Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To kn...Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To know the status of the fetus,doctors monitor blood reports,Ultrasounds,cardiotocography(CTG)data,etc.Still,in this research,we have considered CTG data,which provides information on heart rate and uterine contractions during pregnancy.Several researchers have proposed various methods for classifying the status of fetus growth.Manual processing of CTG data is time-consuming and unreliable.So,automated tools should be used to classify fetal health.This study proposes a novel neural network-based architecture,the Dynamic Multi-Layer Perceptron model,evaluated from a single layer to several layers to classify fetal health.Various strategies were applied,including pre-processing data using techniques like Balancing,Scaling,Normalization hyperparameter tuning,batch normalization,early stopping,etc.,to enhance the model’s performance.A comparative analysis of the proposed method is done against the traditional machine learning models to showcase its accuracy(97%).An ablation study without any pre-processing techniques is also illustrated.This study easily provides valuable interpretations for healthcare professionals in the decision-making process.展开更多
Considering that real communication signals corrupted by noise are generally nonstationary, and timefrequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributio...Considering that real communication signals corrupted by noise are generally nonstationary, and timefrequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributions are introduced for the modulation classification of communication signals: The extracted time-frequency features have good classification information, and they are insensitive to signal to noise ratio (SNR) variation. According to good classification by the correct rate of a neural network classifier, a multilayer perceptron (MLP) classifier with better generalization, as well as, addition of time-frequency features set for classifying six different modulation types has been proposed. Computer simulations show that the MLP classifier outperforms the decision-theoretic classifier at low SNRs, and the classification experiments for real MPSK signals verify engineering significance of the MLP classifier.展开更多
One aspect of cybersecurity,incorporates the study of Portable Executables(PE)files maleficence.Artificial Intelligence(AI)can be employed in such studies,since AI has the ability to discriminate benign from malicious...One aspect of cybersecurity,incorporates the study of Portable Executables(PE)files maleficence.Artificial Intelligence(AI)can be employed in such studies,since AI has the ability to discriminate benign from malicious files.In this study,an exclusive set of 29 features was collected from trusted implementations,this set was used as a baseline to analyze the presented work in this research.A Decision Tree(DT)and Neural Network Multi-Layer Perceptron(NN-MLPC)algorithms were utilized during this work.Both algorithms were chosen after testing a few diverse procedures.This work implements a method of subgrouping features to answer questions such as,which feature has a positive impact on accuracy when added?Is it possible to determine a reliable feature set to distinguish a malicious PE file from a benign one?when combining features,would it have any effect on malware detection accuracy in a PE file?Results obtained using the proposed method were improved and carried few observations.Generally,the obtained results had practical and numerical parts,for the practical part,the number of features and which features included are the main factors impacting the calculated accuracy,also,the combination of features is as crucial in these calculations.Numerical results included,finding accuracies with enhanced values,for example,NN_MLPC attained 0.979 and 0.98;for DT an accuracy of 0.9825 and 0.986 was attained.展开更多
In the textile industry,the presence of defects on the surface of fabric is an essential factor in determining fabric quality.Therefore,identifying fabric defects forms a crucial part of the fabric production process....In the textile industry,the presence of defects on the surface of fabric is an essential factor in determining fabric quality.Therefore,identifying fabric defects forms a crucial part of the fabric production process.Traditional fabric defect detection algorithms can only detect specific materials and specific fabric defect types;in addition,their detection efficiency is low,and their detection results are relatively poor.Deep learning-based methods have many advantages in the field of fabric defect detection,however,such methods are less effective in identifying multiscale fabric defects and defects with complex shapes.Therefore,we propose an effective algorithm,namely multilayer feature extraction combined with deformable convolution(MFDC),for fabric defect detection.In MFDC,multi-layer feature extraction is used to fuse the underlying location features with high-level classification features through a horizontally connected top-down architecture to improve the detection of multi-scale fabric defects.On this basis,a deformable convolution is added to solve the problem of the algorithm’s weak detection ability of irregularly shaped fabric defects.In this approach,Roi Align and Cascade-RCNN are integrated to enhance the adaptability of the algorithm in materials with complex patterned backgrounds.The experimental results show that the MFDC algorithm can achieve good detection results for both multi-scale fabric defects and defects with complex shapes,at the expense of a small increase in detection time.展开更多
