Investigating rock fragmentation mechanisms under blasting and developing new blasting technologies are important and challenging directions for blast engineering.Recently,with the development of experimental techniqu...Investigating rock fragmentation mechanisms under blasting and developing new blasting technologies are important and challenging directions for blast engineering.Recently,with the development of experimental techniques,the fundamental theory of rock blasting has been extensively studied in the past few decades and has made important achievements in the full understanding of the rock fracturing process under blast loading.It is thus imperative to systematically review the progress in this direction.This paper mainly focuses on the experimental study of rock blasting,including the distribution characteristic of blast energy,evolution of the blast stress field,propagation mechanism of cracks,interaction mechanism between blast waves and cracks,and influence of geostatic stress on rock fragmentation.In addition,some newly developed blasting technologies and their applications are briefly presented.This review could provide comprehensive insights to guide the study on the rock fracturing mechanism under blasting and further provide meaningful guidance for optimizing blast parameters in engineering.展开更多
The mechanism of ground vibration in building demolition blasting was investigated,taking into account the prevailing influential factors, including the building's heightof mass center, the quantity size, the stru...The mechanism of ground vibration in building demolition blasting was investigated,taking into account the prevailing influential factors, including the building's heightof mass center, the quantity size, the structural feature, the component material quantity,the demolition method, the geological structure of the region, earthquake resistance rank,as well as the earthquake wave dissemination.The proposed method was applied efficientlyto reduce the blasting effects on the environment, which enriches the control theoriesof vibration caused by collapse in the blasting process and may provide a good referencefor the related engineering practices.展开更多
The dynamic stress-fields and their distribution characteristics around boreholes in the directed crack blasting were measured with the dynamic photo-elastic laser holography apparatus and the ultradymamic measurement...The dynamic stress-fields and their distribution characteristics around boreholes in the directed crack blasting were measured with the dynamic photo-elastic laser holography apparatus and the ultradymamic measurement system. The directed crack mechanism and its mechanical model have been analysed and expounded. Through the 43 production experiments using slotted cartridges and the double triangle center cut-holes for directed crack blasting in underground rock drift, the results of which the rates of half-hole marks and efficiency of borehole,and the nonsmooth grades of the cut contours are 96%, 98% and 10cm respectively have been achieved.展开更多
Coalbed gas extraction is an important means of exploiting and utilizing gas resources,as well as a means of preventing coal mine disasters.In view of the low gas extraction rate from coalbeds with high gas content an...Coalbed gas extraction is an important means of exploiting and utilizing gas resources,as well as a means of preventing coal mine disasters.In view of the low gas extraction rate from coalbeds with high gas content and low permeability,a method of improving permeability through deep-hole cumulative blasting is applied to develop initial directional fractures using a jet flow.Under the action of the blasting stress wave and detonation gas wedge,the fractures extend over a large range within the coal,thereby improving coalbed permeability.This study focuses on the criteria of cumulative blasting-induced coalbed fracturing based on a literature review of the penetration effect of cumulative blasting.On this basis,we summarize the coal fracturing zone,crack extension process,and the key technologies of charging and hole sealing for cumulative blasting.In addition,the latest research progress in the optimization of field test drilling and blasting parameters for cumulative blasting is introduced.Research findings indicate that the permeability improvement mechanism of cumulative blasting could be further enhanced,and the technology and technical equipment are in urgent need of improvement.Finally,development trends in the cumulative blasting permeability improvement technique are identified.展开更多
Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasti...Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasting and casting blast parameters determination which have influence on the effect of casting blast have been researched with the combination of the ballistic theory and experience in mines. The integrated digital processing system of casting blast was developed in order to simplify the design process of casting blast, improve working efficiency and veracity of design result and comprehensively adopt the software programming method and the theory of casting blast. This system has achieved five functions, namely, the 3D visualization graphics management, the intelligent management of geological information, the intelligent design of casting blast, the analysis and prediction of the blasting effect and the automatic output of the design results. Long-term application in opencast coal mines has shown that research results can not only reduce the specific explosive consumption and improve the blasting effect, but also have high value of popularization and application.展开更多
