The Lop Nur Salt Lake, located in the eastern part of the Tarim Basin, Xinjiang, China, has become a playa in the Quaternary. Rhombic in shape, the Lop Nur depression is mainly controlled by the NE-striking and nearly...The Lop Nur Salt Lake, located in the eastern part of the Tarim Basin, Xinjiang, China, has become a playa in the Quaternary. Rhombic in shape, the Lop Nur depression is mainly controlled by the NE-striking and nearly N-S-striking sets of faults. Since 1995, a superlarge brine potash deposit with potash resources of 2.50×10^8s t has been found in the Luobei subbasin in the northeastern part of the Lop Nur. We intensively studied the features and formation mechanism of faults inside the Lop Nur through satellite images, geomorphologic survey and continuous conductivity imaging and found seven subparallel graben faults formed under the action of nearly N 10° E principal compressional stress during deposition of the Lop Nur Salt Lake. These faults are up to 〉60 km long and 1-4 km wide and may extend downward for 1000 m or more. It is just under the action of these tensional faults that potash subbasius formed. The largest subbasin is the Luobei subbasin and the smaller ones are the Luoxi hollow, Erbei hollow and Tienan hollow. Investigation also indicates that the graben faults in the Lop Nur not only control the origin of the potash subbasins, but they themselves are also good brine reservoir structures, in which abundant potash-rich brines are stored. Therefore, The faults had played an important role in the potash formation of the Lop Nur.展开更多
The synthesis of Friedel's salt (FS: 3CaO·Al2O3·CaCl2·10H2O) by the reaction of calcium chloride with sodium aluminate was investigated. Factors affecting the preparation of Friedel's salt, such as...The synthesis of Friedel's salt (FS: 3CaO·Al2O3·CaCl2·10H2O) by the reaction of calcium chloride with sodium aluminate was investigated. Factors affecting the preparation of Friedel's salt, such as reaction temperature, initial concentration, titration speed, aging time and molar Ca/Al ratio were studied in detail. XRD, SEM images and particle size distribution show that the reaction temperature, aging time and molar Ca/Al ratio have significant effect on the composition, crystal morphology, and average particle size of the obtained samples. In addition, the initial CaCl2 concentration and NaAlO2 titration speed do not significantly influence the morphology and particle size distribution of Friedel's salt. With the optimization of the operating conditions, the crystals can grow up to a average size of about 28 μm, showing flat hexagonal (or pseudo- hexagonal) crystal morphology. Moreover, two potential mechanisms of Friedel's salt formation including adsorption mechanism and anion-exchange mechanism were discussed. In the adsorption mechanism, Friedel's salt forms due to the adsorption of the bulk C1- ions present in the solution into the interlayers of the principal layers, [Ca2Al(OH-)6·2H2O]+, in order to balance the charge. In the anion-exchange mechanism, the freechloride ions bind with the AFro (a family of hydrated compounds found in cement) hydrates to form Friedel's salt by anion-exchange with the ions present in the interlayers of the principal layer, [Ca2Al(OH-)6. 2H2O]+- OH-.展开更多
The Upper Carboniferous-Lower Permian (Upper Pennsylvanian-Asselian) Tobra Formation is exposed in the Salt and Trans Indus ranges of Pakistan. The formation exhibits an alluvial plain (alluvial fan-piedmont alluvi...The Upper Carboniferous-Lower Permian (Upper Pennsylvanian-Asselian) Tobra Formation is exposed in the Salt and Trans Indus ranges of Pakistan. The formation exhibits an alluvial plain (alluvial fan-piedmont alluvial plain) facies association in the Salt Range and Khisor Range. In addition, a stream flow facies association is restricted to the eastern Salt Range. The alluvial plain facies association is comprised of clast-supported massive conglomerate (Gmc), diamictite (Dm) facies, and massive sandstone (Sm) iithofacies whereas the stream flow-dominated alluvial plain facies association includes fine-grained sandstone and sUtstone (Fss), fining upwards pebbly sandstone (Sf), and massive mudstone (Fro) lithofacies. The lack of glacial signatures (particularly glacial grooves and striations) in the deposits in the Tobra Formation, which are, in contrast, present in their time-equivalent and palaeogeographically nearby strata of the Arabian peninsula, e.g. the Al Khlata Formation of Oman and Unayzah B member of the Sandi Arabia, suggests a pro-to periglacial, i.e. glaciofluvial depositional setting for the Tobra Formation. The sedimentology of the Tobra Formation attests that the Salt Range, Pakistan, occupied a palaeogeographic position just beyond the maximum glacial extent during Upper Pennsylvanian-Asselian time.展开更多
