期刊文献+
共找到700篇文章
< 1 2 35 >
每页显示 20 50 100
Three-dimensional constrained gravity inversion of Moho depth and crustal structural characteristics at Mozambique continental margin
1
作者 Shihao Yang Zhaocai Wu +3 位作者 Yinxia Fang Mingju Xu Jialing Zhang Fanlin Yang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第2期120-129,共10页
Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambiq... Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambique's continental margin is considered of great significance to rebuild Gondwana land and understand its movement mode. Along these lines, in this work, the initial Moho was fit using the known Moho depth from reflection seismic profiles, and a 3D multi-point constrained gravity inversion was carried out. Thus, highaccuracy Moho depth and crustal thickness in the study area were acquired. According to the crustal structure distribution based on the inversion results, the continental crust at the narrowest position of the Mozambique Channel was detected. According to the analysis of the crustal thickness, the Mozambique ridge is generally oceanic crust and the COB of the whole Mozambique continental margin is divided. 展开更多
关键词 3D constrained gravity inversion continent-ocean boundary Mozambique continental margin Moho depth
下载PDF
Fast 3D joint inversion of gravity and magnetic data based on cross gradient constraint
2
作者 Sheng Liu Xiangyun Wan +6 位作者 Shuanggen Jin Bin Jia Songbai Xuan Quan Lou Binbin Qin Rongfu Peng Dali Sun 《Geodesy and Geodynamics》 EI CSCD 2023年第4期331-346,共16页
The gravity and magnetic data can be adopted to interpret the internal structure of the Earth.To improve the calculation efficiency during the inversion process and the accuracy and reliability of the reconstructed ph... The gravity and magnetic data can be adopted to interpret the internal structure of the Earth.To improve the calculation efficiency during the inversion process and the accuracy and reliability of the reconstructed physical property models,the triple strategy is adopted in this paper to develop a fast cross-gradient joint inversion for gravity and magnetic data.The cross-gradient constraint contains solving the gradients of the physical property models and performing the cross-product calculation of their gradients.The sparse matrices are first obtained by calculating the gradients of the physical property models derived from the first-order finite difference.Then,the triple method is applied to optimize the storages and the calculations related to the gradients of the physical property models.Therefore,the storage compression amount of the calculations related to the gradients of the physical property models and the cross-gradient constraint are reduced to one-fold of the number of grid cells at least,and the compression ratio increases with the increase of the number of grid cells.The test results from the synthetic data and field data prove that the structural coupling is achieved by using the fast cross-gradient joint inversion method to effectively reduce the multiplicity of solutions and improve the computing efficiency. 展开更多
关键词 gravity and magnetic data Joint inversion TRIPLE Cross-gradient constraint
下载PDF
Joint inversion of gravity and vertical gradient data based on modified structural similarity index for the structural and petrophysical consistency constraint
3
作者 Sheng Liu Xiangyun Wan +6 位作者 Shuanggen Jin Bin Jia Quan Lou Songbai Xuan Binbin Qin Yiju Tang Dali Sun 《Geodesy and Geodynamics》 EI CSCD 2023年第5期485-499,共15页
Joint inversion is one of the most effective methods for reducing non-uniqueness for geophysical inversion.The current joint inversion methods can be divided into the structural consistency constraint and petrophysica... Joint inversion is one of the most effective methods for reducing non-uniqueness for geophysical inversion.The current joint inversion methods can be divided into the structural consistency constraint and petrophysical consistency constraint methods,which are mutually independent.Currently,there is a need for joint inversion methods that can comprehensively consider the structural consistency constraints and petrophysical consistency constraints.This paper develops the structural similarity index(SSIM)as a new structural and petrophysical consistency constraint for the joint inversion of gravity and vertical gradient data.The SSIM constraint is in the form of a fraction,which may have analytical singularities.Therefore,converting the fractional form to the subtractive form can solve the problem of analytic singularity and finally form a modified structural consistency index of the joint inversion,which enhances the stability of the SSIM constraint applied to the joint inversion.Compared to the reconstructed results from the cross-gradient inversion,the proposed method presents good performance and stability.The SSIM algorithm is a new joint inversion method for petrophysical and structural constraints.It can promote the consistency of the recovered models from the distribution and the structure of the physical property values.Then,applications to synthetic data illustrate that the algorithm proposed in this paper can well process the synthetic data and acquire good reconstructed results. 展开更多
