Multi-energy microgrids(MEMG)play an important role in promoting carbon neutrality and achieving sustainable development.This study investigates an effective energy management strategy(EMS)for MEMG.First,an energy man...Multi-energy microgrids(MEMG)play an important role in promoting carbon neutrality and achieving sustainable development.This study investigates an effective energy management strategy(EMS)for MEMG.First,an energy management system model that allows for intra-microgrid energy conversion is developed,and the corresponding Markov decision process(MDP)problem is formulated.Subsequently,an improved double deep Q network(iDDQN)algorithm is proposed to enhance the exploration ability by modifying the calculation of the Q value,and a prioritized experience replay(PER)is introduced into the iDDQN to improve the training speed and effectiveness.Finally,taking advantage of the federated learning(FL)and iDDQN algorithms,a federated iDDQN is proposed to design an MEMG energy management strategy to enable each microgrid to share its experiences in the form of local neural network(NN)parameters with the federation layer,thus ensuring the privacy and security of data.The simulation results validate the superior performance of the proposed energy management strategy in minimizing the economic costs of the MEMG while reducing CO_2 emissions and protecting data privacy.展开更多
With the penetration of a large number of photovoltaic power generation units and power electronic converters,the DC microgrid shows low inertia characteristics,which might affect the stable operation of the microgrid...With the penetration of a large number of photovoltaic power generation units and power electronic converters,the DC microgrid shows low inertia characteristics,which might affect the stable operation of the microgrid in extreme cases.In order to enhance the“flexible features”of the interface converter connected to the DC bus,a control strategy of DCmicrogrid with photovoltaic and energy storage based on the virtual DC generator(VDCG)is proposed in this paper.The interface converters of the photovoltaic power generation system and the energy storage system simulates the inertia and damping characteristics of the DC generator to improve the stability of the DC bus voltage.The impedance ratio of DC microgrid was obtained by establishing the small-signal model of photovoltaic power generation system and energy storage system,and the Nyquist curves was applied to analyze the small-signal stability of the system.Finally,the simulation results were verified with MATLAB/Simulink.The results show that the proposed control strategy can slow down the fluctuation of bus voltage under the conditions of photovoltaic power fluctuation and load mutation,thus enhancing the system stability.展开更多
In the context of both the Virtual Power Plant (VPP) and microgrid(MG), the Energy Management System (EMS) is a key decision-maker forintegrating Distributed renewable Energy Resources (DERs) efficiently. TheEMS is re...In the context of both the Virtual Power Plant (VPP) and microgrid(MG), the Energy Management System (EMS) is a key decision-maker forintegrating Distributed renewable Energy Resources (DERs) efficiently. TheEMS is regarded as a strong enabler of providing the optimized schedulingcontrol in operation and management of usage of disperse DERs and RenewableEnergy reSources (RES) such as a small-size wind-turbine (WT) andphotovoltaic (PV) energies. The main objective to be pursued by the EMSis the minimization of the overall operating cost of the MG integrated VPPnetwork. However, the minimization of the power peaks is a new objective andopen issue to a well-functional EMS, along with the maximization of profitin the energy market. Thus, both objectives have to be taken into accountat the same time. Thus, this paper proposes the EMS application incorporatingpower offering strategy applying a nature-inspired algorithm such asParticle Swarm Optimization (PSO) algorithm, in order to find the optimalsolution of the objective function in the context of the overall operating cost,the coordination of DERs, and the energy losses in a MG integrated VPPnetwork. For a fair DERs coordination with minimized power fluctuationsin the power flow, the power offering strategies with an active power controland re-distribution are proposed. Simulation results show that the proposedMG integrated VPP model with PSO-based EMS employing EgalitarianreDistribution (ED) power offering strategy is most feasible option for theoverall operating cost of VPP revenue. The total operating cost of the proposedEMS with ED strategy is 40.98$ compared to 432.8$ of MGs only withoutEMS. It is concluded that each MGs in the proposed VPP model intelligentlyparticipates in energy trading market compliant with the objective function,to minimize the overall cost and the power fluctuation.展开更多
To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing confi...To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing configuration method of hybrid energy storage microgrid based on improved grey wolf optimization(IGWO)is proposed.Firstly,building a microgrid system containing a wind-solar power station and electric-hydrogen coupling hybrid energy storage system.Secondly,the minimum comprehensive cost of the construction and operation of the microgrid is taken as the outer objective function,and the minimum peak-to-valley of the microgrid’s daily output is taken as the inner objective function.By iterating through the outer and inner layers,the system improves operational stability while achieving economic configuration.Then,using the energy-self-smoothness of the microgrid as the evaluation index,a double-layer optimizing configuration method of the microgrid is constructed.Finally,to improve the disadvantages of grey wolf optimization(GWO),such as slow convergence in the later period and easy falling into local optima,by introducing the convergence factor nonlinear adjustment strategy and Cauchy mutation operator,an IGWO with excellent global performance is proposed.After testing with the typical test functions,the superiority of IGWO is verified.Next,using IGWO to solve the double-layer model.The case analysis shows that compared to GWO and particle swarm optimization(PSO),the IGWO reduced the comprehensive cost by 15.6%and 18.8%,respectively.Therefore,the proposed double-layer optimizationmethod of capacity configuration ofmicrogrid with wind-solar-hybrid energy storage based on IGWO could effectively improve the independence and stability of the microgrid and significantly reduce the comprehensive cost.展开更多
