期刊文献+
共找到321篇文章
< 1 2 17 >
每页显示 20 50 100
Gate-Attention and Dual-End Enhancement Mechanism for Multi-Label Text Classification
1
作者 Jieren Cheng Xiaolong Chen +3 位作者 Wenghang Xu Shuai Hua Zhu Tang Victor S.Sheng 《Computers, Materials & Continua》 SCIE EI 2023年第11期1779-1793,共15页
In the realm of Multi-Label Text Classification(MLTC),the dual challenges of extracting rich semantic features from text and discerning inter-label relationships have spurred innovative approaches.Many studies in sema... In the realm of Multi-Label Text Classification(MLTC),the dual challenges of extracting rich semantic features from text and discerning inter-label relationships have spurred innovative approaches.Many studies in semantic feature extraction have turned to external knowledge to augment the model’s grasp of textual content,often overlooking intrinsic textual cues such as label statistical features.In contrast,these endogenous insights naturally align with the classification task.In our paper,to complement this focus on intrinsic knowledge,we introduce a novel Gate-Attention mechanism.This mechanism adeptly integrates statistical features from the text itself into the semantic fabric,enhancing the model’s capacity to understand and represent the data.Additionally,to address the intricate task of mining label correlations,we propose a Dual-end enhancement mechanism.This mechanism effectively mitigates the challenges of information loss and erroneous transmission inherent in traditional long short term memory propagation.We conducted an extensive battery of experiments on the AAPD and RCV1-2 datasets.These experiments serve the dual purpose of confirming the efficacy of both the Gate-Attention mechanism and the Dual-end enhancement mechanism.Our final model unequivocally outperforms the baseline model,attesting to its robustness.These findings emphatically underscore the imperativeness of taking into account not just external knowledge but also the inherent intricacies of textual data when crafting potent MLTC models. 展开更多
关键词 multi-label text classification feature extraction label distribution information sequence generation
下载PDF
Convolutional Deep Belief Network Based Short Text Classification on Arabic Corpus
2
作者 Abdelwahed Motwakel Badriyya B.Al-onazi +5 位作者 Jaber S.Alzahrani Radwa Marzouk Amira Sayed A.Aziz Abu Sarwar Zamani Ishfaq Yaseen Amgad Atta Abdelmageed1 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期3097-3113,共17页