关键词 Joint inversion gravity and vertical gradient data Modified structural similarity index
下载PDF
Coastal bathymetry inversion using SAR-based altimetric gravity data:A case study over the South Sandwich Island
4
作者 Yihao Wu Junjie Wang +3 位作者 Xiufeng He Yunlong Wu Dongzhen Jia Yueqian Shen 《Geodesy and Geodynamics》 EI CSCD 2023年第3期212-222,共11页
The global bathymetry models are usually of low accuracy over the coastline of polar areas due to the harsh climatic environment and the complex topography.Satellite altimetric gravity data can be a supplement and pla... The global bathymetry models are usually of low accuracy over the coastline of polar areas due to the harsh climatic environment and the complex topography.Satellite altimetric gravity data can be a supplement and plays a key role in bathymetry modeling over these regions.The Synthetic Aperture Radar(SAR)altimeters in the missions like CryoSat-2 and Sentinel-3A/3B can relieve waveform contamination that existed in conventional altimeters and provide data with improved accuracy and spatial resolution.In this study,we investigate the potential application of SAR altimetric gravity data in enhancing coastal bathymetry,where the effects on local bathymetry modeling introduced from SAR altimetry data are quantified and evaluated.Furthermore,we study the effects on bathymetry modeling by using different scale factor calculation approaches,where a partition-wise scheme is implemented.The numerical experiment over the South Sandwich Islands near Antarctica suggests that using SARbased altimetric gravity data improves local coastal bathymetry modeling,compared with the model calculated without SAR altimetry data by a magnitude of 3:55 m within 10 km of offshore areas.Moreover,by using the partition-wise scheme for scale factor calculation,the quality of the coastal bathymetry model is improved by 7.34 m compared with the result derived from the traditional method.These results indicate the superiority of using SAR altimetry data in coastal bathymetry inversion. 展开更多
关键词 Coastal bathymetry inversion Synthetic aperture radar altimeter Sentinel-3A/3B CryoSat-2 Altimetric gravity data Scale factor
下载PDF
Estimating Moho basement and faults using gravity inversion in Yushu-earthquake area,China 被引量:4
5
作者 Yang Guangliang 《Geodesy and Geodynamics》 2012年第2期8-13,共6页
A gravity survey was conducted one month after the 2010 Yushu earthquake in the epicenter area. The cross-fauh survey line was 500 km long, from Langqian county to Qingshuihe county, in a transition zone between Bayan... A gravity survey was conducted one month after the 2010 Yushu earthquake in the epicenter area. The cross-fauh survey line was 500 km long, from Langqian county to Qingshuihe county, in a transition zone between Bayan Har block and Qiangtang block, in an area of high elevation, large undulating terrain, and complex geological features. An interpretation of the data was carried out together with other kinds of data, such as seismic exploration and magnetic exploration. The result shows that gravity is sensitive to fault bounda- ry ; the geologic structure of the region is complex at middle and upper depths, and the density profile reveals an eastward-pushing fault movement. 展开更多
关键词 Moho basement gravity FAULTS Yushu earthquake inversion
下载PDF
Bathymetry inversion using the modifi ed gravitygeologic method:application of the rectangular prism model and Tikhonov regularization 被引量:5
6
作者 Xing Jian Chen Xin-Xi Ma Long 《Applied Geophysics》 SCIE CSCD 2020年第3期377-389,共13页
Bathymetry data are usually obtained via single-beam or multibeam sounding;however,these methods exhibit low efficiency and coverage and are dependent on various parameters,including the condition of the vessel and se... Bathymetry data are usually obtained via single-beam or multibeam sounding;however,these methods exhibit low efficiency and coverage and are dependent on various parameters,including the condition of the vessel and sea state.To overcome these limitations,we propose a method for marine bathymetry inversion based on the satellite altimetry gravity anomaly data as a modification of the gravity-geologic method(GGM),which is a conventional terrain inversion method based on gravity data.In accordance with its principle,the modified method adopts a