Reducing the impact of power outages and maintaining the power supply duration must be considered in implementing emergency energy dispatching in micro-networks.This paper studies a new emergency energy treatment meth...Reducing the impact of power outages and maintaining the power supply duration must be considered in implementing emergency energy dispatching in micro-networks.This paper studies a new emergency energy treatment method based on the robust optimal method and the industrial park micro-network with the optical energy storage system.After controlling the load input,a control strategy of adjusting and removing is proposed.Rolling optimal theory is applied to emergency energy scheduling based on a robust optimal mathematical model.A weighting factor is introduced into the optimal model to balance the importance of reducing and retaining the power supply.Uncertainty is designed to adjust the effect of uncertainty on the problem.The example shows that this method can flexibly set the weight coefficient and uncertainty value according to the actual situation so that the input of the control load can be optimized.展开更多
This paper presents a peer-to-peer community cost optimization approach based on a single-prosumer energy management system.Its objective is to optimize energy costs for prosumers in the community by enhancing the con...This paper presents a peer-to-peer community cost optimization approach based on a single-prosumer energy management system.Its objective is to optimize energy costs for prosumers in the community by enhancing the consumption efficiency.This study was conducted along two main axes.The first axis focuses on designing a digital twin for a residential community microgrid platform.This phase involves data collection,cleaning,exploration,and interpretation.Moreover,it includes replicating the functionality of the real platform and validating the results.The second axis involves the development of a novel approach that incorporates two distinct prosumer behaviors within the same community microgrid,while maintaining the concept of peer-to-peer energy trading.Prosumers without storage utilize their individual PV systems to fulfill their energy requirements and inject excess energy into a local microgrid.Meanwhile,a single prosumer with a storage system actively engages in energy exchange to maximize the community’s profit.This is achieved by optimizing battery usage using a cost optimization solution.The proposed solution is validated using the developed digital twin.展开更多
This paper presents a decentralized control strategy for the scheduling of electrical energy activities of a microgrid composed of smart homes connected to a distributor and exchanging renewable energy produced by ind...This paper presents a decentralized control strategy for the scheduling of electrical energy activities of a microgrid composed of smart homes connected to a distributor and exchanging renewable energy produced by individually owned distributed energy resources. The scheduling problem is stated and solved with the aim of reducing the overall energy supply from the grid, by allowing users to exchange the surplus renewable energy and by optimally planning users' controllable loads. We assume that each smart home can both buy/sell energy from/to the grid taking into account time-varying non-linear pricing signals. Simultaneously, smart homes cooperate and may buy/sell locally harvested renewable energy from/to other smart homes. The resulting optimization problem is formulated as a non-convex non-linear programming problem with a coupling of decision variables in the constraints. The proposed solution is based on a novel heuristic iterative decentralized scheme algorithm that suitably extends the Alternating Direction Method of Multipliers to a non-convex and decentralized setting. We discuss the conditions that guarantee the convergence of the presented algorithm. Finally, the application of the proposed technique to a case study under several scenarios shows its effectiveness.展开更多
The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while ...The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while meeting the total charging/discharging power requirement is formulated and solved as a distributed control problem.Conditions on the communication topology among the battery units are established under which a control law is designed for each battery unit to solve the control problem based on distributed average reference power estimators and distributed average unit state estimators.Two types of estimators are proposed.One achieves asymptotic estimation and the other achieves finite time estimation.We show that,under the proposed control laws,SoC balancing of all battery units is achieved and the total charging/discharging power of the BESS tracks the desired power.A simulation example is shown to verify the theoretical results.展开更多
The rapid development of urban rail transit brings convenience to the public,but its huge energy consumption problem cannot be ignored.A microgrid composed of photovoltaic power generation unit,regenerative braking en...The rapid development of urban rail transit brings convenience to the public,but its huge energy consumption problem cannot be ignored.A microgrid composed of photovoltaic power generation unit,regenerative braking energy feedback unit and battery energy storage unit is proposed,which provides green power for the station.In order to suppress the fluctuation of photovoltaic power generation and the intermittence of regenerative braking feedback energy,the energy management mode of microgrid is designed according to the illumination situation,braking energy feedback situation,battery state of charge and so on.In addition,a coordination control method based on virtual synchronous generator(VSG)is proposed to realize smooth switching among modes.Finally,the proposed energy management and coordination control method for elevated station microgrid is verified by Matlab/Simulink.The results show that the elevated station microgrid can operate safely and reliably under various energy management modes and realize smooth switching among modes.展开更多
