Traditional generating algorithms for B Spline curves and surfaces require approximation methods where how to increment the parameter to get the best approximation is problematic; or they take the pixel-based method n...Traditional generating algorithms for B Spline curves and surfaces require approximation methods where how to increment the parameter to get the best approximation is problematic; or they take the pixel-based method needing matrix trans- formation from B Spline representation to Bézier form. Here, a fast, direct point-by-point generating algorithm for B Spline curves and surfaces is presented. The algorithm does not need matrix transformation, can be used for uniform or nonuniform B Spline curves and surfaces of any degree, and has high generating speed and good rendering accuracy.展开更多
Applying the distance function between two B-spline curves with respect to the L2 norm as the approximate error, we investigate the problem of approximate merging of two adjacent B-spline curves into one B-spline curv...Applying the distance function between two B-spline curves with respect to the L2 norm as the approximate error, we investigate the problem of approximate merging of two adjacent B-spline curves into one B-spline curve. Then this method can be easily extended to the approximate merging problem of multiple B-spline curves and of two adjacent surfaces. After minimizing the approximate error between curves or surfaces, the approximate merging problem can be transformed into equations solving. We express both the new control points and the precise error of approximation explicitly in matrix form. Based on homogeneous coordinates and quadratic programming, we also introduce a new framework for approximate merging of two adjacent NURBS curves. Finally, several numerical examples demonstrate the effectiveness and validity of the algorithm.展开更多
A method to reconstruct symmetric B-spline curves and surfaces is presented. The symmetry property is realized by using symmetric knot vector and symmetric control points. Firstly, data points are divided into two par...A method to reconstruct symmetric B-spline curves and surfaces is presented. The symmetry property is realized by using symmetric knot vector and symmetric control points. Firstly, data points are divided into two parts based on the symmetry axis or symmetry plane extracted from data points. Then the divided data points are parameterized and a symmetric knot vector is selected in order to get symmetric B-spline basis functions. Constraint equations regarding the control points are deduced to keep the control points of the B-spline curve or surface to be symmetric with respect to the extracted symmetry axis or symmetry plane. Lastly, the constrained least squares fitting problem is solved with the Lagrange multiplier method. Two examples from industry are given to show that the proposed method is efficient, robust and able to meet the general engineering requirements.展开更多
Multiresolution modeling is becoming a powerful tool for fast display, and geometric data compression and transmission of complex shapes. Most of the existing literatures investigating the multiresolution for B-spline...Multiresolution modeling is becoming a powerful tool for fast display, and geometric data compression and transmission of complex shapes. Most of the existing literatures investigating the multiresolution for B-spline curves and surfaces are concentrated on open ones. In this paper, we focus on the multiresolution representations and editing of closed B-spline curves and surfaces using wavelets. A repetition approach is adopted for the multiresolution analysis of closed B-spline curves and surfaces. Since the closed curve or surface itself is periodic, it can overcome the drawback brought by the repetition method, i.e. introducing the discontinuities at the boundaries. Based on the models at different multiresolution levels, the multiresolution editing methods of closed curves and surfaces are introduced. Users can edit the overall shape of a closed one while preserving its details, or change its details without affecting its overall shape.展开更多
This paper presents a parallel implementation of computing uniform bicubic B spline surfaces on Transputer networks. The work is essential for building Transputer based CAD and graphics systems.
In this paper, we present the double Beta spline curved surface which is controlled by double parameters including the algorithm principles, the treatment of boundary conditions, the alternation of projection, the alg...In this paper, we present the double Beta spline curved surface which is controlled by double parameters including the algorithm principles, the treatment of boundary conditions, the alternation of projection, the algorithms of elimination hiddle line, the process to display and the primiples to produce the shaded curved surface. Based on all the above, a freedom surface modeling system (FSMS) is designed and some examples developed on FSMS are verified and analyzed.展开更多
In this paper, we estimate the partial derivative bounds for Non-Uniform Rational B-spline(NURBS) surfaces. Firstly, based on the formula of translating the product into sum of B-spline functions, discrete B-spline th...In this paper, we estimate the partial derivative bounds for Non-Uniform Rational B-spline(NURBS) surfaces. Firstly, based on the formula of translating the product into sum of B-spline functions, discrete B-spline theory and Dir function, some derivative bounds on NURBS curves are provided. Then, the derivative bounds on the magnitudes of NURBS surfaces are proposed by regarding a rational surface as the locus of a rational curve. Finally, some numerical examples are provided to elucidate how tight the bounds are.展开更多
