Defect inspection,also known as defect detection,is significant in mobile screen quality control.There are some challenging issues brought by the characteristics of screen defects,including the following:(1)the proble...Defect inspection,also known as defect detection,is significant in mobile screen quality control.There are some challenging issues brought by the characteristics of screen defects,including the following:(1)the problem of interclass similarity and intraclass variation,(2)the difficulty in distinguishing low contrast,tiny-sized,or incomplete defects,and(3)the modeling of category dependencies for multi-label images.To solve these problems,a graph reasoning module,stacked on a classification module,is proposed to expand the feature dimension and improve low-quality image features by exploiting category-wise dependency,image-wise relations,and interactions between them.To further improve the classification performance,the classifier of the classification module is redesigned as a cosine similarity function.With the help of contrastive learning,the classification module can better initialize the category-wise graph of the reasoning module.Experiments on the mobile screen defect dataset show that our two-stage network achieves the following best performances:97.7%accuracy and 97.3%F-measure.This proves that the proposed approach is effective in industrial applications.展开更多
In the fields of machine learning and data mining, label learning is a nascent area of research, and within this paradigm, there is much room for improving multi-label manifold learning algorithms for high-dimensional...In the fields of machine learning and data mining, label learning is a nascent area of research, and within this paradigm, there is much room for improving multi-label manifold learning algorithms for high-dimensional data. Thus far, researchers have experimented with mapping relationships from the feature space to the traditional logical label space(using neighbors in the label space, for example, to predict logical label vectors from the feature space's manifold structure). Here we combine the feature manifold's and label space's local topological structures to reconstruct the label manifold. To achieve this, we use a nonlinear manifold learning algorithm to transform the local topological structure from the feature space to the label space. Our algorithm adopts a regularized leastsquares kernel method to realize the reconstruction process, employing an optimization function to find the best solution. Extensive experiments show that our algorithm significantly improves multi-label manifold learning in terms of learning accuracy and time complexity.展开更多
基金Project supported by the National Key Research and Development Program of China(No.2020AAA0108302)the Fundamental Research Funds for the Central Universities,China(No.xtr072022001)。
文摘Defect inspection,also known as defect detection,is significant in mobile screen quality control.There are some challenging issues brought by the characteristics of screen defects,including the following:(1)the problem of interclass similarity and intraclass variation,(2)the difficulty in distinguishing low contrast,tiny-sized,or incomplete defects,and(3)the modeling of category dependencies for multi-label images.To solve these problems,a graph reasoning module,stacked on a classification module,is proposed to expand the feature dimension and improve low-quality image features by exploiting category-wise dependency,image-wise relations,and interactions between them.To further improve the classification performance,the classifier of the classification module is redesigned as a cosine similarity function.With the help of contrastive learning,the classification module can better initialize the category-wise graph of the reasoning module.Experiments on the mobile screen defect dataset show that our two-stage network achieves the following best performances:97.7%accuracy and 97.3%F-measure.This proves that the proposed approach is effective in industrial applications.
基金supported by the National Natural Science Foundation of China(Nos.61702270 and 41471371)the Project funded by China Postdoctoral Science Foundation(No.2017M621592)
文摘In the fields of machine learning and data mining, label learning is a nascent area of research, and within this paradigm, there is much room for improving multi-label manifold learning algorithms for high-dimensional data. Thus far, researchers have experimented with mapping relationships from the feature space to the traditional logical label space(using neighbors in the label space, for example, to predict logical label vectors from the feature space's manifold structure). Here we combine the feature manifold's and label space's local topological structures to reconstruct the label manifold. To achieve this, we use a nonlinear manifold learning algorithm to transform the local topological structure from the feature space to the label space. Our algorithm adopts a regularized leastsquares kernel method to realize the reconstruction process, employing an optimization function to find the best solution. Extensive experiments show that our algorithm significantly improves multi-label manifold learning in terms of learning accuracy and time complexity.