With a population of 440 million,Arabic language users form the rapidly growing language group on the web in terms of the number of Internet users.11 million monthly Twitter users were active and posted nearly 27.4 mi... With a population of 440 million,Arabic language users form the rapidly growing language group on the web in terms of the number of Internet users.11 million monthly Twitter users were active and posted nearly 27.4 million tweets every day.In order to develop a classification system for the Arabic lan-guage there comes a need of understanding the syntactic framework of the words thereby manipulating and representing the words for making their classification effective.In this view,this article introduces a Dolphin Swarm Optimization with Convolutional Deep Belief Network for Short Text Classification(DSOCDBN-STC)model on Arabic Corpus.The presented DSOCDBN-STC model majorly aims to classify Arabic short text in social media.The presented DSOCDBN-STC model encompasses preprocessing and word2vec word embedding at the preliminary stage.Besides,the DSOCDBN-STC model involves CDBN based classification model for Arabic short text.At last,the DSO technique can be exploited for optimal modification of the hyperparameters related to the CDBN method.To establish the enhanced performance of the DSOCDBN-STC model,a wide range of simulations have been performed.The simulation results con-firmed the supremacy of the DSOCDBN-STC model over existing models with improved accuracy of 99.26%. 展开更多
关键词 Arabic text short text classification dolphin swarm optimization deep learning
下载PDF
Short Text Classification Based on Improved ITC 被引量:1
3
作者 Liangliang Li Shouning Qu 《Journal of Computer and Communications》 2013年第4期22-27,共6页
The long text classification has got great achievements, but short text classification still needs to be perfected. In this paper, at first, we describe why we select the ITC feature selection algorithm not the conven... The long text classification has got great achievements, but short text classification still needs to be perfected. In this paper, at first, we describe why we select the ITC feature selection algorithm not the conventional TFIDF and the superiority of the ITC compared with the TFIDF, then we conclude the flaws of the conventional ITC algorithm, and then we present an improved ITC feature selection algorithm based on the characteristics of short text classification while combining the concepts of the Documents Distribution Entropy with the Position Distribution Weight. The improved ITC algorithm conforms to the actual situation of the short text classification. The experimental results show that the performance based on the new algorithm was much better than that based on the traditional TFIDF and ITC. 展开更多