[ Objective] The paper was to confirm the best application period and frequency of 75% trifloxystrobin ·tebuconazole WG against rice blast and rice sheath blight. [ Method] Influences of different dosages and dif...[ Objective] The paper was to confirm the best application period and frequency of 75% trifloxystrobin ·tebuconazole WG against rice blast and rice sheath blight. [ Method] Influences of different dosages and different application periods of 75% trifloxystrobin · tebuconazole WG on control effects against rice blast and rice sheath blight, as well as their effects on rice yields were studied in the paper. [Result] The control effects of three different fungicides application treatments against rice sheath blight were 80.24%, 83.0% and 67.99%, and the control effects against rice blast were 56.4%, 49.11% and 61.1%, respective- ly. Advanced application of fungicide for two times had good prevention effect against rice sheath blight ; properly delayed application of fungicides for two times was conducive to improving the control effect against rice blast, and one time application of sufficient fungicide during middle booting stage had higher control effect than application for two times. Effective panicle number per unit area, total grain number, 1 000-grain weight and moisture content of various fungicide application treat- ments did not have significant difference with those of the treatments without fungicide application, but grain number per panicle in treatments applied with fungicide was higher than the treatment without application. [ Conclusion] 75% Trifloxystrobin ·tebuconazole WG has better control effect on rice blast and sheath blight, which helps to promote the formation of rice grain and increases yield significantly. The fungicide application against rice sheath blight should be appropriately ad- vanced, and application for one time against panicle blast after middle booting stage is helpful to improve the control effect.展开更多
The study was conducted to reduce blast damage, the use of pesticides residue, environment pollution and control costs, and to make a significant contribution to the improvement of grain production, quality and agricu...The study was conducted to reduce blast damage, the use of pesticides residue, environment pollution and control costs, and to make a significant contribution to the improvement of grain production, quality and agriculture ecological environment. Over these years, by the methods of systematical monitoring, regular surveys, field investigation, rice blast resistance identification, experiments and meteorological data analysis, the study on comprehensive prevention and control of rice blast in Nanchong City was conducted. The results showed that the rice varieties more sensitive to blast had a higher incidence of severe blast disease. Replacing,varieties with different source of resistance every three to five years and reasonable variety distribution can effectively reduce the prevalence of rice blast. Appropriate treatment of infected rice straw and pathogen, seed disinfection, seedling disinfection, and pesticide application at transplanting and etc. can delay blast occurrence and reduce the damage caused by blast. By analyzing the blast control efficiency of pesticides applied at different growth stages, we found that best control efficiency against blast was achieved by spraying pesticide twice during the whole growth stage, once 3 d before transplanting or 10 d after transplanting; and once at initial heading stage. Spraying 525 g/hm^2 75% tricyclazole was proven to be the best dosage for blast control. However, 375-450 g/hm^2 75% tricyclazole is enough if the blast incidence is not severe, or the rice varieties are slightly susceptible to blast.The control efficiency against leaf blast between 4% kasugamycin and 20% tricyclazole had no significant difference, but was significantly higher than that of 100 billion spores/g of Bacillus subtilis. The control efficiency against neck blast had no significant difference among 4% kasugamycin, 20% tricyclazole and 100 billion spores/g of B. subtilis. 450 g/hm^2 75% tricyclazole had better control efficiency against neck blast than 2 250 g/hm^2 2% 800 million spores/g Jinggangmycin-wax bud bacteria SC, 1 050 g/hm^2 41% kasugamycin-isoprothiolane WP and 900 g/hm^2 41%kasugamycin-isoprothiolane WP. The frequency of severe blast incidence in Nanchong City has reached 50% since 1997. The rice blast disease has been effectively controlled by comprehensive prevention and control technology, reducing the production loss to less than 2%, and pesticides by 4 523 t in total. In 2014, 327000 t rice grains were approved as pollution-free, green and organic agricultural products, indicating that the blast control measures produced great economic, social and ecological values.展开更多