Distributed collaborative control strategies for microgrids often use periodic time to trigger communication,which is likely to enhance the burden of communication and increase the frequency of controller updates,lead...Distributed collaborative control strategies for microgrids often use periodic time to trigger communication,which is likely to enhance the burden of communication and increase the frequency of controller updates,leading to greater waste of communication resources.In response to this problem,a distributed cooperative control strategy triggered by an adaptive event is proposed.By introducing an adaptive event triggering mechanism in the distributed controller,the triggering parameters are dynamically adjusted so that the distributed controller can communicate only at a certain time,the communication pressure is reduced,and the DC bus voltage deviation is effectively reduced,at the same time,the accuracy of power distribution is improved.The MATLAB/Simulink modeling and simulation results prove the correctness and effectiveness of the proposed control strategy.展开更多
Microgrids integrate distributed renewable energy resources, controllable loads and energy storage in a more economic and reliable fashion. Battery energy storage units are essential for microgrid operation, which mak...Microgrids integrate distributed renewable energy resources, controllable loads and energy storage in a more economic and reliable fashion. Battery energy storage units are essential for microgrid operation, which make microgird become a strong coupling system in the time domain. Hence, the traditional methods of static dispatch are no longer suitable for microgrids. This paper proposes a dynamic economic dispatch method for microgrids. Considering microgrid as a discrete time system, the dynamic economic dispatch is to find the optimal control strategy for the system in finite time period. Based on this idea, the dynamic economic dispatch model for microgrids is established, and then the corresponding dynamic programming algorithm is designed. Finally, an example of microgrid is given, and the dynamic economic dispatch results are compared with that of the static dispatch. The comparison confirms the effectiveness of the proposed dynamic dispatch method.展开更多
Present-day power conversion and conditioning systems focus on transferring energy from a single type of power source into a single type of load or energy storage system (ESS). While these systems can be optimized wit...Present-day power conversion and conditioning systems focus on transferring energy from a single type of power source into a single type of load or energy storage system (ESS). While these systems can be optimized within their specific topology (e.g. MPPT for solar applications and BMS for batteries), the topologies are not easily adapted to accept a wide range of power flow operating conditions. With a hybrid approach to energy storage and power flow, a system can be designed to operate at its most advantageous point, given the operating conditions. Based on the load demand, the system can select the optimal power source and ESS. This paper will investigate the feasibility of combining two types of power sources (main utility grid and photovoltaics (PV)) along with two types of ESS (ultra-capacitors and batteries). The simulation results will show the impact of a hybrid ESS on a grid-tied residential microgrid system performance under various operating scenarios.展开更多
The use of different energy carriers together,known as an energy hub,has been a hot topic of research in recent years amongst scientists and researchers.The term energy hub refers to the simultaneous operation of vari...The use of different energy carriers together,known as an energy hub,has been a hot topic of research in recent years amongst scientists and researchers.The term energy hub refers to the simultaneous operation of various infrastructures for energy generation and transfer,which has gained momentum in the form of microgrids(MGs).This paper introduces a new strategy for the optimal performance of an MG consisting of different energy carriers for each day.In a smart distribution network(DN),MGs can reduce their own costs in the previous-day market by bidding on sales and purchases.The sales and purchases bidding problem is challenging due to different uncertainties,however.This paper proposes a two-stage strategy for making an optimal bid on electricity sales and purchases with electricity and gas price dependency in the previous-day and real-time markets for an energy hub.In this model,the MG behavior regarding the electricity and gas energy sales/purchase,the simultaneous effects of electricity and gas prices,as well as the energy carriers’dependence on one another are all examined.Due to the inherent uncertainty in the sources of clean energy production,the probabilistic model and the production and reduction scenario have been used in the paper to cover this issue.In the proposed grid,energy sales/purchases are presented in a multi-carrier MG in a two-stage model.This model is solved by using the harmony search algorithm in MATLAB.Numeric results demonstrate the benefits of this model in reducing energy hub costs of operation.展开更多