Tool path generated by space-filling curve always turns frequently causing trembling to machine,reducing toollife and affecting workpiece quality. Length and generation time of tool paths are both relatively long. In ...Tool path generated by space-filling curve always turns frequently causing trembling to machine,reducing toollife and affecting workpiece quality. Length and generation time of tool paths are both relatively long. In order to solve these problems,a toolpath generation method of NC milling based on space-filling curve is proposed. First,T-spline surface is regarded as the modeling surface,the grid,which is based on the limited scallop-height,can be got in the parameter space,and the influence value of grid node is determined. Second,a box is defined and planned,and the tool paths are got preliminarily,which is based on minimal spanning tree; Finally,based on an improved chamfering algorithm,the whole tool paths are got. A simulation system is developed for computer simulation,and an experiment is carried out to verify the method. The results of simulation and experiment show that the method is effective and feasible,and length and time of the tool paths are reduced.展开更多
In this paper, based on the idea of profit and loss modification, we presentthe iterative non-uniform B-spline curve and surface to settle a key problem in computeraided geometric design and reverse engineering, that ...In this paper, based on the idea of profit and loss modification, we presentthe iterative non-uniform B-spline curve and surface to settle a key problem in computeraided geometric design and reverse engineering, that is, constructing the curve (surface)fitting (interpolating) a given ordered point set without solving a linear system. We startwith a piece of initial non-uniform B-spline curve (surface) which takes the given point setas its control point set. Then by adjusting its control points gradually with iterative formula,we can get a group of non-uniform B-spline curves (surfaces) with gradually higherprecision. In this paper, using modern matrix theory, we strictly prove that the limit curve(surface) of the iteration interpolates the given point set. The non-uniform B-spline curves(surfaces) generated with the iteration have many advantages, such as satisfying theNURBS standard, having explicit expression, gaining locality, and convexity preserving,etc展开更多
We propose a method that automatically generates discrete bicubic G^1 continuous B-spline surfaces that interpolate the curve network of a ship huliform.First,the curves in the network are classified into two types;bo...We propose a method that automatically generates discrete bicubic G^1 continuous B-spline surfaces that interpolate the curve network of a ship huliform.First,the curves in the network are classified into two types;boundary curves and "reference curves",The boundary curves correspond to a set of rectangular(or triangular)topological type that can be representes with tensot-product (or degenerate)B-spline surface patches.Next,in the interior of the patches,surface fitting points and cross boundary derivatives are estimated from the reference curves by constructing "virtual"isoparametric curves.Finally,a discrete G^1 continuous B-spline surface is gencrated by a surface fitting algorithm.Several smooth ship hullform surfaces generated from curve networks corresponding to actual ship hullforms demonstrate the quality of the method.展开更多
Free-formed or sculptured surfaces in engineering products are frequently constructed from a set of measured 3D data points. C2- (C3-) continuity approach is important in this field. This paper presents a method of re...Free-formed or sculptured surfaces in engineering products are frequently constructed from a set of measured 3D data points. C2- (C3-) continuity approach is important in this field. This paper presents a method of rectangular interpolation of given 3D data array which is regularly arranged. The interpolation surface which is constructed by tensor product has desirable properties (second-order or third-order continuity locality) and is implemented and adjusted easily. Higher order continuity methods are also briefly discussed.展开更多
花键曲线和表面在 CAD 和计算机图形起一个重要作用。在这份报纸,我们建议立方的一致 B 花键的几延期。然后,我们在场插入内推的延期 -B-spline 基于新 B 花键和单个相配技术。延期的优点是他们有全球、本地的形状参数。而且,我们也...花键曲线和表面在 CAD 和计算机图形起一个重要作用。在这份报纸,我们建议立方的一致 B 花键的几延期。然后,我们在场插入内推的延期 -B-spline 基于新 B 花键和单个相配技术。延期的优点是他们有全球、本地的形状参数。而且,我们也在数据插值和多角形的形状变丑调查他们的应用。展开更多
基金Project (No. G1998030401) supported by the National Natural Sci-ence Foundation of China
文摘Traditional generating algorithms for B Spline curves and surfaces require approximation methods where how to increment the parameter to get the best approximation is problematic; or they take the pixel-based method needing matrix trans- formation from B Spline representation to Bézier form. Here, a fast, direct point-by-point generating algorithm for B Spline curves and surfaces is presented. The algorithm does not need matrix transformation, can be used for uniform or nonuniform B Spline curves and surfaces of any degree, and has high generating speed and good rendering accuracy.
基金Supported by the National Natural Science Foundation of China (60873111, 60933007)
文摘Applying the distance function between two B-spline curves with respect to the L2 norm as the approximate error, we investigate the problem of approximate merging of two adjacent B-spline curves into one B-spline curve. Then this method can be easily extended to the approximate merging problem of multiple B-spline curves and of two adjacent surfaces. After minimizing the approximate error between curves or surfaces, the approximate merging problem can be transformed into equations solving. We express both the new control points and the precise error of approximation explicitly in matrix form. Based on homogeneous coordinates and quadratic programming, we also introduce a new framework for approximate merging of two adjacent NURBS curves. Finally, several numerical examples demonstrate the effectiveness and validity of the algorithm.
基金This project is supported by National Natural Science Foundation of China(No.50575098).