关键词 ITC text classification short text
下载PDF
Falcon: A Novel Chinese Short Text Classification Method
4
作者 Haiming Li Haining Huang +1 位作者 Xiang Cao Jingu Qian 《Journal of Computer and Communications》 2018年第11期216-226,共11页
For natural language processing problems, the short text classification is still a research hot topic, with obviously problem in the features sparse, high-dimensional text data and feature representation. In order to ... For natural language processing problems, the short text classification is still a research hot topic, with obviously problem in the features sparse, high-dimensional text data and feature representation. In order to express text directly, a simple but new variation which employs one-hot with low-dimension was proposed. In this paper, a Densenet-based model was proposed to short text classification. Furthermore, the feature diversity and reuse were implemented by the concat and average shuffle operation between Resnet and Densenet for enlarging short text feature selection. Finally, some benchmarks were introduced to evaluate the Falcon. From our experimental results, the Falcon method obtained significant improvements in the state-of-art models on most of them in all respects, especially in the first experiment of error rate. To sum up, the Falcon is an efficient and economical model, whilst requiring less computation to achieve high performance. 展开更多
关键词 short text classification Word VECTOR Representation One-Hot Densenet NETWORKS Convolutional NEURAL NETWORKS
下载PDF
基于DAN与FastText的藏文短文本分类研究
5
作者 李果 陈晨 +1 位作者 杨进 群诺 《计算机科学》 CSCD 北大核心 2024年第S01期103-107,共5页
随着藏文信息不断融入社会生活,越来越多的藏文短文本数据存在网络平台上。针对传统分类方法在藏文短文本上分类性能低的问题,文中提出了一种基于DAN-FastText的藏文短文本分类模型。该模型使用FastText网络在较大规模的藏文语料上进行... 随着藏文信息不断融入社会生活,越来越多的藏文短文本数据存在网络平台上。针对传统分类方法在藏文短文本上分类性能低的问题,文中提出了一种基于DAN-FastText的藏文短文本分类模型。该模型使用FastText网络在较大规模的藏文语料上进行无监督训练获得预训练的藏文音节向量集,使用预训练的音节向量集将藏文短文本信息转化为音节向量,把音节向量送入DAN(Deep Averaging Networks)网络并在输出阶段融合经过FastText网络训练的句向量特征,最后通过全连接层和softmax层完成分类。在公开的TNCC(Tibetan News Classification Corpus)新闻标题数据集上所提模型的Macro-F1是64.53%,比目前最好评测结果TiBERT模型的Macro-F1得分高出2.81%,比GCN模型的Macro-F1得分高出6.14%,融合模型具有较好的藏文短文本分类效果。 展开更多
关键词 藏文短文本分类 特征融合 深度平均网络 快速文本
下载PDF