This paper presents the optimal scheduling of renewable resources using interior point optimization for grid-connected and islanded microgrids (MG) that operate with no energy storage systems. The German Jordanian Uni...This paper presents the optimal scheduling of renewable resources using interior point optimization for grid-connected and islanded microgrids (MG) that operate with no energy storage systems. The German Jordanian University (GJU) microgrid system is used for illustration. We present analyses for islanded and grid-connected MG with no storage. The results show a feasible islanded MG with a substantial operational cost reduction. We obtain an average of $1 k daily cost savings when operating an islanded compared to a grid-connected MG with capped grid energy prices. This cost saving is 10 times higher when considering varying grid energy prices during the day. Although the PV power is intermittent during the day, the MG continues to operate with a voltage variation that does not 10%. The results imply that MGs of GJU similar topology can optimally and safely operate with no energy storage requirements but considerable renewable generation capacity.展开更多
The optimal operation of microgrids is of great significance for the sake of efficient and economical management of its energy resources.The microgrid energy management system should plan to operate the microgrid whil...The optimal operation of microgrids is of great significance for the sake of efficient and economical management of its energy resources.The microgrid energy management system should plan to operate the microgrid while simultaneously considering the electric and thermal load.The present study proposes energy management to minimize the costs of operating an industrial microgrid.In fact,planning for energy supply is among the critical issues that distribution companies deal with daily in the competitive environment.A distribution company usually meets customer(end customer)demands by purchasing energy from a wholesale market.Given the load curtailment,distribution companies have more choices and interactions in the market.Distribution companies face the two uncertainties of load changes and price fluctuations in their daily energy supply planning which could lead to the risk of loss resulting from the distribution company’s decision-making for daily energy supply planning.Thus,these companies face the challenge of maximizing profit in a risk-based environment.Therefore,the present study presents an optimal model of energy consumption in the production processes of aluminum and cement industrial units.The presented model was then used in planning the day-ahead energy of a microgrid containing these industrial units.Since the studied subject has many limitations,it would be difficult to solve it using mathematical methods.To resolve this issue then,the present study introduces a newly developed algorithm inspired by bee colonies.The proposed method seeks to significantly improve in the local and global search capabilities.In addition to confirming the validity of the proposed model,results indicate that the implementation of load-response programs and the cooperation of industrial units in the ancillary services and energy market can increase the profits of units and microgrids as well as correct the demand curve.According to the obtained results from the first and second test cases,the total profit of the aluminum unit was$188,103 and$237,805,respectively.Similarly,this profit for the cement industrial unit is$104,350 and$233,195.3,respectively.From the results,it can be observed that the final profit of the second unit has increased by 61%.展开更多
The introduction of several small and large-scale industries,malls,shopping complexes,and domestic applications has significantly increased energy consumption.The aim of the work is to simulate a technically viable an...The introduction of several small and large-scale industries,malls,shopping complexes,and domestic applications has significantly increased energy consumption.The aim of the work is to simulate a technically viable and economically optimum hybrid power system for residential buildings.The proposed micro-grid model includes four power generators:solar power,wind power,Electricity Board(EB)source,and a Diesel Generator(DG)set,with solar and wind power performing as major sources and the EB supply and DG set serving as backup sources.The core issue in direct current to alternate current conversion is harmonics distortion,a five-stage multilevel inverter is employed with the assistance of an intelligent control system is simulated and the optimum system configuration is estimated to reduce harmonics and improve the power quality.The monthly demand for residential buildings is 13-15 Megawatts.So,almost 433 Kilo-Watts(KW)of electricity is required every day,and if it is used for 8 h per day,50-60 KW of electricity is needed per hour.The overall micro-grid model’s operation and performance are established using MATLAB/SIMULINK software,and simulation results are provided.The simulation results show that the developed system is both cost-effective and environment friendly resulting in yearly cost reductions.展开更多
The growing interest in energy conservation has inspired companies to seek alternatives to highly polluting fuel electricity generation. This study designed an optimised solar wind power generation system to fulfil th...The growing interest in energy conservation has inspired companies to seek alternatives to highly polluting fuel electricity generation. This study designed an optimised solar wind power generation system to fulfil the energy requirement of a cold chain logistics centre. This study first conducted a thorough analysis of the clarity indicators and daily temperature positions of the cold chain logistics centre, determined the average daily electricity demand, and proposed an effective design scheme. The energy simulation software, RETScreen 8.0, was used to determine the scale of solar photovoltaic and wind power projects that meet the expected energy needs of the cold chain logistics centre. The results indicated that the estimated annual total energy demand was 833689.2 kWh. The annual power generation of 6 kW from solar photovoltaic projects and 150 kW from wind power projects was found to be enough to meet the expected electricity demand. Solar photovoltaic power generation and wind power generation account for 2.44% and 97.56%, respectively. The hybrid energy system achieved a 96.6% reduction in carbon emissions and provides a reasonable payback period of 6.1 years and an electricity generation of 904368.674 kWh per year. The feasibility of the project and the calculated period of investment return are very reasonable. Therefore, this hybrid renewable energy system provides reliable power by combining energy sources.展开更多