This paper analyzes mechnasim of casing failure and collapse by salt formation,discusses cementing techniques of salt zone about casing programme, casing design, preparation of well condition, mud and slurry propertie...This paper analyzes mechnasim of casing failure and collapse by salt formation,discusses cementing techniques of salt zone about casing programme, casing design, preparation of well condition, mud and slurry properties required, cementing technology, and puts forward the measures for solving problems posed when cementing through salt sequences, and illustrates with examples.展开更多
The Zechstein (Upper Permian) salts are extensively distributed in the Northeast German Basin (NEGB). Their formation and movements have attracted great attention to discovering the accumulation and exploration of hyd...The Zechstein (Upper Permian) salts are extensively distributed in the Northeast German Basin (NEGB). Their formation and movements have attracted great attention to discovering the accumulation and exploration of hydrocarbon sources, as well as the salt production. But the previous studies are validated in cases and a general view on these studies is scarce. By analyzing and integrating previous studies, the history and structure evolution of Zechstein salts were reviewed in this paper. Seven cycles of Zechstein salt (Na1, Na2, Na3, Na4, Na5, Na6, Na7) with distinct composition and thickness were deposited after a series of marine transgressions and regressions during the Upper Permian. The Na1 (300 m) locally developed in a lagoon environment. The thick Na2 (over 500 m) was widely deposited in the whole basin. The Na3, Na4, Na5, Na6 and Na7 decreased progressively in thickness and distribution. These salts should have been moved as a result of regional tectonics taking place from Triassic to Early Cenozoic, which changes the original distribution of salts, resulting in the formation of different salt structures (pillows and diapirs). Salt movement was more intensive in central and southern parts of the basin forming narrow and widely-distributed salt diapirs, while it was less intensive in the northern parts where salt pillows are the major structure. The salt meadow and saline springs are also present, which are attributed to the salinization of the groundwater. By this study, we review the history and structure development of the Zechstein salt in the NEGB by associating each individual study and figure out the common and regional characters of the salt in this region.展开更多
The Late Permian succession of the Upper Indus Basin in northeastern Pakistan is represented by the carbonatedominated Zaluch Group, which consists of the Amb, Wargal and Chhidru formations, which accumulated on the s...The Late Permian succession of the Upper Indus Basin in northeastern Pakistan is represented by the carbonatedominated Zaluch Group, which consists of the Amb, Wargal and Chhidru formations, which accumulated on the southwestern shelf of the Paleo-Tethys Ocean, north of the hydrocarbon-producing Permian strata of the Arabian Peninsula. The reservoir properties of the mixed clastic-carbonate Chhidru Formation(CFm) are evaluated based on petrography, using scanning electron microscopy(SEM), energy dispersive x-ray spectroscopy(EDX) and x-ray diffraction(XRD) techniques. The diagenetic features are recognized, ranging from marine(isopachous fibrous calcite, micrite), through meteoric(blocky calcite-I, neomorphism and dissolution) to burial(poikilotopic cement, blocky calcite-II-III, fractures, fracture-filling, and stylolites). Major porosity types include fracture and moldic, while inter-and intra-particle porosities also exist. Observed visual porosity ranges from 1.5%–7.14% with an average of 5.15%. The sandstone facies(CMF-4) has the highest average porosity of 10.7%, whereas the siliciclastic grainstone microfacies(CMF-3) shows an average porosity of 5.3%. The siliciclastic mudstone microfacies(CMF-1) and siliciclastic wacke-packestone microfacies(CMF-2) show the lowest porosities of 4.8% and 5.0%, respectively. Diagenetic processes like cementation, neomorphism, stylolitization and compaction have reduced the primary porosities;however, processes of dissolution and fracturing have produced secondary porosity. On average, the CFm in the Nammal Gorge, Salt Range shows promise and at Gula Khel Gorge, Trans-Indus, the lowest porosity.展开更多
The Qaidam Basin in the NE Tibetan Plateau has contributed the largest amount of potash in China.However,how the potash was formed has long been a subject of debate.Here we carried out a deep drilling