The metallurgy industry consumes a considerable amount of coal and fossil fuels,and its carbon dioxide emissions are increasing every year.Replacing coal with renewable,carbon-neutral biomass for metallurgical product...The metallurgy industry consumes a considerable amount of coal and fossil fuels,and its carbon dioxide emissions are increasing every year.Replacing coal with renewable,carbon-neutral biomass for metallurgical production is of great significance in reducing global carbon consumption.This study describes the current state of research in biomass metallurgy in recent years and analyzes the concept and scientific principles of biomass metallurgy.The fundamentals of biomass pretreatment technology and biomass metallurgy technology were discussed,and the industrial application framework of biomass metallurgy was proposed.Furthermore,the economic and social advantages of biomass metallurgy were analyzed to serve as a reference for the advancement of fundamental theory and industrial application of biomass metallurgy.展开更多
As one of promising clean coal technologies used to reduce pollutant emission and CO2 discharge, co gasification has been extensively investigated. In this paper, a new co-gasification technology using coal and natura...As one of promising clean coal technologies used to reduce pollutant emission and CO2 discharge, co gasification has been extensively investigated. In this paper, a new co-gasification technology using coal and natural gas was developed. The distinct advantages of this technology are the excellent fuel flexibility and the availability to establish the gasifier by reconstructing the blast furnace or similar shaft furnace. Based on the concept of the new co-gasification technology, lab-scale experiments and modeling study were carried out. The obtained results indicate that gasification is undertaken at ideal thermodynamic environment where quasi-equilibrium could be reached without catalysts. The modeling results are in agreement with experimental data, demonstrating the validity of the model and that Aspen Plus is a useful tool for the analysis of the co-gasification process. Furthermore, the effect of major operation parameters, including oxygen flow rate and steam flow rate, on co-gasification process was investigated using the developed model.展开更多
Precision blasting,which is different from traditional control blasting,is regarded as the sign of new development stage of engineering blasting.The definition,connotation,technology system and current situation of it...Precision blasting,which is different from traditional control blasting,is regarded as the sign of new development stage of engineering blasting.The definition,connotation,technology system and current situation of its application and development were described briefly.With regard to the prospect of precision blasting,following aspects for further study are recommended:a.A multiple disciplinary study should be developed for a more understanding on the explosive energy release and quantitative blasting design;b.according to the requirements of digital blasting objective,syncretic study of precision blasting and technology should be enhanced;c.numerical simulation was an important tool for optimizing engineering blasting scheme and blasting harmful effects control,a more elaborate precision numerical simulation method should be studied furthermore;d.the modernization and standardization of precision blasting construction should be enhanced.展开更多
文摘Investigating rock fragmentation mechanisms under blasting and developing new blasting technologies are important and challenging directions for blast engineering.Recently,with the development of experimental techniques,the fundamental theory of rock blasting has been extensively studied in the past few decades and has made important achievements in the full understanding of the rock fracturing process under blast loading.It is thus imperative to systematically review the progress in this direction.This paper mainly focuses on the experimental study of rock blasting,including the distribution characteristic of blast energy,evolution of the blast stress field,propagation mechanism of cracks,interaction mechanism between blast waves and cracks,and influence of geostatic stress on rock fragmentation.In addition,some newly developed blasting technologies and their applications are briefly presented.This review could provide comprehensive insights to guide the study on the rock fracturing mechanism under blasting and further provide meaningful guidance for optimizing blast parameters in engineering.
文摘The mechanism of ground vibration in building demolition blasting was investigated,taking into account the prevailing influential factors, including the building's heightof mass center, the quantity size, the structural feature, the component material quantity,the demolition method, the geological structure of the region, earthquake resistance rank,as well as the earthquake wave dissemination.The proposed method was applied efficientlyto reduce the blasting effects on the environment, which enriches the control theoriesof vibration caused by collapse in the blasting process and may provide a good referencefor the related engineering practices.
文摘The dynamic stress-fields and their distribution characteristics around boreholes in the directed crack blasting were measured with the dynamic photo-elastic laser holography apparatus and the ultradymamic measurement system. The directed crack mechanism and its mechanical model have been analysed and expounded. Through the 43 production experiments using slotted cartridges and the double triangle center cut-holes for directed crack blasting in underground rock drift, the results of which the rates of half-hole marks and efficiency of borehole,and the nonsmooth grades of the cut contours are 96%, 98% and 10cm respectively have been achieved.