In response to the additional load impact caused by the integration of electric vehicles (EVs) into the grid or microgrids (MGs), as well as the issue of low responsiveness of EV users during vehicle-to-vehicle (V2V) ...In response to the additional load impact caused by the integration of electric vehicles (EVs) into the grid or microgrids (MGs), as well as the issue of low responsiveness of EV users during vehicle-to-vehicle (V2V) power exchange processes, this paper explores a multi-party energy trading model considering user responsiveness under low carbon goals. The model takes into account the stochastic charging and discharging characteristics of EVs, user satisfaction, and energy exchange costs, and formulates utility functions for participating entities. This transforms the competition in multi-party energy trading into a Bayesian game problem, which is subsequently resolved. Furthermore, this paper primarily employs sensitivity analysis to evaluate the impact of multi-party energy trading on user responsiveness and green energy utilization, with the aim of promoting incentives in the electricity trading market and aligning with low-carbon requirements. Finally, through case simulations, the effectiveness of this model for the considered scenarios is demonstrated.展开更多
基金supported by the Research and Development of Key Technologies of the Regional Energy Internet based on Multi-Energy Complementary and Collaborative Optimization(BE2020081)。
文摘Multi-energy microgrids(MEMG)play an important role in promoting carbon neutrality and achieving sustainable development.This study investigates an effective energy management strategy(EMS)for MEMG.First,an energy management system model that allows for intra-microgrid energy conversion is developed,and the corresponding Markov decision process(MDP)problem is formulated.Subsequently,an improved double deep Q network(iDDQN)algorithm is proposed to enhance the exploration ability by modifying the calculation of the Q value,and a prioritized experience replay(PER)is introduced into the iDDQN to improve the training speed and effectiveness.Finally,taking advantage of the federated learning(FL)and iDDQN algorithms,a federated iDDQN is proposed to design an MEMG energy management strategy to enable each microgrid to share its experiences in the form of local neural network(NN)parameters with the federation layer,thus ensuring the privacy and security of data.The simulation results validate the superior performance of the proposed energy management strategy in minimizing the economic costs of the MEMG while reducing CO_2 emissions and protecting data privacy.
基金funded by the National Natural Science Foundation of China(52067013)the Provincial Natural Science Foundation of Gansu(20JR5RA395).
文摘With the penetration of a large number of photovoltaic power generation units and power electronic converters,the DC microgrid shows low inertia characteristics,which might affect the stable operation of the microgrid in extreme cases.In order to enhance the“flexible features”of the interface converter connected to the DC bus,a control strategy of DCmicrogrid with photovoltaic and energy storage based on the virtual DC generator(VDCG)is proposed in this paper.The interface converters of the photovoltaic power generation system and the energy storage system simulates the inertia and damping characteristics of the DC generator to improve the stability of the DC bus voltage.The impedance ratio of DC microgrid was obtained by establishing the small-signal model of photovoltaic power generation system and energy storage system,and the Nyquist curves was applied to analyze the small-signal stability of the system.Finally,the simulation results were verified with MATLAB/Simulink.The results show that the proposed control strategy can slow down the fluctuation of bus voltage under the conditions of photovoltaic power fluctuation and load mutation,thus enhancing the system stability.
文摘In the context of both the Virtual Power Plant (VPP) and microgrid(MG), the Energy Management System (EMS) is a key decision-maker forintegrating Distributed renewable Energy Resources (DERs) efficiently. TheEMS is regarded as a strong enabler of providing the optimized schedulingcontrol in operation and management of usage of disperse DERs and RenewableEnergy reSources (RES) such as a small-size wind-turbine (WT) andphotovoltaic (PV) energies. The main objective to be pursued by the EMSis the minimization of the overall operating cost of the MG integrated VPPnetwork. However, the minimization of the power peaks is a new objective andopen issue to a well-functional EMS, along with the maximization of profitin the energy market. Thus, both objectives have to be taken into accountat the same time. Thus, this paper proposes the EMS application incorporatingpower offering strategy applying a nature-inspired algorithm such asParticle Swarm Optimization (PSO) algorithm, in order to find the optimalsolution of the objective function in the context of the overall operating cost,the coordination of DERs, and the energy losses in a MG integrated VPPnetwork. For a fair DERs coordination with minimized power fluctuationsin the power flow, the power offering strategies with an active power controland re-distribution are proposed. Simulation results show that the proposedMG integrated VPP model with PSO-based EMS employing EgalitarianreDistribution (ED) power offering strategy is most feasible option for theoverall operating cost of VPP revenue. The total operating cost of the proposedEMS with ED strategy is 40.98$ compared to 432.8$ of MGs only withoutEMS. It is concluded that each MGs in the proposed VPP model intelligentlyparticipates in energy trading market compliant with the objective function,to minimize the overall cost and the power fluctuation.
基金supported by the NationalNatural Science Foundation of China Under Grant 61961017Key R&D Plan Projects in Hubei Province 2022BAA060.