The formation and dissociation of methane gas hydrate at an interface between synthetic seawater (SSW) and methane gas have been experimentally investigated in the present work. The amount of gas consumed during hyd...The formation and dissociation of methane gas hydrate at an interface between synthetic seawater (SSW) and methane gas have been experimentally investigated in the present work. The amount of gas consumed during hydrate formation has been calculated using the real gas equation. Induction time for the formation of hydrate is found to depend on the degree of subcooling. All the experiments were conducted in quiescent system with initial cell pressure of 11.14 MPa. Salinity effects on the onset pressure and temperature of hydrate formation are also observed. The dissociation enthalpies of methane hydrate in synthetic seawater were determined by Clausius-Clapeyron equation based on the measured phase equilibrium data. The dissociation data have been analyzed by existing models and compared with the reported data.展开更多
Water flooding and pressure maintenance are recommended to improve oil recovery practices after low recovery of petroleum reservoirs occurs during primary production.Salt crystal formation is a frequent occurrence whe...Water flooding and pressure maintenance are recommended to improve oil recovery practices after low recovery of petroleum reservoirs occurs during primary production.Salt crystal formation is a frequent occurrence when using these techniques.Several experimental,numerical,and theoretical studies have been done on the mechanisms underlying scaling and permeability reduction in porous media;however,there has not been a satisfactory model developed.This study developed a phenomenological model to predict formation damage caused by salt deposition.Compared with existing models,which provide a scaling tendency,the proposed model predicts the profile of scale deposition.The salt precipitation model simulates reactive fluid flow through porous media.A thermodynamic,kinetic,and flow hydrodynamic model was developed and coupled with the ion transport equation to describe the movement of ions.Further,a set of carefully designed dynamic experiments were conducted and the data were compared with the model predictions.Model forecasts and experimental data were observed to have an average absolute error(AAE)ranging from 0.68%to 5.94%,which indicates the model's suitability.展开更多
A relationship is established, using the least squares method, between the standard enthalpy of formation and the standard enthalpy of formation divided by the exothermic denitration decomposition peak absolute temper...A relationship is established, using the least squares method, between the standard enthalpy of formation and the standard enthalpy of formation divided by the exothermic denitration decomposition peak absolute temperature corresponding to β →0.展开更多
The complexes of hydrous copper chloride and copper nitrate with 2-amino-4,6-dimethylpyrimidine(ADMP) were prepared via reflux in alcohol. The compositions of the complexes were identified as Cu(ADMP) 2Cl 2·2H 2O...The complexes of hydrous copper chloride and copper nitrate with 2-amino-4,6-dimethylpyrimidine(ADMP) were prepared via reflux in alcohol. The compositions of the complexes were identified as Cu(ADMP) 2Cl 2·2H 2O(b) and Cu(ADMP)(NO 3) 2·H 2O(c) by chemical and elemental analyses. The complexes were characterized by IR, XPS, 1H NMR and TG-DTG techniques. The constant-volume combustion energies of ADMP and the complexes, Δ c E , were determined by a precise rotating-bomb calorimeter at 298 15 K. They were (-3664 53±1 18), (-4978 47±2 72) and (-1696 70±1 36) kJ/mol, respectively. Their standard enthalpies of combustion, Δ c H 0 m, and standard enthalpies of formation, Δ f H 0 m, were calculated to be (-3666 39±1 18), (-4977 23±2 72), (-1691 12±1 36) kJ/mol and (19 09±1 43), (-2041 80±3 29), (-2397 24±1 65) kJ/mol, respectively.展开更多
文摘The Lop Nur Salt Lake, located in the eastern part of the Tarim Basin, Xinjiang, China, has become a playa in the Quaternary. Rhombic in shape, the Lop Nur depression is mainly controlled by the NE-striking and nearly N-S-striking sets of faults. Since 1995, a superlarge brine potash deposit with potash resources of 2.50×10^8s t has been found in the Luobei subbasin in the northeastern part of the Lop Nur. We intensively studied the features and formation mechanism of faults inside the Lop Nur through satellite images, geomorphologic survey and continuous conductivity imaging and found seven subparallel graben faults formed under the action of nearly N 10° E principal compressional stress during deposition of the Lop Nur Salt Lake. These faults are up to 〉60 km long and 1-4 km wide and may extend downward for 1000 m or more. It is just under the action of these tensional faults that potash subbasius formed. The largest subbasin is the Luobei subbasin and the smaller ones are the Luoxi hollow, Erbei hollow and Tienan hollow. Investigation also indicates that the graben faults in the Lop Nur not only control the origin of the potash subbasins, but they themselves are also good brine reservoir structures, in which abundant potash-rich brines are stored. Therefore, The faults had played an important role in the potash formation of the Lop Nur.