基金The project was supported by the National Science Foundation of China(41430640,U1704242).
文摘Coalbed gas extraction is an important means of exploiting and utilizing gas resources,as well as a means of preventing coal mine disasters.In view of the low gas extraction rate from coalbeds with high gas content and low permeability,a method of improving permeability through deep-hole cumulative blasting is applied to develop initial directional fractures using a jet flow.Under the action of the blasting stress wave and detonation gas wedge,the fractures extend over a large range within the coal,thereby improving coalbed permeability.This study focuses on the criteria of cumulative blasting-induced coalbed fracturing based on a literature review of the penetration effect of cumulative blasting.On this basis,we summarize the coal fracturing zone,crack extension process,and the key technologies of charging and hole sealing for cumulative blasting.In addition,the latest research progress in the optimization of field test drilling and blasting parameters for cumulative blasting is introduced.Research findings indicate that the permeability improvement mechanism of cumulative blasting could be further enhanced,and the technology and technical equipment are in urgent need of improvement.Finally,development trends in the cumulative blasting permeability improvement technique are identified.
基金Project supported by the Fundamental Research Funds for the Central Universities,China
文摘Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasting and casting blast parameters determination which have influence on the effect of casting blast have been researched with the combination of the ballistic theory and experience in mines. The integrated digital processing system of casting blast was developed in order to simplify the design process of casting blast, improve working efficiency and veracity of design result and comprehensively adopt the software programming method and the theory of casting blast. This system has achieved five functions, namely, the 3D visualization graphics management, the intelligent management of geological information, the intelligent design of casting blast, the analysis and prediction of the blasting effect and the automatic output of the design results. Long-term application in opencast coal mines has shown that research results can not only reduce the specific explosive consumption and improve the blasting effect, but also have high value of popularization and application.
基金Supported by National Science and Technology Projects (2012BAD19B03).
文摘[ Objective] The paper was to confirm the best application period and frequency of 75% trifloxystrobin ·tebuconazole WG against rice blast and rice sheath blight. [ Method] Influences of different dosages and different application periods of 75% trifloxystrobin · tebuconazole WG on control effects against rice blast and rice sheath blight, as well as their effects on rice yields were studied in the paper. [Result] The control effects of three different fungicides application treatments against rice sheath blight were 80.24%, 83.0% and 67.99%, and the control effects against rice blast were 56.4%, 49.11% and 61.1%, respective- ly. Advanced application of fungicide for two times had good prevention effect against rice sheath blight ; properly delayed application of fungicides for two times was conducive to improving the control effect against rice blast, and one time application of sufficient fungicide during middle booting stage had higher control effect than application for two times. Effective panicle number per unit area, total grain number, 1 000-grain weight and moisture content of various fungicide application treat- ments did not have significant difference with those of the treatments without fungicide application, but grain number per panicle in treatments applied with fungicide was higher than the treatment without application. [ Conclusion] 75% Trifloxystrobin ·tebuconazole WG has better control effect on rice blast and sheath blight, which helps to promote the formation of rice grain and increases yield significantly. The fungicide application against rice sheath blight should be appropriately ad- vanced, and application for one time against panicle blast after middle booting stage is helpful to improve the control effect.