Chinese micro-blog sentiment classification through a novel hybrid learning model 被引量:2
6
作者 LI Fang-fang WANG Huan-ting +3 位作者 ZHAO Rong-chang LIU Xi-yao WANG Yan-zhen ZOU Bei-ji 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2322-2330,共9页
With the rising and spreading of micro-blog, the sentiment classification of short texts has become a research hotspot. Some methods have been developed in the past decade. However, since the Chinese and English are d... With the rising and spreading of micro-blog, the sentiment classification of short texts has become a research hotspot. Some methods have been developed in the past decade. However, since the Chinese and English are different in language syntax, semantics and pragmatics, sentiment classification methods that are effective for English twitter may fail on Chinese micro-blog. In addition, the colloquialism and conciseness of short Chinese texts introduces additional challenges to sentiment classification. In this work, a novel hybrid learning model was proposed for sentiment classification of Chinese micro-blogs, which included two stages. In the first stage, emotional scores were calculated over the whole dataset by utilizing an improved Chinese-oriented sentiment dictionary classification method. Data with extremely high or low scores were directly labeled. In the second stage, the remaining data were labeled by using an integrated classification method based on sentiment dictionary, support vector machine(SVM) and k-nearest neighbor(KNN). An improved feature selection method was adopted to enhance the discriminative power of the selected features. The two-stage hybrid framework made the proposed method effective for sentiment classification of Chinese micro-blogs. Experiments on the COAE2014(Chinese Opinion Analysis Evaluation 2014) dataset show that the proposed method outperforms other schemes. 展开更多
关键词 CHINESE micro-blog short text HYBRID LEARNING SENTIMENT classification
下载PDF
融合多尺度CNN与双向LSTM的唐卡问句分类模型
7
作者 王铁君 闫悦 +2 位作者 郭晓然 王铠杰 饶强 《科学技术与工程》 北大核心 2024年第22期9490-9497,共8页
当前大语言模型的兴起为自然语言处理、搜索引擎、生命科学研究等领域的研究者提供了新思路,但大语言模型存在资源消耗高、推理速度慢,难以在工业场景尤其是垂直领域应用等方面的缺点。针对这一问题,提出了一种多尺度卷积神经网络(convo... 当前大语言模型的兴起为自然语言处理、搜索引擎、生命科学研究等领域的研究者提供了新思路,但大语言模型存在资源消耗高、推理速度慢,难以在工业场景尤其是垂直领域应用等方面的缺点。针对这一问题,提出了一种多尺度卷积神经网络(convolutional neural network,CNN)与双向长短期记忆神经网络(long short term memory,LSTM)融合的唐卡问句分类模型,本文模型将数据的全局特征与局部特征进行融合实现唐卡问句分类任务,全局特征反映数据的本质特点,局部特征关注数据中易被忽视的部分,将二者以拼接的方式融合以丰富句子的特征表示。通过在Thangka数据集与THUCNews数据集上进行实验,结果表明,本文模型相较于Bert模型在精确度上略优,在训练时间上缩短了1/20,运算推理时间缩短了1/3。在公开数据集上的实验表明,本文模型在文本分类任务上也表现出了较好的适用性和有效性。 展开更多