rectangular prism model for modeling the short-wavelength gravity anomaly and the Tikhonov regularization method to integrate the geophysical constraints,including the a priori water depth data and characteristics of the sea bottom relief.The a priori water depth data can be obtained based on the measurement data obtained from a ship,borehole information,etc.,and the existing bathymetry/terrain model can be considered as the initial model.Marquardt’s method is used during the inversion process,and the regularization parameter can be adaptively determined.The model test and application to the West Philippine Basin indicate the feasibility and eff ectiveness of the proposed method.The results indicate the capability of the proposed method to improve the overall accuracy of the water depth data.Then,the proposed method can be used to conduct a preliminary study of the ocean depths.Additionally,the results show that in the improved GGM,the density diff erence parameter has lost its original physical meaning,and it will not have a great impact on the inversion process.Based on the boundedness of the study area,the inversion result may exhibit a lower confi dence level near the margin than that near the center.Furthermore,the modifi ed GGM is time-and memory-intensive when compared with the conventional GGM. 展开更多
关键词 BATHYMETRY gravity inversion Tikhonov REGULARIZATION
下载PDF
Joint inversion of gravity and seismic data along a profile across the seismogenic fault of 2010 Yushu Ms7. 1 earthquake 被引量:2
7
作者 Yang Guangliang Wang Fuyun +2 位作者 Shen Chongyang Sun Shaoan Tan Hongbo 《Geodesy and Geodynamics》 2011年第4期21-27,共7页
Yushu Ms7.1 earthquake occurred on the Ganzi-Yushu fault zone, across which we carried out a joint relative-gravity and seismic-reflection survey, and then performed a gravity inversion constrained by the seismic-refl... Yushu Ms7.1 earthquake occurred on the Ganzi-Yushu fault zone, across which we carried out a joint relative-gravity and seismic-reflection survey, and then performed a gravity inversion constrained by the seismic-reflection result. Based on the data of complete Bouguer gravity anomaly and seismic reflection, we obtained a layered interface structure in deep crust down to Moho. Our study showed that the inversion could reveal the interfaces of strata along the survey profile and the directions of regional faults in two-dimension. From the characteristics of the observed topography of the Moho basement, we tentatively confirmed that the uplift of eastern edge of Qinghai-Tibet plateau was caused by the subduetion of the Indian plate. 展开更多
关键词 Ganzi-Yushu fault zone Bouguer gravity anomaly reflection seismic joint inversion
下载PDF
Robust inversion analysis of local gravity anomalies caused by geological dislocation model of faults 被引量:5
8
作者 黄建梁 申重阳 李辉 《Acta Seismologica Sinica(English Edition)》 EI CSCD 1998年第1期99-109,共11页
Theoretical analysis and practical observations show that fault dislocations can change the gravity field around the fault. Gravity changes which were caused by the repeated dislocations over a long period of time wer... Theoretical analysis and practical observations show that fault dislocations can change the gravity field around the fault. Gravity changes which were caused by the repeated dislocations over a long period of time were superimposed on the Bougeur gravity anomalies. These anomalies became the evidence of historical movement of fault as well as provide a way for the study of paleo earthquakes. This paper investigates inversion methods for the geological dislocation modeling of faults using the local Bouguer's gravity anomalies. To remove the effects of the irrelevant part of gravity anomalies to fault movements, we propose the robust nonlinear inversion method and set up the corresponding algorithm. Modeling examples indicate that the Marquardt's and Baye's least squares solutions depart from the true solution due to the attraction of gross errors in the data. The more seriously the data is contaminated, the more seriously the solutions are biased. In contrast, the proposed robust Marquardt's and Baye's inversion solutions can still maintain consistency with the solution without gross errors, even though 50 percent of the data is contaminated. This indicates that the proposed robust methods are effective. Using the proposed methods, we invert the geological dislocation models of the faults around the Erhai Lake in West Yunnan. The results show that the Northern Cangdong fault and the Erhai fault are normal dip slip faults with about 4 to 5 km dislocations; and that the Southern Cangdong fault has a less dip slip compared with the former two. A satisfactory fitting between the theoretical values of the inversion solution and the actual local gravity field is achievable. 展开更多