文摘To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing configuration method of hybrid energy storage microgrid based on improved grey wolf optimization(IGWO)is proposed.Firstly,building a microgrid system containing a wind-solar power station and electric-hydrogen coupling hybrid energy storage system.Secondly,the minimum comprehensive cost of the construction and operation of the microgrid is taken as the outer objective function,and the minimum peak-to-valley of the microgrid’s daily output is taken as the inner objective function.By iterating through the outer and inner layers,the system improves operational stability while achieving economic configuration.Then,using the energy-self-smoothness of the microgrid as the evaluation index,a double-layer optimizing configuration method of the microgrid is constructed.Finally,to improve the disadvantages of grey wolf optimization(GWO),such as slow convergence in the later period and easy falling into local optima,by introducing the convergence factor nonlinear adjustment strategy and Cauchy mutation operator,an IGWO with excellent global performance is proposed.After testing with the typical test functions,the superiority of IGWO is verified.Next,using IGWO to solve the double-layer model.The case analysis shows that compared to GWO and particle swarm optimization(PSO),the IGWO reduced the comprehensive cost by 15.6%and 18.8%,respectively.Therefore,the proposed double-layer optimizationmethod of capacity configuration ofmicrogrid with wind-solar-hybrid energy storage based on IGWO could effectively improve the independence and stability of the microgrid and significantly reduce the comprehensive cost.
文摘Reducing the impact of power outages and maintaining the power supply duration must be considered in implementing emergency energy dispatching in micro-networks.This paper studies a new emergency energy treatment method based on the robust optimal method and the industrial park micro-network with the optical energy storage system.After controlling the load input,a control strategy of adjusting and removing is proposed.Rolling optimal theory is applied to emergency energy scheduling based on a robust optimal mathematical model.A weighting factor is introduced into the optimal model to balance the importance of reducing and retaining the power supply.Uncertainty is designed to adjust the effect of uncertainty on the problem.The example shows that this method can flexibly set the weight coefficient and uncertainty value according to the actual situation so that the input of the control load can be optimized.
基金supported by the Tunisian Ministry of Higher Education and Scientific Research under Grant LSE-ENIT-LR 11ES15funded in part by the PAQ-Collabora(PAR&I-Tk)program。
文摘This paper presents a peer-to-peer community cost optimization approach based on a single-prosumer energy management system.Its objective is to optimize energy costs for prosumers in the community by enhancing the consumption efficiency.This study was conducted along two main axes.The first axis focuses on designing a digital twin for a residential community microgrid platform.This phase involves data collection,cleaning,exploration,and interpretation.Moreover,it includes replicating the functionality of the real platform and validating the results.The second axis involves the development of a novel approach that incorporates two distinct prosumer behaviors within the same community microgrid,while maintaining the concept of peer-to-peer energy trading.Prosumers without storage utilize their individual PV systems to fulfill their energy requirements and inject excess energy into a local microgrid.Meanwhile,a single prosumer with a storage system actively engages in energy exchange to maximize the community’s profit.This is achieved by optimizing battery usage using a cost optimization solution.The proposed solution is validated using the developed digital twin.
基金supported by European Regional Development Fund in the "Apulian Technology Clusters SMARTPUGLIA 2020"Program
文摘This paper presents a decentralized control strategy for the scheduling of electrical energy activities of a microgrid composed of smart homes connected to a distributor and exchanging renewable energy produced by individually owned distributed energy resources. The scheduling problem is stated and solved with the aim of reducing the overall energy supply from the grid, by allowing users to exchange the surplus renewable energy and by optimally planning users' controllable loads. We assume that each smart home can both buy/sell energy from/to the grid taking into account time-varying non-linear pricing signals. Simultaneously, smart homes cooperate and may buy/sell locally harvested renewable energy from/to other smart homes. The resulting optimization problem is formulated as a non-convex non-linear programming problem with a coupling of decision variables in the constraints. The proposed solution is based on a novel heuristic iterative decentralized scheme algorithm that suitably extends the Alternating Direction Method of Multipliers to a non-convex and decentralized setting. We discuss the conditions that guarantee the convergence of the presented algorithm. Finally, the application of the proposed technique to a case study under several scenarios shows its effectiveness.
基金relates to Department of Navy award(N00014-20-1-2858)。
文摘The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while meeting the total charging/discharging power requirement is formulated and solved as a distributed control problem.Conditions on the communication topology among the battery units are established under which a control law is designed for each battery unit to solve the control problem based on distributed average reference power estimators and distributed average unit state estimators.Two types of estimators are proposed.One achieves asymptotic estimation and the other achieves finite time estimation.We show that,under the proposed control laws,SoC balancing of all battery units is achieved and the total charging/discharging power of the BESS tracks the desired power.A simulation example is shown to verify the theoretical results.
基金National Natural Science Foundation of China(No.51367010)Science and Technology Program of Gansu Province(No.17JR5RA083)Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University(No.201701)
文摘The rapid development of urban rail transit brings convenience to the public,but its huge energy consumption problem cannot be ignored.A microgrid composed of photovoltaic power generation unit,regenerative braking energy feedback unit and battery energy storage unit is proposed,which provides green power for the station.In order to suppress the fluctuation of photovoltaic power generation and the intermittence of regenerative braking feedback energy,the energy management mode of microgrid is designed according to the illumination situation,braking energy feedback situation,battery state of charge and so on.In addition,a coordination control method based on virtual synchronous generator(VSG)is proposed to realize smooth switching among modes.Finally,the proposed energy management and coordination control method for elevated station microgrid is verified by Matlab/Simulink.The results show that the elevated station microgrid can operate safely and reliably under various energy management modes and realize smooth switching among modes.