关键词 文本分类 长短期记忆 多尺度卷积神经网络 唐卡
下载PDF
基于词-主题-文本异质网络的短文本分类方法
8
作者 徐涛 赵星甲 卢敏 《计算机应用与软件》 北大核心 2024年第1期146-152,182,共8页
针对现有分类方法未考虑长距离词的语义相关性和文本间潜在主题共享的问题,提出一种基于词-主题-文本异质网络(WTDHN)的短文本分类方法。通过Word2vec训练词的上下文语义向量;构建词相关性矩阵以充足的词共现信息增强短文本各级别语义学... 针对现有分类方法未考虑长距离词的语义相关性和文本间潜在主题共享的问题,提出一种基于词-主题-文本异质网络(WTDHN)的短文本分类方法。通过Word2vec训练词的上下文语义向量;构建词相关性矩阵以充足的词共现信息增强短文本各级别语义学;构建以词、主题和文本为节点的异质网络,并采用图卷积学习节点之间的高阶邻域信息,丰富短文本语义。相较于基准分类模型,该方法在五个公开短文本数据集上的分类准确率平均提高1.56%。 展开更多
关键词 词-主题-文本异质网络 词共现 文本-主题分布 短文本分类
下载PDF
基于多元语义特征和图卷积神经网络的短文本分类模型
9
作者 鲁富宇 冷泳林 崔洪霞 《河南科学》 2024年第5期625-630,共6页
在互联网和社交媒体迅猛发展的背景下,网络中出现了大量的短文本数据,这些数据在舆情监控、情感分析和新闻分类等自然语言处理领域展现出了非常高的经济和学术价值.但短文本数据固有的特征给短文本分类带来了不小的挑战,如文本稀疏和缺... 在互联网和社交媒体迅猛发展的背景下,网络中出现了大量的短文本数据,这些数据在舆情监控、情感分析和新闻分类等自然语言处理领域展现出了非常高的经济和学术价值.但短文本数据固有的特征给短文本分类带来了不小的挑战,如文本稀疏和缺乏丰富的上下文语义等.针对这些问题,提出了一种结合多元语义特征和图卷积神经网络(GCN)的短文本分类模型,该模型通过哈尔滨工业大学的语言技术平台获取短文本的多种语义特征,并将这些语义特征同短文本一起构建一个多元异构图,然后将其作为GCN的输入,利用GCN学习短文本更深层特征,最后通过Softmax函数获取每个类别的概率分布,进而实现短文本分类.试验结果表明,本模型在短文本分类的F1评分上比传统单一模型提高了4%. 展开更多
关键词 短文本 多元异构图 语义特征 图卷积神经网络 分类模型
下载PDF
融合概率类别特征增强的短文本分类
10
作者 廖列法 李奎 姚秀 《计算机工程与设计》 北大核心 2024年第7期2074-2081,共8页
对短文本所含信息量缺乏而导致分类准确度难以提升的问题进行研究,提出一种融合概率类别特征增强的短文本分类网络模型FT_BDCNN。将N-gram处理后产生的N元词典通过TF-IDF分离出具有概率类别区分度的特征信息(FT模块);将向量化表示后的... 对短文本所含信息量缺乏而导致分类准确度难以提升的问题进行研究,提出一种融合概率类别特征增强的短文本分类网络模型FT_BDCNN。将N-gram处理后产生的N元词典通过TF-IDF分离出具有概率类别区分度的特征信息(FT模块);将向量化表示后的文本信息输入到改进后的特征提取模块中;将两个模块的输出进行特征融合,完成文本分类。实验结果表明,所提模型在THUCNews数据集上的F1值达到91.91%。FT模块可以与现有分类模型进行融合,提升模型的分类性能。 展开更多
关键词 类别特征增强 短文本 双池化 特征融合 统计算法 快速分类 深度学习
下载PDF
基于深度学习的中文短文本多标签分类模型
11
作者 曹珍 郭攀峰 《计算机与数字工程》 2024年第6期1809-1814,共6页
目前,中文短文本因其长度短、结构多样和缺乏上下文等特点,常规多标签分类算法无法对其有效区分。针对以上问题,论文提出一种基于深度学习的中文短文本多标签分类模型CRC-MHA。CRC-MHA模型在文本表示层摒弃常规使用Word2vec进行静态词... 目前,中文短文本因其长度短、结构多样和缺乏上下文等特点,常规多标签分类算法无法对其有效区分。针对以上问题,论文提出一种基于深度学习的中文短文本多标签分类模型CRC-MHA。CRC-MHA模型在文本表示层摒弃常规使用Word2vec进行静态词嵌入的方式,采用BERT对输入句子进行动态词嵌入,借助海量预训练文本的优势更好地表征文本的上下文语义,同时在特征提取层设计了一种结合CNN、RCNN和多头自注意力机制的并行特征提取策略,加强捕捉文本内部的关键特征来提升多标签分类效果。实验结果表明,CRC-MHA模型在评价指标加权平均F1值上较BERT模型提高1.95%,较BERT-CNN模型提高0.42%,较BERT-RCNN模型提高0.34%,验证了模型的有效性。 展开更多
关键词 多标签分类 中文短文本 动态词嵌入 特征提取
下载PDF
基于深度学习的文本分类研究综述 被引量:2
12
作者 汪家伟 余晓 《电子科技》 2024年第1期81-86,共6页
与传统的机器学习模型相比,深度学习模型试图模仿人的学习思路,通过计算机自动进行海量数据的特征提取工作。文本分类是自然语言处理中的一个重要应用,在文本信息处理过程中具有关键作用。过去几年,使用深度学习方法进行文本分类的研究... 与传统的机器学习模型相比,深度学习模型试图模仿人的学习思路,通过计算机自动进行海量数据的特征提取工作。文本分类是自然语言处理中的一个重要应用,在文本信息处理过程中具有关键作用。过去几年,使用深度学习方法进行文本分类的研究激增并取得了较好效果。文中简要介绍了基于传统模型的文本分类方法和基于深度学习的文本分类方法,回顾了先进文本分类方法并重点关注了其中基于深度学习的模型,对近年来用于文本分类的深度学习模型的研究进展以及成果进行介绍和总结,并对深度学习在文本分类领域的发展趋势和研究的难点进行了总结和展望。 展开更多