关键词 fault movement dislocation model gravity anomaly least squares fitting robust inversion
下载PDF
Gravity inversion of deep-crust and mantle interfaces in the Three Gorges area 被引量:1
9
作者 Wang Jian Shen Chongyang +2 位作者 Li Hui Sun Shaoan Xing Lelin 《Geodesy and Geodynamics》 2012年第4期7-17,共11页
To better understand the heterogeneity of deep-crust and mantle interfaces in the region of the Three Gorges, China, we used the Parker-Oldenburg iterative inversion method to invert existing Bouguer gravity data from... To better understand the heterogeneity of deep-crust and mantle interfaces in the region of the Three Gorges, China, we used the Parker-Oldenburg iterative inversion method to invert existing Bouguer gravity data from the Three Gorges area ( 1 : 500000) , a new gravity map of the Three Gorges Dam ( 1 : 200000) , and the results of deep seismic soundings. The inversion results show a Moho depth of 42 km be- tween Badong and Zigui and the depth of the B2 lower-crustal interface beneath the Jianghan Plain and sur- rounding areas at 21 -25 km. The morphology of crustal interfaces and the surface geology present an over- pass structure. The mid-crust beneath the Three Gorges Dam is approximately 9 km thick, which is the thin- nest in the Three Gorges area and may be related to the shallow low-density body near the Huangling anti- cline. The upper crust is seismogenic, and there is a close relationship between seismicity and the deep- crust and mantle interfaces. For example, the MS. 1 Zigui earthquake occurred where the gradients of the Moho and the B2 interface are the steepest, showing that deep structure has a very important effect on re- gional seismicity. 展开更多
关键词 inversion gravity anomaly deep structure the Three Gorges area
下载PDF
A 3D Geological Model Constrained by Gravity and Magnetic Inversion and its Exploration Implications for the World-class Zhuxi Tungsten Deposit, South China 被引量:3
10
作者 YAN Jiayong LÜ Qingtian +8 位作者 QI Guang FU Guangming ZHANG Kun LAN Xueyi GUO Xin WEI Jin LUO Fan WANG Hao WANG Xu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第6期1940-1959,共20页
The Zhuxi tungsten deposit in Jiangxi Province,South China,contains a total W reserve of about 2.86 Mt at an average grade of 0.54 wt%WO3,representing the largest W deposit in the world.Numerous studies on the metallo... The Zhuxi tungsten deposit in Jiangxi Province,South China,contains a total W reserve of about 2.86 Mt at an average grade of 0.54 wt%WO3,representing the largest W deposit in the world.Numerous studies on the metallogeny of the deposit have included its timing,the ore-controlling structures and sedimentary host rocks and their implications for mineral exploration.However,the deep nappe structural style of Taqian-Fuchun metallogenic belt that hosts the W deposit,and the spatial shape and scale of deeply concealed intrusions and their sedimentary host rocks are still poorly defined,which seriously restricts the discovery of new deposits at depth and in surrounding areas of the W deposit.Modern 3 D geological modeling is an important tool for the exploration of concealed orebodies,especially in brownfield environments.There are obvious density contrast and weak magnetic contrast in the ore-controlling strata and granite at the periphery of the deposit,which lays a physical foundation for solving the 3 D spatial problems of the ore-controlling geological body in the deep part of the study area through gravity and magnetic modeling.Gravity data(1:50000)and aeromagnetic data(1:50000)from the latest geophysical surveys of 2016-2018 have been used,firstly,to carry out a potential field separation to obtain residual anomalies for gravity and magnetic interactive inversion.Then,on the basis of the analysis of the relationship between physical properties and lithology,under the constraints of surface geology and borehole data,human-computer interactive gravity and magnetic inversion for 18 cross-sections were completed.Finally,the 3 D geological model of the Zhuxi tungsten deposit and its periphery have been established through these 18 sections,and the spatial shape of the intrusions and strata with a depth of 5 km underground were obtained,initially realizing―transparency‖for ore-controlling bodies.According the analysis of the geophysical,geochemical,and geological characteristics of the Zhuxi tungsten deposit,we discern three principles for prospecting and prediction in the research area,and propose five new exploration targets in its periphery. 展开更多
关键词 3D geological modelling gravity and magnetic data interactive inversion TUNGSTEN exploration of concealed W mineralization Taqian-Fuchun metallogenic belt Jiangxi province
下载PDF
Gravity compression forward modeling and multiscale inversion based on wavelet transform 被引量:4
