期刊文献+
共找到1,748篇文章
< 1 2 88 >
每页显示 20 50 100
Enhancing XRF sensor-based sorting of porphyritic copper ore using particle swarm optimization-support vector machine(PSO-SVM)algorithm
1
作者 Zhengyu Liu Jue Kou +5 位作者 Zengxin Yan Peilong Wang Chang Liu Chunbao Sun Anlin Shao Bern Klein 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期545-556,共12页
X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hi... X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hindering widespread technology adoption.Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals.Previous studies mainly used linear regression(LR)algorithms including simple linear regression(SLR),multivariable linear regression(MLR),and multivariable linear regression with interaction(MLRI)but often fell short attaining satisfactory results.This study employed the particle swarm optimization support vector machine(PSO-SVM)algorithm for sorting porphyritic copper ore pebble.Lab-scale results showed PSO-SVM out-performed LR and raw data(RD)models and the significant interaction effects among input features was observed.Despite poor input data quality,PSO-SVM demonstrated exceptional capabilities.Lab-scale sorting achieved 93.0%accuracy,0.24%grade increase,84.94%recovery rate,57.02%discard rate,and a remarkable 39.62 yuan/t net smelter return(NSR)increase compared to no sorting.These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality(T=10,T is XRF testing times).The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated.Input element selection and mineral association analysis elucidate element importance and influence mechanisms. 展开更多
关键词 XRF sensor-based sorting PSO-SVM algorithm Copper ore pebble Receiver operating curve(ROC) Net smelter return(NSR)
下载PDF
Improving path planning efficiency for underwater gravity-aided navigation based on a new depth sorting fast search algorithm
2
作者 Xiaocong Zhou Wei Zheng +2 位作者 Zhaowei Li Panlong Wu Yongjin Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期285-296,共12页
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi... This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results. 展开更多
关键词 Depth sorting Fast Search algorithm Underwater gravity-aided navigation Path planning efficiency Quick Rapidly-exploring Random Trees*(QRRT*)
下载PDF
Accelerating Large-Scale Sorting through Parallel Algorithms
3
作者 Yahya Alhabboub Fares Almutairi +3 位作者 Mohammed Safhi Yazan Alqahtani Adam Almeedani Yasir Alguwaifli 《Journal of Computer and Communications》 2024年第1期131-138,共8页
This study explores the application of parallel algorithms to enhance large-scale sorting, focusing on the QuickSort method. Implemented in both sequential and parallel forms, the paper provides a detailed comparison ... This study explores the application of parallel algorithms to enhance large-scale sorting, focusing on the QuickSort method. Implemented in both sequential and parallel forms, the paper provides a detailed comparison of their performance. This study investigates the efficacy of both techniques through the lens of array generation and pivot selection to manage datasets of varying sizes. This study meticulously documents the performance metrics, recording 16,499.2 milliseconds for the serial implementation and 16,339 milliseconds for the parallel implementation when sorting an array by using C++ chrono library. These results suggest that while the performance gains of the parallel approach over its serial counterpart are not immediately pronounced for smaller datasets, the benefits are expected to be more substantial as the dataset size increases. 展开更多
关键词 sorting algorithm Quick sort Quicksort Parallel Parallel algorithms
下载PDF
Improvement of Counting Sorting Algorithm
4
作者 Chenglong Song Haiming Li 《Journal of Computer and Communications》 2023年第10期12-22,共11页