关键词 深度学习 自然语言处理 文本分类 机器学习 神经网络 预训练模型 注意力机制 长短期记忆网络
下载PDF
融合TF-IDF和LDA的中文FastText短文本分类方法 被引量:31
13
作者 冯勇 屈渤浩 +2 位作者 徐红艳 王嵘冰 张永刚 《应用科学学报》 CAS CSCD 北大核心 2019年第3期378-388,共11页
FastText文本分类模型具有快速高效的优势,但直接将其用于中文短文本分类则存在精确率不高的问题.为此提出一种融合词频-逆文本频率(term frequency-inverse document frequency, TF-IDF)和隐含狄利克雷分布(latent Dirichlet allocatio... FastText文本分类模型具有快速高效的优势,但直接将其用于中文短文本分类则存在精确率不高的问题.为此提出一种融合词频-逆文本频率(term frequency-inverse document frequency, TF-IDF)和隐含狄利克雷分布(latent Dirichlet allocation, LDA)的中文FastText短文本分类方法.该方法在FastText文本分类模型的输入阶段对n元语法模型处理后的词典进行TF-IDF筛选,使用LDA模型进行语料库主题分析,依据所得结果对特征词典进行补充,从而在计算输入词序列向量均值时偏向高区分度的词条,使其更适用于中文短文本分类环境.对比实验结果可知,所提方法在中文短文本分类方面具有更高的精确率. 展开更多
关键词 中文短文本分类 Fasttext 词频-逆文本频率 词向量 隐含狄利克雷分布
下载PDF
混合特征及多头注意力的中文短文本分类
14
作者 江结林 朱永伟 +2 位作者 许小龙 崔燕 赵英男 《计算机工程与应用》 CSCD 北大核心 2024年第9期237-243,共7页
传统的短文本分类研究方法存在两方面不足,一是不能全面地表示文本的语义信息,二是无法充分地提取和融合文本全局和局部信息。基于此,提出一种混合特征及多头注意力(HF-MHA)的中文短文本分类方法。该方法利用预训练模型计算中文短文本... 传统的短文本分类研究方法存在两方面不足,一是不能全面地表示文本的语义信息,二是无法充分地提取和融合文本全局和局部信息。基于此,提出一种混合特征及多头注意力(HF-MHA)的中文短文本分类方法。该方法利用预训练模型计算中文短文本的字符级向量和词级向量表示,以得到更全面的文本特征向量表示;采用多头注意力机制捕捉文本序列中的依赖关系,以提高文本的语义理解;通过卷积神经网络分别提取两种向量表示的特征,并将其融合为一个特征向量,以整合文本的全局和局部信息;通过输出层得到分类结果。在三个公开数据集上的实验表明,HF-MHA能够有效地提升中文短文本分类的性能。 展开更多
关键词 中文短文本分类 注意力机制 词级向量 字符级向量
下载PDF
知识增强的BERT短文本分类算法
15
作者 傅薛林 金红 +2 位作者 郑玮浩 张奕 陶小梅 《计算机工程与设计》 北大核心 2024年第7期2027-2033,共7页
为解决短文本信息不全且缺乏领域知识导致关键信息难以充分挖掘而造成的深度学习模型分类性能不足等问题,提出一种知识增强的双向编码器表示转换器(BERT)短文本分类算法(KE-BERT)。提出一种建模短文本与领域知识的方法,通过知识图谱进... 为解决短文本信息不全且缺乏领域知识导致关键信息难以充分挖掘而造成的深度学习模型分类性能不足等问题,提出一种知识增强的双向编码器表示转换器(BERT)短文本分类算法(KE-BERT)。提出一种建模短文本与领域知识的方法,通过知识图谱进行领域知识的引入;提出一种知识适配器,通过知识适配器在BERT的各个编码层之间进行知识增强。通过在公开的短文本数据集上,将KE-BERT与其它深度学习模型相比较,该模型的F1均值和准确率均值达到93.46%和91.26%,结果表明了所提模型性能表现良好。 展开更多
关键词 短文本分类 深度学习 双向编码器表示转换器 知识图谱 领域知识 知识适配器 知识增强
下载PDF
基于短文本扩展和特征融合的市民热线文本分类 被引量:1
16
作者 郭小磊 张吴波 《山西大同大学学报(自然科学版)》 2024年第1期42-47,62,共7页
针对市民热线多为短文本和特征稀疏的特点。提出了一种短文本扩展法和基于双通道特征融合的文本分类(BERT-BiGRU-TextCNN,BGTC)模型,实现了对市民热线文本的自动识别与归类。首先使用TF-IWF模型以及LDA主题模型构建核心词库;然后利用Wor... 针对市民热线多为短文本和特征稀疏的特点。提出了一种短文本扩展法和基于双通道特征融合的文本分类(BERT-BiGRU-TextCNN,BGTC)模型,实现了对市民热线文本的自动识别与归类。首先使用TF-IWF模型以及LDA主题模型构建核心词库;然后利用Word2Vec计算词语相似度,完成对短文本内容和词向量特征的扩展;最终通过融合BERT-TextCNN和BERT-BiGRU-Attention两个通道特征信息的BGTC模型实现了对扩展后文本的分类。经过多组对比实验,结果表明该方法在市民热线文本分类任务中具有更好的性能,准确率和F1值分别达到了85.6%和85.8%。 展开更多
关键词 市民热线 短文本扩展 文本分类 特征融合
下载PDF
融合类别特征扩展与N-gram子词过滤的fastText短文本分类 被引量:4
17
作者 李志明 孙艳 +1 位作者 何宜昊 申利民 《小型微型计算机系统》 CSCD 北大核心 2022年第8期1596-1601,共6页