11
作者 Sun Si-Yuan Yin Chang-Chun +2 位作者 Gao Xiu-He Liu Yun-He Ren Xiu-Yan 《Applied Geophysics》 SCIE CSCD 2018年第2期342-352,365,共12页
在三维的严肃倒置的主要问题是解决方案的非唯一和大数据集合的高计算的费用。最小化高计算的费用,我们建议一个新排序方法在使用小浪变换以前减少变化和敏感矩阵的高频率。因而,敏感矩阵的稀少和压缩比率象向前建模的精确性一样被改... 在三维的严肃倒置的主要问题是解决方案的非唯一和大数据集合的高计算的费用。最小化高计算的费用,我们建议一个新排序方法在使用小浪变换以前减少变化和敏感矩阵的高频率。因而,敏感矩阵的稀少和压缩比率象向前建模的精确性一样被改进。而且,记忆存储要求被减少,向前建模与未压缩的前面的建模相比被加速。向前当模特儿的结果建议敏感矩阵的压缩比率能是超过 300。而且,多尺度的倒置基于小浪变换被用于严肃倒置。由把严肃倒置分解成不同规模的 subproblems,当多尺度的数据被考虑,严肃倒置的非唯一和稳定性被改进。最后,我们在模仿并且测量的数据上使用了常规集中的倒置和多尺度的倒置表明建议严肃倒置方法的有效性。 展开更多
关键词 小浪变换 矩阵压缩 多尺度的倒置 向前当模特儿的严肃
下载PDF
A VGGNet-based correction for satellite altimetry-derived gravity anomalies to improve the accuracy of bathymetry to depths of 6500 m
12
作者 Xiaolun Chen Xiaowen Luo +6 位作者 Ziyin Wu Xiaoming Qin Jihong Shang Huajun Xu Bin Li Mingwei Wang Hongyang Wan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第1期112-122,共11页
Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the... Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the seafloor has been precisely modeled to date,and there is an urgent need to improve the accuracy and reduce the uncertainty of underwater survey data.In this study,we introduce a pretrained visual geometry group network(VGGNet)method based on deep learning.To apply this method,we input gravity anomaly data derived from ship measurements and satellite altimetry into the model and correct the latter,which has a larger spatial coverage,based on the former,which is considered the true value and is more accurate.After obtaining the corrected high-precision gravity model,it is inverted to the corresponding bathymetric model by applying the gravity-depth correlation.We choose four data pairs collected from different environments,i.e.,the Southern Ocean,Pacific Ocean,Atlantic Ocean and Caribbean Sea,to evaluate the topographic correction results of the model.The experiments show that the coefficient of determination(R~2)reaches 0.834 among the results of the four experimental groups,signifying a high correlation.The standard deviation and normalized root mean square error are also evaluated,and the accuracy of their performance improved by up to 24.2%compared with similar research done in recent years.The evaluation of the R^(2) values at different water depths shows that our model can achieve performance results above 0.90 at certain water depths and can also significantly improve results from mid-water depths when compared to previous research.Finally,the bathymetry corrected by our model is able to show an accuracy improvement level of more than 21%within 1%of the total water depths,which is sufficient to prove that the VGGNet-based method has the ability to perform a gravity-bathymetry correction and achieve outstanding results. 展开更多
关键词 gravity anomaly bathymetry inversion VGGNet multibeam sonar satellite altimetry
下载PDF
3D inversion of borehole gravity data using cokriging 被引量:3
13
作者 GENG Meixia HUANG Danian XU Bowen 《Global Geology》 2014年第4期225-230,共6页
Borehole gravity has been used in mineral exploration recently with the advent of slim-hole gravimeters. It is logical to perform inversion to utilize the information in the newly acquired data. The inversions were ca... Borehole gravity has been used in mineral exploration recently with the advent of slim-hole gravimeters. It is logical to perform inversion to utilize the information in the newly acquired data. The inversions were carried out by using cokriging,which is a geostatistical method of estimation that minimizes the error variance by applying cross-correlation between several variables. In this study the estimated densities are derived by using boreholes gravity and known densities along the borehole. This method does not need iterative process and computes efficiently. The selection of examples demonstrates that this method has the ability to include physical property from borehole measurements in the inversion. The synthetic examples demonstrate the density variation along a borehole can be well determined without depth constraints in the inversion. The resolution of the recovered model can be further improved by including the densities along the borehole for inversion. However,this capability decreases dramatically with the increasing of distance between the anomalous body and the borehole. 展开更多
关键词 钻孔测量 三维反演 重力数据 克里格 协同 密度变化 地质统计方法 矿产勘查
下载PDF
Joint inversion of gravity and multiple components of tensor gravity data 被引量:1
14
作者 鲁光银 曹书锦 朱自强 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第7期1767-1777,共11页