基金Funded by International Science&Technology Cooperation Program of China(No.2013DFB70220)the National Natural Science Foundation of China(No.21076212)the Natural Science Foundation of Guizhou Province of China(No.[2014]2003)
文摘The synthesis of Friedel's salt (FS: 3CaO·Al2O3·CaCl2·10H2O) by the reaction of calcium chloride with sodium aluminate was investigated. Factors affecting the preparation of Friedel's salt, such as reaction temperature, initial concentration, titration speed, aging time and molar Ca/Al ratio were studied in detail. XRD, SEM images and particle size distribution show that the reaction temperature, aging time and molar Ca/Al ratio have significant effect on the composition, crystal morphology, and average particle size of the obtained samples. In addition, the initial CaCl2 concentration and NaAlO2 titration speed do not significantly influence the morphology and particle size distribution of Friedel's salt. With the optimization of the operating conditions, the crystals can grow up to a average size of about 28 μm, showing flat hexagonal (or pseudo- hexagonal) crystal morphology. Moreover, two potential mechanisms of Friedel's salt formation including adsorption mechanism and anion-exchange mechanism were discussed. In the adsorption mechanism, Friedel's salt forms due to the adsorption of the bulk C1- ions present in the solution into the interlayers of the principal layers, [Ca2Al(OH-)6·2H2O]+, in order to balance the charge. In the anion-exchange mechanism, the freechloride ions bind with the AFro (a family of hydrated compounds found in cement) hydrates to form Friedel's salt by anion-exchange with the ions present in the interlayers of the principal layer, [Ca2Al(OH-)6. 2H2O]+- OH-.
基金the Higher Education Commission of Pakistan's National Research Program for Universities(NRPU) grant to Dr.Irfan U.Jan,principal investigator on the project via grant number 20-2706
文摘The Upper Carboniferous-Lower Permian (Upper Pennsylvanian-Asselian) Tobra Formation is exposed in the Salt and Trans Indus ranges of Pakistan. The formation exhibits an alluvial plain (alluvial fan-piedmont alluvial plain) facies association in the Salt Range and Khisor Range. In addition, a stream flow facies association is restricted to the eastern Salt Range. The alluvial plain facies association is comprised of clast-supported massive conglomerate (Gmc), diamictite (Dm) facies, and massive sandstone (Sm) iithofacies whereas the stream flow-dominated alluvial plain facies association includes fine-grained sandstone and sUtstone (Fss), fining upwards pebbly sandstone (Sf), and massive mudstone (Fro) lithofacies. The lack of glacial signatures (particularly glacial grooves and striations) in the deposits in the Tobra Formation, which are, in contrast, present in their time-equivalent and palaeogeographically nearby strata of the Arabian peninsula, e.g. the Al Khlata Formation of Oman and Unayzah B member of the Sandi Arabia, suggests a pro-to periglacial, i.e. glaciofluvial depositional setting for the Tobra Formation. The sedimentology of the Tobra Formation attests that the Salt Range, Pakistan, occupied a palaeogeographic position just beyond the maximum glacial extent during Upper Pennsylvanian-Asselian time.
文摘This paper analyzes mechnasim of casing failure and collapse by salt formation,discusses cementing techniques of salt zone about casing programme, casing design, preparation of well condition, mud and slurry properties required, cementing technology, and puts forward the measures for solving problems posed when cementing through salt sequences, and illustrates with examples.
文摘The Zechstein (Upper Permian) salts are extensively distributed in the Northeast German Basin (NEGB). Their formation and movements have attracted great attention to discovering the accumulation and exploration of hydrocarbon sources, as well as the salt production. But the previous studies are validated in cases and a general view on these studies is scarce. By analyzing and integrating previous studies, the history and structure evolution of Zechstein salts were reviewed in this paper. Seven cycles of Zechstein salt (Na1, Na2, Na3, Na4, Na5, Na6, Na7) with distinct composition and thickness were deposited after a series of marine transgressions and regressions during the Upper Permian. The Na1 (300 m) locally developed in a lagoon environment. The thick Na2 (over 500 m) was widely deposited in the whole basin. The Na3, Na4, Na5, Na6 and Na7 decreased progressively in thickness and distribution. These salts should have been moved as a result of regional tectonics taking place from Triassic to Early Cenozoic, which changes the original distribution of salts, resulting in the formation of different salt structures (pillows and diapirs). Salt movement was more intensive in central and southern parts of the basin forming narrow and widely-distributed salt diapirs, while it was less intensive in the northern parts where salt pillows are the major structure. The salt meadow and saline springs are also present, which are attributed to the salinization of the groundwater. By this study, we review the history and structure development of the Zechstein salt in the NEGB by associating each individual study and figure out the common and regional characters of the salt in this region.