基金Supported by Notice on the First Batch of National Modern Agricultural Demonstration Zone by the Ministry of Agriculture(Agricultural Project No.[2010]22)One of the Major Pest and Disease Early Warning and Prevention Research Programs for Main Grain and Oil Crops(N1997-ZC002)~~
文摘The study was conducted to reduce blast damage, the use of pesticides residue, environment pollution and control costs, and to make a significant contribution to the improvement of grain production, quality and agriculture ecological environment. Over these years, by the methods of systematical monitoring, regular surveys, field investigation, rice blast resistance identification, experiments and meteorological data analysis, the study on comprehensive prevention and control of rice blast in Nanchong City was conducted. The results showed that the rice varieties more sensitive to blast had a higher incidence of severe blast disease. Replacing,varieties with different source of resistance every three to five years and reasonable variety distribution can effectively reduce the prevalence of rice blast. Appropriate treatment of infected rice straw and pathogen, seed disinfection, seedling disinfection, and pesticide application at transplanting and etc. can delay blast occurrence and reduce the damage caused by blast. By analyzing the blast control efficiency of pesticides applied at different growth stages, we found that best control efficiency against blast was achieved by spraying pesticide twice during the whole growth stage, once 3 d before transplanting or 10 d after transplanting; and once at initial heading stage. Spraying 525 g/hm^2 75% tricyclazole was proven to be the best dosage for blast control. However, 375-450 g/hm^2 75% tricyclazole is enough if the blast incidence is not severe, or the rice varieties are slightly susceptible to blast.The control efficiency against leaf blast between 4% kasugamycin and 20% tricyclazole had no significant difference, but was significantly higher than that of 100 billion spores/g of Bacillus subtilis. The control efficiency against neck blast had no significant difference among 4% kasugamycin, 20% tricyclazole and 100 billion spores/g of B. subtilis. 450 g/hm^2 75% tricyclazole had better control efficiency against neck blast than 2 250 g/hm^2 2% 800 million spores/g Jinggangmycin-wax bud bacteria SC, 1 050 g/hm^2 41% kasugamycin-isoprothiolane WP and 900 g/hm^2 41%kasugamycin-isoprothiolane WP. The frequency of severe blast incidence in Nanchong City has reached 50% since 1997. The rice blast disease has been effectively controlled by comprehensive prevention and control technology, reducing the production loss to less than 2%, and pesticides by 4 523 t in total. In 2014, 327000 t rice grains were approved as pollution-free, green and organic agricultural products, indicating that the blast control measures produced great economic, social and ecological values.
基金financially supported by the National Natural Science Foundation of China(No.51704216)the State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing(Nos.41620025,41620026,and 41621009)+1 种基金the Interdisciplinary Research Project for Young Teachers of University of ScienceTechnology Beijing(Fundamental Research Funds f or the Central Universities)(No.FRF-IDRY-20-014)。
文摘The metallurgy industry consumes a considerable amount of coal and fossil fuels,and its carbon dioxide emissions are increasing every year.Replacing coal with renewable,carbon-neutral biomass for metallurgical production is of great significance in reducing global carbon consumption.This study describes the current state of research in biomass metallurgy in recent years and analyzes the concept and scientific principles of biomass metallurgy.The fundamentals of biomass pretreatment technology and biomass metallurgy technology were discussed,and the industrial application framework of biomass metallurgy was proposed.Furthermore,the economic and social advantages of biomass metallurgy were analyzed to serve as a reference for the advancement of fundamental theory and industrial application of biomass metallurgy.
文摘As one of promising clean coal technologies used to reduce pollutant emission and CO2 discharge, co gasification has been extensively investigated. In this paper, a new co-gasification technology using coal and natural gas was developed. The distinct advantages of this technology are the excellent fuel flexibility and the availability to establish the gasifier by reconstructing the blast furnace or similar shaft furnace. Based on the concept of the new co-gasification technology, lab-scale experiments and modeling study were carried out. The obtained results indicate that gasification is undertaken at ideal thermodynamic environment where quasi-equilibrium could be reached without catalysts. The modeling results are in agreement with experimental data, demonstrating the validity of the model and that Aspen Plus is a useful tool for the analysis of the co-gasification process. Furthermore, the effect of major operation parameters, including oxygen flow rate and steam flow rate, on co-gasification process was investigated using the developed model.
文摘Precision blasting,which is different from traditional control blasting,is regarded as the sign of new development stage of engineering blasting.The definition,connotation,technology system and current situation of its application and development were described briefly.With regard to the prospect of precision blasting,following aspects for further study are recommended:a.A multiple disciplinary study should be developed for a more understanding on the explosive energy release and quantitative blasting design;b.according to the requirements of digital blasting objective,syncretic study of precision blasting and technology should be enhanced;c.numerical simulation was an important tool for optimizing engineering blasting scheme and blasting harmful effects control,a more elaborate precision numerical simulation method should be studied furthermore;d.the modernization and standardization of precision blasting construction should be enhanced.