Geological structures often exhibit smooth characteristics away from sharp discontinuities. One aim of geophysical inversion is to recover information about the smooth structures as well as about the sharp discontinui... Geological structures often exhibit smooth characteristics away from sharp discontinuities. One aim of geophysical inversion is to recover information about the smooth structures as well as about the sharp discontinuities. Because no specific operator can provide a perfect sparse representation of complicated geological models, hyper-parameter regularization inversion based on the iterative split Bregman method was used to recover the features of both smooth and sharp geological structures. A novel preconditioned matrix was proposed, which counteracted the natural decay of the sensitivity matrix and its inverse matrix was calculated easily. Application of the algorithm to synthetic data produces density models that are good representations of the designed models. The results show that the algorithm proposed is feasible and effective. 展开更多
关键词 联合反演 多组分 复杂地质模型 重力 地球物理反演 结构特征 不连续性 地质构造
下载PDF
Application of gravity inversion focused in Changbai Mountain 被引量:1
15
作者 LI Qiuchen WU Yangang 《Global Geology》 2014年第1期62-66,共5页
Focusing inversion is accomplished by the iterative of abnormal source to make the image gradually focused. It can better reflect the underground geological geometry and physical parameters. The model experiments in t... Focusing inversion is accomplished by the iterative of abnormal source to make the image gradually focused. It can better reflect the underground geological geometry and physical parameters. The model experiments in the study show that gravity focusing inversion allows inversion image stabilization and polymerization,which solves the multiple solutions and instability of inversion and so on. The method is applied to measured gravity data processing of certain region of Changbai Mountain,compared to Euler deconvolution,the results show that the method for determining the horizontal position and depth of underground anomalies has good efforts. 展开更多
关键词 重力反演 长白山 应用 测量数据处理 图像稳定 物理参数 模型实验 不稳定性
下载PDF
3D fast inversion of gravity data based on GPU
16
作者 WANG Xusheng ZENG Zhaofa 《Global Geology》 2018年第2期114-119,共6页
Large-scale gravity 3D interpretation depends on efficient and high-resolution 3D inversion processing of massive data.The authors applied the conjugate gradient method with minimum support function and prior model co... Large-scale gravity 3D interpretation depends on efficient and high-resolution 3D inversion processing of massive data.The authors applied the conjugate gradient method with minimum support function and prior model constraint to reduce multi-solutions in gravity inversion.Based on the parallel programming and computing platform NVIDIA CUDA with C + + language,we achieve fast 3D gravity inversion by adopting GPU parallel technique into the most time consuming part relating to sensitivity matrix.The results of theoretical model show that the abnormal body can be clearly located and the inversion speed is improved greatly.Comparing with inversion speed of the Matlab program,speed of inversion with GPU parallel technique has improved more than100 times under the hardware condition of Geforce GTX 1060 graphics card. 展开更多
关键词 GPU CUDA gravity inversion CONJUGATE GRADIENT method
下载PDF
Simultaneous Structure-Coupled Joint Inversion of Gravity and Magnetic Data Based on a Damped Least-Squares Technique
17
作者 Junjie Zhou Chunxiao Xiu Xingdong Zhang 《International Journal of Geosciences》 2015年第2期172-179,共8页
The structure-coupled joint inversion method of gravity and magnetic data is a powerful tool for?developing improved physical property models with high resolution and compatible features;?however, the conventional pro... The structure-coupled joint inversion method of gravity and magnetic data is a powerful tool for?developing improved physical property models with high resolution and compatible features;?however, the conventional procedure is inefficient due to the truncated singular values decomposition?(SVD) process at each iteration. To improve the algorithm, a technique using damped leastsquares?is adopted to calculate the structural term of model updates, instead of the truncated SVD. This?produces structural coupled density and magnetization images with high efficiency. A so-called?coupling factor is introduced to regulate the tuning of the desired final structural similarity level.?Synthetic examples show that the joint inversion results are internally consistent and achieve?higher?resolution than separated. The acceptable runtime performance of the damped least squares?technique used in joint inversion indicates that it is more suitable for practical use than the truncated SVD method. 展开更多
关键词 Structure-Coupled Joint inversion DAMPED LEAST-SQUARES Coupling Factor gravity and Magnetic Data
下载PDF
3D Joint inversion of gravity and gravity tensor data
18