By analyzing the internal features of counting sorting algorithm. Two improvements of counting sorting algorithms are proposed, which have a wide range of applications and better efficiency than the original counting ... By analyzing the internal features of counting sorting algorithm. Two improvements of counting sorting algorithms are proposed, which have a wide range of applications and better efficiency than the original counting sort while maintaining the original stability. Compared with the original counting sort, it has a wider scope of application and better time and space efficiency. In addition, the accuracy of the above conclusions can be proved by a large amount of experimental data. 展开更多
关键词 sort algorithm Counting sorting algorithms COMPLEXITY Internal Features
下载PDF
Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades 被引量:27
5
作者 王珑 王同光 罗源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期739-748,共10页
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa... The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines. 展开更多
关键词 wind turbine multi-objective optimization Pareto-optimal solution non-dominated sorting genetic algorithm (NSGA)-II
下载PDF
An Optimization Approach for Convolutional Neural Network Using Non-Dominated Sorted Genetic Algorithm-Ⅱ
6
作者 Afia Zafar Muhammad Aamir +6 位作者 Nazri Mohd Nawi Ali Arshad Saman Riaz Abdulrahman Alruban Ashit Kumar Dutta Badr Almutairi Sultan Almotairi 《Computers, Materials & Continua》 SCIE EI 2023年第3期5641-5661,共21页
In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural ne... In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature. 展开更多
关键词 Non-dominated sorted genetic algorithm convolutional neural network hyper-parameter OPTIMIZATION
下载PDF
Multi-objective optimization of water supply network rehabilitation with non-dominated sorting Genetic Algorithm-II 被引量:3
7
作者 Xi JIN Jie ZHANG +1 位作者 Jin-liang GAO Wen-yan WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第3期391-400,共10页
Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to sol... Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to solve the altered multi-objective optimization model. The introduction of NSGA-II into water supply network optimal rehabilitation problem solves the conflict between one fitness value of standard genetic algorithm (SGA) and multi-objectives of rehabilitation problem. And the uncertainties brought by using weight coefficients or punish functions in conventional methods are controlled. And also by in-troduction of artificial inducement mutation (AIM) operation, the convergence speed of population is accelerated;this operation not only improves the convergence speed, but also improves the rationality and feasibility of solutions. 展开更多
关键词 Water supply system Water supply network Optimal rehabilitation MULTI-OBJECTIVE Non-dominated sorting Ge-netic algorithm (NSGA)
下载PDF
基于SORT映射的IRCMFDE在旋转机械故障诊断中的应用
8
作者 王潞红 邹平吉 《机电工程》 北大核心 2024年第1期11-21,共11页
针对旋转机械振动信号的强非线性和非平稳性,导致故障特征提取困难的问题,提出了一种基于SORT映射的改进精细复合多尺度波动散布熵(IRCMFDE)和蝙蝠算法优化的相关向量机(BA-RVM)的旋转机械故障诊断方法。首先,利用SORT映射函数替换了精... 针对旋转机械振动信号的强非线性和非平稳性,导致故障特征提取困难的问题,提出了一种基于SORT映射的改进精细复合多尺度波动散布熵(IRCMFDE)和蝙蝠算法优化的相关向量机(BA-RVM)的旋转机械故障诊断方法。首先,利用SORT映射函数替换了精细复合多尺度波动散布熵(RCMFDE)方法的正态累积分布函数,同时对RCMFDE方法的粗粒化方式进行了改进,提出了基于SORT映射的IRCMFDE方法;随后,利用IRCMFDE方法提取了旋转机械振动信号的故障特征,构造了故障特征集;最后,采用BA-RVM分类器对旋转机械的故障类型进行了智能化的识别和分类;将基于IRCMFDE和BA-RVM的故障诊断方法应用于滚动轴承、离心泵和齿轮箱的实验数据分析,并将其与现有故障诊断方法进行了对比分析。研究结果表明:基于IRCMFDE和BA-RVM的故障诊断方法能够有效地识别旋转机械的故障状态,识别准确率分别达到了100%、98%和99%,相比基于RCMFDE、精细复合多尺度熵、精细复合多尺度模糊熵、精细复合多尺度排列熵和精细复合多尺度散布熵的故障特征提取方法,该故障诊断方法的效率和平均识别准确率均优于对比方法,其更适合应用于旋转机械的在线实时故障监测。 展开更多
关键词 改进精细复合多尺度波动散布熵 sort映射 蝙蝠算法优化的相关向量机 旋转机械 故障分类识别
下载PDF
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem
9
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 Multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
下载PDF
GREEDY NON-DOMINATED SORTING IN GENETIC ALGORITHM-ⅡFOR VEHICLE ROUTING PROBLEM IN DISTRIBUTION 被引量:4
10