基金supported by National Natural Science Foundation of China(61100159,61233007)National High Technology Research and Development Program of China(863 Program)(2011AA040103)+2 种基金Foundation of Chinese Academy of Sciences(KGCX2-EW-104)Financial Support of the Strategic Priority Research Program of Chinese Academy of Sciences(XDA06021100)the Cross-disciplinary Collaborative Teams Program for Science,Technology and Innovation,of Chinese Academy of Sciences-Network and System Technologies for Security Monitoring and Information Interaction in Smart Grid Energy Management System for Micro-smart Grid
基金funded by the Natural Science Foundation of Shaanxi Province,Grant No.2021GY-135the Scientific Research Project of Yan’an University,Grant No.YDQ2018-07.
文摘Distributed collaborative control strategies for microgrids often use periodic time to trigger communication,which is likely to enhance the burden of communication and increase the frequency of controller updates,leading to greater waste of communication resources.In response to this problem,a distributed cooperative control strategy triggered by an adaptive event is proposed.By introducing an adaptive event triggering mechanism in the distributed controller,the triggering parameters are dynamically adjusted so that the distributed controller can communicate only at a certain time,the communication pressure is reduced,and the DC bus voltage deviation is effectively reduced,at the same time,the accuracy of power distribution is improved.The MATLAB/Simulink modeling and simulation results prove the correctness and effectiveness of the proposed control strategy.
文摘Microgrids integrate distributed renewable energy resources, controllable loads and energy storage in a more economic and reliable fashion. Battery energy storage units are essential for microgrid operation, which make microgird become a strong coupling system in the time domain. Hence, the traditional methods of static dispatch are no longer suitable for microgrids. This paper proposes a dynamic economic dispatch method for microgrids. Considering microgrid as a discrete time system, the dynamic economic dispatch is to find the optimal control strategy for the system in finite time period. Based on this idea, the dynamic economic dispatch model for microgrids is established, and then the corresponding dynamic programming algorithm is designed. Finally, an example of microgrid is given, and the dynamic economic dispatch results are compared with that of the static dispatch. The comparison confirms the effectiveness of the proposed dynamic dispatch method.
文摘Present-day power conversion and conditioning systems focus on transferring energy from a single type of power source into a single type of load or energy storage system (ESS). While these systems can be optimized within their specific topology (e.g. MPPT for solar applications and BMS for batteries), the topologies are not easily adapted to accept a wide range of power flow operating conditions. With a hybrid approach to energy storage and power flow, a system can be designed to operate at its most advantageous point, given the operating conditions. Based on the load demand, the system can select the optimal power source and ESS. This paper will investigate the feasibility of combining two types of power sources (main utility grid and photovoltaics (PV)) along with two types of ESS (ultra-capacitors and batteries). The simulation results will show the impact of a hybrid ESS on a grid-tied residential microgrid system performance under various operating scenarios.
基金supported as a Major Project of the Beijing Social Science Foundation“Research on Financial Support System Adapting to the Coordinated Development of Strategic Emerging Industries in Beijing-Tianjin-Hebei”,No.20ZDA11.
文摘The use of different energy carriers together,known as an energy hub,has been a hot topic of research in recent years amongst scientists and researchers.The term energy hub refers to the simultaneous operation of various infrastructures for energy generation and transfer,which has gained momentum in the form of microgrids(MGs).This paper introduces a new strategy for the optimal performance of an MG consisting of different energy carriers for each day.In a smart distribution network(DN),MGs can reduce their own costs in the previous-day market by bidding on sales and purchases.The sales and purchases bidding problem is challenging due to different uncertainties,however.This paper proposes a two-stage strategy for making an optimal bid on electricity sales and purchases with electricity and gas price dependency in the previous-day and real-time markets for an energy hub.In this model,the MG behavior regarding the electricity and gas energy sales/purchase,the simultaneous effects of electricity and gas prices,as well as the energy carriers’dependence on one another are all examined.Due to the inherent uncertainty in the sources of clean energy production,the probabilistic model and the production and reduction scenario have been used in the paper to cover this issue.In the proposed grid,energy sales/purchases are presented in a multi-carrier MG in a two-stage model.This model is solved by using the harmony search algorithm in MATLAB.Numeric results demonstrate the benefits of this model in reducing energy hub costs of operation.
文摘This paper presents the optimal scheduling of renewable resources using interior point optimization for grid-connected and islanded microgrids (MG) that operate with no energy storage systems. The German Jordanian University (GJU) microgrid system is used for illustration. We present analyses for islanded and grid-connected MG with no storage. The results show a feasible islanded MG with a substantial operational cost reduction. We obtain an average of $1 k daily cost savings when operating an islanded compared to a grid-connected MG with capped grid energy prices. This cost saving is 10 times higher when considering varying grid energy prices during the day. Although the PV power is intermittent during the day, the MG continues to operate with a voltage variation that does not 10%. The results imply that MGs of GJU similar topology can optimally and safely operate with no energy storage requirements but considerable renewable generation capacity.