作者 ZHAO Simin GAO Xiuhe +3 位作者 QIAO Zhongkun JIANG Dandan ZHOU Fei LIN Song 《Global Geology》 2018年第1期55-61,共7页
The processing and interpretation of gravity and gradient data plays an important role in geophysics.The cross gradient joint inversion is usually used for achieving structure coupling of multiple geophysical models. ... The processing and interpretation of gravity and gradient data plays an important role in geophysics.The cross gradient joint inversion is usually used for achieving structure coupling of multiple geophysical models. In order to realize the coupling of gravity and gravity tensor data,the authors analyzed each component.The results show that different types of data contain different direction information,and derived the joint inversion based on cross gradient function and applied it to model data. The theoretical model results show that the cross gradient method can reduce the multi solution and significantly improve the resolution of the inversion.The method was also applied to inverse the gravity tensor data in Vinton salt dome,showing that this method can get higher resolution results than the separate linear inversion,and be closer to the real density from drilling data. 展开更多
关键词 CROSS GRADIENT joint inversion gravity DATA GRADIENT DATA
下载PDF
Inversion of gravity gradient data based on spatial gradient weighting
19
作者 JIANG DanDan YU Ping +1 位作者 LIN Song GAO Xiuhe 《Global Geology》 2018年第4期245-251,共7页
Compared with traditional gravity measurement data,gravity gradient tensor data contain more high frequency information,which can be used to understand the earth's interior structure,mineral resources distribution... Compared with traditional gravity measurement data,gravity gradient tensor data contain more high frequency information,which can be used to understand the earth's interior structure,mineral resources distribution etc. In this study,the authors present an algorithm for inverting gravity gradiometer data to recover the three-dimensional( 3-D) distributions of density. Spatial gradient weighting was used to constrain the extent of the body horizontally and vertically. A more accurate inversion result can be obtained by combining the prior information into the weighting function and applying it in inversion. This method was tested on synthetic models and the inverted results showed that the resolution was significantly improved. Moreover,the algorithm was applied to the inversion of empirical data from a salt dome located in Texas,USA,which demonstrated the validity of the proposed method. 展开更多
关键词 gravity GRADIENT DATA SPATIAL GRADIENT weighting 3-D inversion
下载PDF
Regularized focusing inversion for large-scale gravity data based on GPU parallel computing
20
作者 WANG Haoran DING Yidan +1 位作者 LI Feida LI Jing 《Global Geology》 2019年第3期179-187,共9页
Processing large-scale 3-D gravity data is an important topic in geophysics field. Many existing inversion methods lack the competence of processing massive data and practical application capacity. This study proposes... Processing large-scale 3-D gravity data is an important topic in geophysics field. Many existing inversion methods lack the competence of processing massive data and practical application capacity. This study proposes the application of GPU parallel processing technology to the focusing inversion method, aiming at improving the inversion accuracy while speeding up calculation and reducing the memory consumption, thus obtaining the fast and reliable inversion results for large complex model. In this paper, equivalent storage of geometric trellis is used to calculate the sensitivity matrix, and the inversion is based on GPU parallel computing technology. The parallel computing program that is optimized by reducing data transfer, access restrictions and instruction restrictions as well as latency hiding greatly reduces the memory usage, speeds up the calculation, and makes the fast inversion of large models possible. By comparing and analyzing the computing speed of traditional single thread CPU method and CUDA-based GPU parallel technology, the excellent acceleration performance of GPU parallel computing is verified, which provides ideas for practical application of some theoretical inversion methods restricted by computing speed and computer memory. The model test verifies that the focusing inversion method can overcome the problem of severe skin effect and ambiguity of geological body boundary. Moreover, the increase of the model cells and inversion data can more clearly depict the boundary position of the abnormal body and delineate its specific shape. 展开更多
关键词 LARGE-SCALE gravity data GPU parallel computing CUDA equivalent geometric TRELLIS FOCUSING inversion
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部