文摘The Late Permian succession of the Upper Indus Basin in northeastern Pakistan is represented by the carbonatedominated Zaluch Group, which consists of the Amb, Wargal and Chhidru formations, which accumulated on the southwestern shelf of the Paleo-Tethys Ocean, north of the hydrocarbon-producing Permian strata of the Arabian Peninsula. The reservoir properties of the mixed clastic-carbonate Chhidru Formation(CFm) are evaluated based on petrography, using scanning electron microscopy(SEM), energy dispersive x-ray spectroscopy(EDX) and x-ray diffraction(XRD) techniques. The diagenetic features are recognized, ranging from marine(isopachous fibrous calcite, micrite), through meteoric(blocky calcite-I, neomorphism and dissolution) to burial(poikilotopic cement, blocky calcite-II-III, fractures, fracture-filling, and stylolites). Major porosity types include fracture and moldic, while inter-and intra-particle porosities also exist. Observed visual porosity ranges from 1.5%–7.14% with an average of 5.15%. The sandstone facies(CMF-4) has the highest average porosity of 10.7%, whereas the siliciclastic grainstone microfacies(CMF-3) shows an average porosity of 5.3%. The siliciclastic mudstone microfacies(CMF-1) and siliciclastic wacke-packestone microfacies(CMF-2) show the lowest porosities of 4.8% and 5.0%, respectively. Diagenetic processes like cementation, neomorphism, stylolitization and compaction have reduced the primary porosities;however, processes of dissolution and fracturing have produced secondary porosity. On average, the CFm in the Nammal Gorge, Salt Range shows promise and at Gula Khel Gorge, Trans-Indus, the lowest porosity.
文摘The Qaidam Basin in the NE Tibetan Plateau has contributed the largest amount of potash in China.However,how the potash was formed has long been a subject of debate.Here we carried out a deep drilling
基金supported by the University Grant Commission,New Delhi,India,under Special Assistance Program (SAP) to the Department of Petroleum Engineering,Indian School of Mines,Dhanbad,India.
文摘The formation and dissociation of methane gas hydrate at an interface between synthetic seawater (SSW) and methane gas have been experimentally investigated in the present work. The amount of gas consumed during hydrate formation has been calculated using the real gas equation. Induction time for the formation of hydrate is found to depend on the degree of subcooling. All the experiments were conducted in quiescent system with initial cell pressure of 11.14 MPa. Salinity effects on the onset pressure and temperature of hydrate formation are also observed. The dissociation enthalpies of methane hydrate in synthetic seawater were determined by Clausius-Clapeyron equation based on the measured phase equilibrium data. The dissociation data have been analyzed by existing models and compared with the reported data.
文摘Water flooding and pressure maintenance are recommended to improve oil recovery practices after low recovery of petroleum reservoirs occurs during primary production.Salt crystal formation is a frequent occurrence when using these techniques.Several experimental,numerical,and theoretical studies have been done on the mechanisms underlying scaling and permeability reduction in porous media;however,there has not been a satisfactory model developed.This study developed a phenomenological model to predict formation damage caused by salt deposition.Compared with existing models,which provide a scaling tendency,the proposed model predicts the profile of scale deposition.The salt precipitation model simulates reactive fluid flow through porous media.A thermodynamic,kinetic,and flow hydrodynamic model was developed and coupled with the ion transport equation to describe the movement of ions.Further,a set of carefully designed dynamic experiments were conducted and the data were compared with the model predictions.Model forecasts and experimental data were observed to have an average absolute error(AAE)ranging from 0.68%to 5.94%,which indicates the model's suitability.
文摘A relationship is established, using the least squares method, between the standard enthalpy of formation and the standard enthalpy of formation divided by the exothermic denitration decomposition peak absolute temperature corresponding to β →0.
基金Supported by the Education Ministry Foundation of Shaanxi Province(No.HF0 130 4 )
文摘The complexes of hydrous copper chloride and copper nitrate with 2-amino-4,6-dimethylpyrimidine(ADMP) were prepared via reflux in alcohol. The compositions of the complexes were identified as Cu(ADMP) 2Cl 2·2H 2O(b) and Cu(ADMP)(NO 3) 2·H 2O(c) by chemical and elemental analyses. The complexes were characterized by IR, XPS, 1H NMR and TG-DTG techniques. The constant-volume combustion energies of ADMP and the complexes, Δ c E , were determined by a precise rotating-bomb calorimeter at 298 15 K. They were (-3664 53±1 18), (-4978 47±2 72) and (-1696 70±1 36) kJ/mol, respectively. Their standard enthalpies of combustion, Δ c H 0 m, and standard enthalpies of formation, Δ f H 0 m, were calculated to be (-3666 39±1 18), (-4977 23±2 72), (-1691 12±1 36) kJ/mol and (19 09±1 43), (-2041 80±3 29), (-2397 24±1 65) kJ/mol, respectively.