文摘A method to reconstruct symmetric B-spline curves and surfaces is presented. The symmetry property is realized by using symmetric knot vector and symmetric control points. Firstly, data points are divided into two parts based on the symmetry axis or symmetry plane extracted from data points. Then the divided data points are parameterized and a symmetric knot vector is selected in order to get symmetric B-spline basis functions. Constraint equations regarding the control points are deduced to keep the control points of the B-spline curve or surface to be symmetric with respect to the extracted symmetry axis or symmetry plane. Lastly, the constrained least squares fitting problem is solved with the Lagrange multiplier method. Two examples from industry are given to show that the proposed method is efficient, robust and able to meet the general engineering requirements.
文摘Multiresolution modeling is becoming a powerful tool for fast display, and geometric data compression and transmission of complex shapes. Most of the existing literatures investigating the multiresolution for B-spline curves and surfaces are concentrated on open ones. In this paper, we focus on the multiresolution representations and editing of closed B-spline curves and surfaces using wavelets. A repetition approach is adopted for the multiresolution analysis of closed B-spline curves and surfaces. Since the closed curve or surface itself is periodic, it can overcome the drawback brought by the repetition method, i.e. introducing the discontinuities at the boundaries. Based on the models at different multiresolution levels, the multiresolution editing methods of closed curves and surfaces are introduced. Users can edit the overall shape of a closed one while preserving its details, or change its details without affecting its overall shape.
文摘This paper presents a parallel implementation of computing uniform bicubic B spline surfaces on Transputer networks. The work is essential for building Transputer based CAD and graphics systems.
文摘In this paper, we present the double Beta spline curved surface which is controlled by double parameters including the algorithm principles, the treatment of boundary conditions, the alternation of projection, the algorithms of elimination hiddle line, the process to display and the primiples to produce the shaded curved surface. Based on all the above, a freedom surface modeling system (FSMS) is designed and some examples developed on FSMS are verified and analyzed.
基金Supported by the National Natural Science Foundation of China(61572430,61303144)the Natural Science Foundation of Zhejiang Province(LY15F020002,LY16F020020)the Ningbo Natural Science Foundation(2016A610223)
文摘In this paper, we estimate the partial derivative bounds for Non-Uniform Rational B-spline(NURBS) surfaces. Firstly, based on the formula of translating the product into sum of B-spline functions, discrete B-spline theory and Dir function, some derivative bounds on NURBS curves are provided. Then, the derivative bounds on the magnitudes of NURBS surfaces are proposed by regarding a rational surface as the locus of a rational curve. Finally, some numerical examples are provided to elucidate how tight the bounds are.
基金Supported by the National Natural Science Foundation of China(No.51575143)
文摘Tool path generated by space-filling curve always turns frequently causing trembling to machine,reducing toollife and affecting workpiece quality. Length and generation time of tool paths are both relatively long. In order to solve these problems,a toolpath generation method of NC milling based on space-filling curve is proposed. First,T-spline surface is regarded as the modeling surface,the grid,which is based on the limited scallop-height,can be got in the parameter space,and the influence value of grid node is determined. Second,a box is defined and planned,and the tool paths are got preliminarily,which is based on minimal spanning tree; Finally,based on an improved chamfering algorithm,the whole tool paths are got. A simulation system is developed for computer simulation,and an experiment is carried out to verify the method. The results of simulation and experiment show that the method is effective and feasible,and length and time of the tool paths are reduced.
文摘In this paper, based on the idea of profit and loss modification, we presentthe iterative non-uniform B-spline curve and surface to settle a key problem in computeraided geometric design and reverse engineering, that is, constructing the curve (surface)fitting (interpolating) a given ordered point set without solving a linear system. We startwith a piece of initial non-uniform B-spline curve (surface) which takes the given point setas its control point set. Then by adjusting its control points gradually with iterative formula,we can get a group of non-uniform B-spline curves (surfaces) with gradually higherprecision. In this paper, using modern matrix theory, we strictly prove that the limit curve(surface) of the iteration interpolates the given point set. The non-uniform B-spline curves(surfaces) generated with the iteration have many advantages, such as satisfying theNURBS standard, having explicit expression, gaining locality, and convexity preserving,etc
文摘We propose a method that automatically generates discrete bicubic G^1 continuous B-spline surfaces that interpolate the curve network of a ship huliform.First,the curves in the network are classified into two types;boundary curves and "reference curves",The boundary curves correspond to a set of rectangular(or triangular)topological type that can be representes with tensot-product (or degenerate)B-spline surface patches.Next,in the interior of the patches,surface fitting points and cross boundary derivatives are estimated from the reference curves by constructing "virtual"isoparametric curves.Finally,a discrete G^1 continuous B-spline surface is gencrated by a surface fitting algorithm.Several smooth ship hullform surfaces generated from curve networks corresponding to actual ship hullforms demonstrate the quality of the method.
文摘Free-formed or sculptured surfaces in engineering products are frequently constructed from a set of measured 3D data points. C2- (C3-) continuity approach is important in this field. This paper presents a method of rectangular interpolation of given 3D data array which is regularly arranged. The interpolation surface which is constructed by tensor product has desirable properties (second-order or third-order continuity locality) and is implemented and adjusted easily. Higher order continuity methods are also briefly discussed.