作者 WEI Tian FAN Wenhui XU Huayu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第6期18-24,共7页
Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when mode... Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-Ⅱ (NSGA-Ⅱ) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-Ⅱ (GNSGA-Ⅱ) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-Ⅱ is prevented from premature convergence and refine the performance of NSGA-Ⅱ at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-Ⅱ is compared with NSGA-Ⅱ. As a result, the GNSGA-Ⅱ is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-Ⅱ, premature convergence is better avoided and search efficiency has been improved sharply. 展开更多
关键词 Greedy non-dominated sorting in genetic algorithm-Ⅱ (GNSGA-Ⅱ) Vehicle routing problem (VRP) Multi-objective optimization
下载PDF
An Only-Once-Sorting Algorithm
11
作者 Xu Xusong Zhou Jianqin Guo Feng (School of Management,Wuhan University, Wuhan 430072,China) 《Wuhan University Journal of Natural Sciences》 CAS 1996年第1期38-41,共4页
This paper provides a new sorting algorithm called 'Only-Once-Sorting' algorithm a mathemati cal formula,this algorithm can put elements in the positions they should be stored only once,then compacts them.The ... This paper provides a new sorting algorithm called 'Only-Once-Sorting' algorithm a mathemati cal formula,this algorithm can put elements in the positions they should be stored only once,then compacts them.The algorithm completes sorting a sequence of n elements in a calculation time of O(n ). 展开更多
关键词 mathematical formula onlv-once-sorting sorting algorithm
下载PDF
PMS-Sorting:A New Sorting Algorithm Based on Similarity
12
作者 Hongbin Wang Lianke Zhou +4 位作者 Guodong Zhao Nianbin Wang Jianguo Sun Yue Zheng Lei Chen 《Computers, Materials & Continua》 SCIE EI 2019年第4期229-237,共9页
Borda sorting algorithm is a kind of improvement algorithm based on weighted position sorting algorithm,it is mainly suitable for the high duplication of search results,for the independent search results,the effect is... Borda sorting algorithm is a kind of improvement algorithm based on weighted position sorting algorithm,it is mainly suitable for the high duplication of search results,for the independent search results,the effect is not very good and the computing method of relative score in Borda sorting algorithm is according to the rule of the linear regressive,but position relationship cannot fully represent the correlation changes.aimed at this drawback,the new sorting algorithm is proposed in this paper,named PMS-Sorting algorithm,firstly the position score of the returned results is standardized processing,and the similarity retrieval word string with the query results is combined into the algorithm,the similarity calculation method is also improved,through the experiment,the improved algorithm is superior to traditional sorting algorithm. 展开更多
关键词 Meta search engine result sorting query similarity Borda sorting algorithm position relationship
下载PDF
Modeling and Optimization of Electrical Discharge Machining of SiC Parameters, Using Neural Network and Non-Dominating Sorting Genetic Algorithm (NSGA II)
13
作者 Ramezan Ali MahdaviNejad 《Materials Sciences and Applications》 2011年第6期669-675,共7页
Silicon Carbide (SiC) machining by traditional methods with regards to its high hardness is not possible. Electro Discharge Machining, among non-traditional machining methods, is used for machining of SiC. The present... Silicon Carbide (SiC) machining by traditional methods with regards to its high hardness is not possible. Electro Discharge Machining, among non-traditional machining methods, is used for machining of SiC. The present work is aimed to optimize the surface roughness and material removal rate of electro discharge machining of SiC parameters simultaneously. As the output parameters are conflicting in nature, so there is no single combination of machining parameters, which provides