文摘The optimal operation of microgrids is of great significance for the sake of efficient and economical management of its energy resources.The microgrid energy management system should plan to operate the microgrid while simultaneously considering the electric and thermal load.The present study proposes energy management to minimize the costs of operating an industrial microgrid.In fact,planning for energy supply is among the critical issues that distribution companies deal with daily in the competitive environment.A distribution company usually meets customer(end customer)demands by purchasing energy from a wholesale market.Given the load curtailment,distribution companies have more choices and interactions in the market.Distribution companies face the two uncertainties of load changes and price fluctuations in their daily energy supply planning which could lead to the risk of loss resulting from the distribution company’s decision-making for daily energy supply planning.Thus,these companies face the challenge of maximizing profit in a risk-based environment.Therefore,the present study presents an optimal model of energy consumption in the production processes of aluminum and cement industrial units.The presented model was then used in planning the day-ahead energy of a microgrid containing these industrial units.Since the studied subject has many limitations,it would be difficult to solve it using mathematical methods.To resolve this issue then,the present study introduces a newly developed algorithm inspired by bee colonies.The proposed method seeks to significantly improve in the local and global search capabilities.In addition to confirming the validity of the proposed model,results indicate that the implementation of load-response programs and the cooperation of industrial units in the ancillary services and energy market can increase the profits of units and microgrids as well as correct the demand curve.According to the obtained results from the first and second test cases,the total profit of the aluminum unit was$188,103 and$237,805,respectively.Similarly,this profit for the cement industrial unit is$104,350 and$233,195.3,respectively.From the results,it can be observed that the final profit of the second unit has increased by 61%.
文摘The introduction of several small and large-scale industries,malls,shopping complexes,and domestic applications has significantly increased energy consumption.The aim of the work is to simulate a technically viable and economically optimum hybrid power system for residential buildings.The proposed micro-grid model includes four power generators:solar power,wind power,Electricity Board(EB)source,and a Diesel Generator(DG)set,with solar and wind power performing as major sources and the EB supply and DG set serving as backup sources.The core issue in direct current to alternate current conversion is harmonics distortion,a five-stage multilevel inverter is employed with the assistance of an intelligent control system is simulated and the optimum system configuration is estimated to reduce harmonics and improve the power quality.The monthly demand for residential buildings is 13-15 Megawatts.So,almost 433 Kilo-Watts(KW)of electricity is required every day,and if it is used for 8 h per day,50-60 KW of electricity is needed per hour.The overall micro-grid model’s operation and performance are established using MATLAB/SIMULINK software,and simulation results are provided.The simulation results show that the developed system is both cost-effective and environment friendly resulting in yearly cost reductions.
文摘The growing interest in energy conservation has inspired companies to seek alternatives to highly polluting fuel electricity generation. This study designed an optimised solar wind power generation system to fulfil the energy requirement of a cold chain logistics centre. This study first conducted a thorough analysis of the clarity indicators and daily temperature positions of the cold chain logistics centre, determined the average daily electricity demand, and proposed an effective design scheme. The energy simulation software, RETScreen 8.0, was used to determine the scale of solar photovoltaic and wind power projects that meet the expected energy needs of the cold chain logistics centre. The results indicated that the estimated annual total energy demand was 833689.2 kWh. The annual power generation of 6 kW from solar photovoltaic projects and 150 kW from wind power projects was found to be enough to meet the expected electricity demand. Solar photovoltaic power generation and wind power generation account for 2.44% and 97.56%, respectively. The hybrid energy system achieved a 96.6% reduction in carbon emissions and provides a reasonable payback period of 6.1 years and an electricity generation of 904368.674 kWh per year. The feasibility of the project and the calculated period of investment return are very reasonable. Therefore, this hybrid renewable energy system provides reliable power by combining energy sources.
文摘In response to the additional load impact caused by the integration of electric vehicles (EVs) into the grid or microgrids (MGs), as well as the issue of low responsiveness of EV users during vehicle-to-vehicle (V2V) power exchange processes, this paper explores a multi-party energy trading model considering user responsiveness under low carbon goals. The model takes into account the stochastic charging and discharging characteristics of EVs, user satisfaction, and energy exchange costs, and formulates utility functions for participating entities. This transforms the competition in multi-party energy trading into a Bayesian game problem, which is subsequently resolved. Furthermore, this paper primarily employs sensitivity analysis to evaluate the impact of multi-party energy trading on user responsiveness and green energy utilization, with the aim of promoting incentives in the electricity trading market and aligning with low-carbon requirements. Finally, through case simulations, the effectiveness of this model for the considered scenarios is demonstrated.