基金the Deanship of Scientific Research at Saudi Electronic University for funding this research work through the project number 8092.
文摘In this paper,the throughput and delay of cooperative communications are derived when solar energy is used and relay node is selected using a timer.The source and relays harvest energy from sun using a photo voltaic system.The harvested power is used by the source to transmit data to the relays.Then,a selected relay amplifies the signal to the destination.Opportunistic,partial and reactive relay selection are used.The relay transmits when its timer elapses.The timer is set to a value proportional to the inverse of its Signal to Noise Ratio(SNR).Therefore,the relay with largest SNR will transmit first and its signal will be detected by the other relays that will remain idle to avoid collisions.Harvesting duration is optimized to maximize the throughput.Packet’s waiting time and total delay are also computed.We also derive the statistics of SNR when solar energy is used.The harvested power from sun is proportional to the sum of a deterministic radiation intensity and a random attenuation due to weather effects and clouds occlusion.The fixed radiation intensity depends on season,month and time t in hour.The throughput of cooperative communications with energy harvesting from sun was not yet studied.
文摘A low-complexity multi-antenna relaying scheme is proposed for Orthogonal Frequency Division Multiplexing (OFDM) in the presence of Class-A Impulsive Noise (IN). One way and two way relaying are considered. The signal is transmitted and received by two terminal nodes, each with a single antenna in two time phases. In the proposed design, the processing at the relay consists of Maximal-Ratio Combining (MRC) or Power-based Selection Combining (PSC) for receive combining, Amplify and Forward (AF) for power scaling, and Space Time Block Coding (STBC) for transmit diversity. Channel State Information (CSI), Discrete Fourier Transform (DFT), and Inverse Discrete Fourier Transform (IDFT) are not needed. The Selective Mapping (SLM) technique is used at the transmitter to reduce the Peak-to-Average Power Ratio (PAPR) of the OFDM signal. Then, at the receiver, the clipping technique is used to reduce the impulses that result from the impulsive noise. The proposed system reduces the complexity of the conventional system, which uses multi-relay with a single antenna. Simulation results show that the Bit Error Rate (BER) of the proposed scheme outperforms that of the conventional scheme due to the diversity inherent in the proposed scheme.
文摘Co-ordination of directional over current relays(DOCR) requires the selection and setting of relays so as to sequentially isolate only that portion of the power system where an abnormality has occurred.The problem of coordinating protective relays in electrical power systems consists of selecting suitable settings such that their fundamental protective function is met,given operational requirements of sensitivity,selectivity,reliability and speed.Directional over current relays are best suited for protection of an interconnected sub-station transmission system.One of the major problems associated with this type of protection is the difficulty in coordinating relays.To insure proper coordination,all the main/back up relay pairs must be determined.This paper presents an effective algorithm to determine the minimum number of break points and main/back up relay pairs using relative sequence matrix(RSM).A novel optimization technique based on evolutionary programming was developed using these main/back up relay pairs for directional over current relay coordination in multi-loop networks.Since the problem has multi-optimum points,conventional mathematics based optimization techniques may sometimes fail.Hence evolutionary programming(EP) was used,as it is a stochastic multi-point search optimization algorithm capable of escaping from the local optimum problem,giving a better chance of reaching a global optimum.The method developed was tested on an existing 6 bus,7 line system and better results were obtained than with conventional methods.