the best machining performance. Artificial neural network (ANN) with back propagation algorithm is used to model the process. A multi-objective optimization method, non-dominating sorting genetic algorithm-II is used to optimize the process. Affects of three important input parameters of process viz., discharge current, pulse on time (Ton), pulse off time (Toff) on electric discharge machining of SiC are considered. Experiments have been conducted over a wide range of considered input parameters for training and verification of the model. Testing results demonstrate that the model is suitable for predicting the response parameters. A pareto-optimal set has been predicted in this work. 展开更多
关键词 Electro DISCHARGE MACHINING Non-Dominating sorting algorithm Neural Network REFEL SIC
下载PDF
基于SORT算法的图像轨迹跟踪混合控制方法
14
作者 杜磊 《现代电子技术》 北大核心 2024年第13期32-35,共4页
当目标物体被其他物体部分或完全遮挡时,目标的有效特征点数量会逐渐减少,跟踪器无法继续准确地锁定目标,导致目标轨迹中断。为此,文中研究基于SORT算法的图像轨迹跟踪混合控制方法。选取FCOS算法,利用特征金字塔结构,依据检测头层输出... 当目标物体被其他物体部分或完全遮挡时,目标的有效特征点数量会逐渐减少,跟踪器无法继续准确地锁定目标,导致目标轨迹中断。为此,文中研究基于SORT算法的图像轨迹跟踪混合控制方法。选取FCOS算法,利用特征金字塔结构,依据检测头层输出的目标分类得分、位置回归结果以及中心度检测图像目标。将目标检测结果作为卡尔曼滤波器的输入,利用离散控制过程系统描述视频图像中的目标运动状态,预测目标轨迹。利用SORT算法控制图像目标检测结果与目标轨迹预测结果进行级联匹配与IoU匹配,输出匹配成功的目标,即图像目标轨迹跟踪结果。实验结果表明,该方法可有效地跟踪视频图像目标轨迹,未出现ID变更情况,轨迹中断占比低于0.2%。 展开更多
关键词 sort算法 图像轨迹跟踪 混合控制方法 FCOS算法 卡尔曼滤波器 级联匹配
下载PDF
An NC Algorithm for Sorting Real Numbers in <em>O</em>(nlogn/√<span style="font-size: 14px;font-weight: bold;margin-left:-2px;margin-right:2px;border-top:2px solid black;">loglogn</span>) Operations
15
作者 Yijie Han Sneha Mishra Md Usman Gani Syed 《Open Journal of Applied Sciences》 2019年第5期403-408,共6页
We apply the recent important result of serial sorting of n real numbers in time to the design of a parallel algorithm for sorting real numbers in time and operations. This is the first NC algorithm known to take oper... We apply the recent important result of serial sorting of n real numbers in time to the design of a parallel algorithm for sorting real numbers in time and operations. This is the first NC algorithm known to take operations for sorting real numbers. 展开更多
关键词 Parallel algorithms sorting sort Real Numbers Complexity
下载PDF
基于Quick Sorting的快速分页排序算法 被引量:1
16
作者 杨建武 刘缙 《计算机工程》 EI CAS CSCD 北大核心 2005年第4期82-84,共3页
提出了分页排序的概念和基于Quick Sorting的快速分页排序算法(Quick Page Sorting) 以及基于Hint缓存机制的算法实现技术。实验表明,在数万至数百万数据总量情况下,Quick Page Soring的速度比Quick Sorting快10倍左右,大大提高了应用... 提出了分页排序的概念和基于Quick Sorting的快速分页排序算法(Quick Page Sorting) 以及基于Hint缓存机制的算法实现技术。实验表明,在数万至数百万数据总量情况下,Quick Page Soring的速度比Quick Sorting快10倍左右,大大提高了应用系统的响应速度。 展开更多
关键词 排序 分页排序 算法 快速分页排序
下载PDF
基于YOLO v5s和改进SORT算法的黑水虻幼虫计数方法 被引量:4
17
作者 赵新龙 顾臻奇 李军 《农业机械学报》 EI CAS CSCD 北大核心 2023年第7期339-346,共8页
目前农业环境下的无序目标的精确计数有很高的应用需求,这种计数对其生物量、生物密度管理起到了重要的指导作用。如黑水虻幼虫目标追踪过程中,追踪对象具有高速和非线性的特征,常规算法存在追踪目标速度不足和丢失目标后的再识别困难... 目前农业环境下的无序目标的精确计数有很高的应用需求,这种计数对其生物量、生物密度管理起到了重要的指导作用。如黑水虻幼虫目标追踪过程中,追踪对象具有高速和非线性的特征,常规算法存在追踪目标速度不足和丢失目标后的再识别困难等问题。针对以上问题,本文提出了一种改进SORT算法,通过改进卡尔曼滤波模型的方式提升目标追踪算法的快速性和准确性,提升了计数的精度。另外,针对黑水虻幼虫目标识别过程中幼虫性状的多样性和混料导致的复杂背景问题,本文通过实验对比多种深度学习网络性能选定YOLO v5s算法提取图像多维度特征,提升了目标识别精度。实验结果表明:在划线计数方面,本文提出的改进SORT算法与原模型相比,平均精度从91.36%提升到95.55%,提升4.19个百分点,通过仿真和实际应用,证明了本文模型的有效性;在目标识别方面,使用YOLO v5s模型在训练集上帧率为156 f/s,mAP@0.5为99.10%,精度为90.11%,召回率为99.22%,综合性能优于其他网络。 展开更多
关键词 黑水虻幼虫 目标识别 目标追踪 划线计数 YOLO v5s sort算法
下载PDF
Planning of DC Electric Spring with Particle Swarm Optimization and Elitist Non-dominated Sorting Genetic Algorithm
18
作者 Qingsong Wang Siwei Li +2 位作者 Hao Ding Ming Cheng Giuseppe Buja 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第2期574-583,共10页