以提升fastText短文本分类模型性能为目标,从获取高质量的类别特征、降低N-gram子词中低类别区分贡献度子词对模型学习高类别区分贡献度语义特征时产生的干扰角度展开研究,提出基于TF-IDF的LDA类别特征提取方法以提升类别特征质量,提出... 以提升fastText短文本分类模型性能为目标,从获取高质量的类别特征、降低N-gram子词中低类别区分贡献度子词对模型学习高类别区分贡献度语义特征时产生的干扰角度展开研究,提出基于TF-IDF的LDA类别特征提取方法以提升类别特征质量,提出基于词汇信息熵的N-gram子词过滤方法过滤N-gram子词中低类别区分贡献度子词,并构建更专注于高类别区分贡献度语义特征学习的EF-fastText短文本分类模型.实验结果表明基于TF-IDF的LDA类别特征提取方法,以及基于词汇信息熵的N-gram子词过滤方法对于EF-fastText短文本分类模型性能提升是有效性的. 展开更多
关键词 短文本分类 fasttext 类别特征 词汇信息熵 N-GRAM
下载PDF
基于改进TF-IDF融合二进制灰狼优化的短文本分类
18
作者 杨东 毋涛 +1 位作者 赵雪青 李猛 《计算机技术与发展》 2024年第8期37-41,共5页
为了提高特殊类型短文本分类准确度和降低特征维度,提出了基于改进TF-IDF方法融合二进制灰狼优化的短文本分类。为了提高特征向量文本权重计算准确度,提出了点赞排列因子,并融合了文本特征集中度,对附有点赞数的特殊类型文本进行权重计... 为了提高特殊类型短文本分类准确度和降低特征维度,提出了基于改进TF-IDF方法融合二进制灰狼优化的短文本分类。为了提高特征向量文本权重计算准确度,提出了点赞排列因子,并融合了文本特征集中度,对附有点赞数的特殊类型文本进行权重计算,设计改进了TF-IDF-RANK方法对特征进行加权;同时,基于初选特征向量,设计优化了二进制灰狼优化算法(BGWO)搜寻最优特征子集,引入衰减系数向量和多优解迭代机制,提高灰狼搜寻性能。结果表明,该方法有效地提升了权重准确率,更好地表征初选特征向量,增强特征选择时寻找全局最优解的能力,进而提高短文本的分类效果。通过LABIC和抖音开放平台数据集测试,综合指标F1值分别提高了14.76%和14.02%,验证了该方法对于特殊类型文本分类的有效性。 展开更多
关键词 短文本分类 特征加权 TF-IDF-RANK方法 特征选择 二进制灰狼优化
下载PDF
融合语义解释和DeBERTa的极短文本层次分类
19
作者 陈昊飏 张雷 《计算机科学》 CSCD 北大核心 2024年第5期250-257,共8页
文本层次分类在社交评论主题分类、搜索词分类等场景中有重要应用,这些场景的数据往往具有极短文本特征,体现在信息的稀疏性、敏感性等中,这对模型特征表示和分类性能带来了很大挑战,而层次标签空间的复杂性和关联性使得难度进一步加剧... 文本层次分类在社交评论主题分类、搜索词分类等场景中有重要应用,这些场景的数据往往具有极短文本特征,体现在信息的稀疏性、敏感性等中,这对模型特征表示和分类性能带来了很大挑战,而层次标签空间的复杂性和关联性使得难度进一步加剧。基于此,提出了一种融合语义解释和DeBERTa模型的方法,该方法的核心思想在于:引入具体语境下各个字词或词组的语义解释,补充优化模型获取的内容信息;结合DeBERTa模型的注意力解耦机制与增强掩码解码器,以更好地把握位置信息、提高特征提取能力。所提方法首先对训练文本进行语法分词、词性标注,再构造GlossDeBERTa模型进行高准确率的语义消歧,获得语义解释序列;然后利用SimCSE框架使解释序列向量化,以更好地表征解释序列中的句子信息;最后训练文本经过DeBERTa模型神经网络后,得到原始文本的特征向量表示,再与解释序列中的对应特征向量相加,传入多分类器。实验遴选短文本层次分类数据集TREC中的极短文本部分,并进行数据扩充,最终得到的数据集平均长度为12词。多组对比实验表明,所提出的融合语义解释的DeBERTa模型性能最为优秀,在验证集和测试集上的Accuracy值、F1-micro值、F1-macro值相比其他算法模型有较大的提升,能够很好地应对极短文本层次分类任务。 展开更多
关键词 极短文本 层次分类 语义解释 DeBERTa GlossDeBERTa SimCSE
下载PDF
基于不平衡短文本的农业问句分类方法研究
20
作者 成继福 郭晓娟 周俊明 《河南科技学院学报(自然科学版)》 2024年第6期38-48,共11页
目的解决中国农技推广信息平台、中国农业信息网等问答社区中农业问句数据快速自动分类问题.方法针对采集的农业数据集中文本长度较短、样本类别不均衡性等问题,提出了一种文本语义信息扩展的方法.根据农业问句文本的特征,该方法采用Wor... 目的解决中国农技推广信息平台、中国农业信息网等问答社区中农业问句数据快速自动分类问题.方法针对采集的农业数据集中文本长度较短、样本类别不均衡性等问题,提出了一种文本语义信息扩展的方法.根据农业问句文本的特征,该方法采用Word2Vec模型,把问句中的关键词用TextRank算法进行抽取,在Word2Vec模型中查找关键词的近义词,并对关键词进行替换,生成新的同义问句.并用深度学习模型Bi-LSTM、Bi-GRU与增加注意力机制的Bi-LSTM-Att、Bi-GRU-Att和TextRCNN 5种模型对此方法进行验证.结果对比实验结果表明,该方法在5种模型上的Precision、Recall和F1 score均有提升,尤其在Bi-LSTM-Att模型上,Acc和平均F1值分别提升了0.8和2.5个百分点.结论实验结果表明该方法可有效地解决短文本和类别分布不平衡性问题,提高了不平衡短文本分类效果. 展开更多
关键词 短文本分类 不平衡样本 语义信息扩展 农业问句
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部