This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical... This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical load (NCL) and internal storage. It can offer higher power quality to critical load (CL), reduce power imbalance and relieve pressure on energy storage systems (RESs). In this paper, a planning method for parallel DCESs is proposed to maximize stability gain, economic benefits, and penetration of RESs. The planning model is a master optimization with sub-optimization to highlight the priority of objectives. Master optimization is used to improve stability of the network, and sub-optimization aims to improve economic benefit and allowable penetration of RESs. This issue is a multivariable nonlinear mixed integer problem, requiring huge calculations by using common solvers. Therefore, particle Swarm optimization (PSO) and Elitist non-dominated sorting genetic algorithm (NSGA-II) were used to solve this model. Considering uncertainty of RESs, this paper verifies effectiveness of the proposed planning method on IEEE 33-bus system based on deterministic scenarios obtained by scenario analysis. 展开更多
关键词 DC distribution network DC electric spring non-dominated sorting genetic algorithm particle swarm optimization renewable energy source
原文传递
Smart Bubble Sort:A Novel and Dynamic Variant of Bubble Sort Algorithm
19
作者 Mohammad Khalid Imam Rahmani 《Computers, Materials & Continua》 SCIE EI 2022年第6期4895-4913,共19页
In the present era,a very huge volume of data is being stored in online and offline databases.Enterprise houses,research,medical as well as healthcare organizations,and academic institutions store data in databases an... In the present era,a very huge volume of data is being stored in online and offline databases.Enterprise houses,research,medical as well as healthcare organizations,and academic institutions store data in databases and their subsequent retrievals are performed for further processing.Finding the required data from a given database within the minimum possible time is one of the key factors in achieving the best possible performance of any computer-based application.If the data is already sorted,finding or searching is comparatively faster.In real-life scenarios,the data collected from different sources may not be in sorted order.Sorting algorithms are required to arrange the data in some order in the least possible time.In this paper,I propose an intelligent approach towards designing a smart variant of the bubble sort algorithm.I call it Smart Bubble sort that exhibits dynamic footprint:The capability of adapting itself from the average-case to the best-case scenario.It is an in-place sorting algorithm and its best-case time complexity isΩ(n).It is linear and better than bubble sort,selection sort,and merge sort.In averagecase and worst-case analyses,the complexity estimates are based on its static footprint analyses.Its complexity in worst-case is O(n2)and in average-case isΘ(n^(2)).Smart Bubble sort is capable of adapting itself to the best-case scenario from the average-case scenario at any subsequent stages due to its dynamic and intelligent nature.The Smart Bubble sort outperforms bubble sort,selection sort,and merge sort in the best-case scenario whereas it outperforms bubble sort in the average-case scenario. 展开更多
关键词 sorting algorithms smart bubble sort FOOTPRINT dynamic footprint time complexity asymptotic analysis
下载PDF
Heap Sorting Based on Array Sorting
20
作者 Haiming Li Ping Chen Yong Wang 《Journal of Computer and Communications》 2017年第12期57-62,共6页
A kind of heap sorting method based on array sorting was proposed. Some advantages and disadvantages of it were discussed. It was compared with the traditional method of direct application. In the method, the ordered ... A kind of heap sorting method based on array sorting was proposed. Some advantages and disadvantages of it were discussed. It was compared with the traditional method of direct application. In the method, the ordered keywords in the array are put into the heap one by one after building an empty heap. This method needs relatively less space and is fit for ordered sequence. 展开更多
关键词 HEAP sort ARRAY BOTTOM-UP algorithm
下载PDF
上一页 1 2 88 下一页 到第
使用帮助 返回顶部