Deep Learning is a powerful technique that is widely applied to Image Recognition and Natural Language Processing tasks amongst many other tasks. In this work, we propose an efficient technique to utilize pre-trained ...Deep Learning is a powerful technique that is widely applied to Image Recognition and Natural Language Processing tasks amongst many other tasks. In this work, we propose an efficient technique to utilize pre-trained Convolutional Neural Network (CNN) architectures to extract powerful features from images for object recognition purposes. We have built on the existing concept of extending the learning from pre-trained CNNs to new databases through activations by proposing to consider multiple deep layers. We have exploited the progressive learning that happens at the various intermediate layers of the CNNs to construct Deep Multi-Layer (DM-L) based Feature Extraction vectors to achieve excellent object recognition performance. Two popular pre-trained CNN architecture models i.e. the VGG_16 and VGG_19 have been used in this work to extract the feature sets from 3 deep fully connected multiple layers namely “fc6”, “fc7” and “fc8” from inside the models for object recognition purposes. Using the Principal Component Analysis (PCA) technique, the Dimensionality of the DM-L feature vectors has been reduced to form powerful feature vectors that have been fed to an external Classifier Ensemble for classification instead of the Softmax based classification layers of the two original pre-trained CNN models. The proposed DM-L technique has been applied to the Benchmark Caltech-101 object recognition database. Conventional wisdom may suggest that feature extractions based on the deepest layer i.e. “fc8” compared to “fc6” will result in the best recognition performance but our results have proved it otherwise for the two considered models. Our experiments have revealed that for the two models under consideration, the “fc6” based feature vectors have achieved the best recognition performance. State-of-the-Art recognition performances of 91.17% and 91.35% have been achieved by utilizing the “fc6” based feature vectors for the VGG_16 and VGG_19 models respectively. The recognition performance has been achieved by considering 30 sample images per class whereas the proposed system is capable of achieving improved performance by considering all sample images per class. Our research shows that for feature extraction based on CNNs, multiple layers should be considered and then the best layer can be selected that maximizes the recognition performance.展开更多
The field of sentiment analysis(SA)has grown in tandem with the aid of social networking platforms to exchange opinions and ideas.Many people share their views and ideas around the world through social media like Face...The field of sentiment analysis(SA)has grown in tandem with the aid of social networking platforms to exchange opinions and ideas.Many people share their views and ideas around the world through social media like Facebook and Twitter.The goal of opinion mining,commonly referred to as sentiment analysis,is to categorise and forecast a target’s opinion.Depending on if they provide a positive or negative perspective on a given topic,text documents or sentences can be classified.When compared to sentiment analysis,text categorization may appear to be a simple process,but number of challenges have prompted numerous studies in this area.A feature selection-based classification algorithm in conjunction with the firefly with levy and multilayer perceptron(MLP)techniques has been proposed as a way to automate sentiment analysis(SA).In this study,online product reviews can be enhanced by integrating classification and feature election.The firefly(FF)algorithm was used to extract features from online product reviews,and a multi-layer perceptron was used to classify sentiment(MLP).The experiment employs two datasets,and the results are assessed using a variety of criteria.On account of these tests,it is possible to conclude that the FFL-MLP algorithm has the better classification performance for Canon(98%accuracy)and iPod(99%accuracy).展开更多
Macronutrient deficiency inhibits the growth and development of chili plants.One of the non-destructive methods that plays a role in processing plant image data based on specific characteristics is computer vision.Thi...Macronutrient deficiency inhibits the growth and development of chili plants.One of the non-destructive methods that plays a role in processing plant image data based on specific characteristics is computer vision.This study uses 5166 image data after augmentation process for six plant health conditions.But the analysis of one feature cannot represent plant health condition.Therefore,a careful combination of features is required.This study combines three types of features with HSV and RGB for color,GLCM and LBP for texture,and Hu moments and centroid distance for shapes.Each feature and its combination are trained and tested using the same MLP architecture.The combination of RGB,GLCM,Hu moments,and Distance of centroid features results the best performance.In addition,this study compares the MLP architecture used with previous studies such as SVM,Random Forest Technique,Naive Bayes,and CNN.CNN produced the best performance,followed by SVM and MLP,with accuracy reaching 97.76%,90.55%and 89.70%,respectively.Although MLP has lower accuracy than CNN,the model for identifying plant health conditions has a reasonably good success rate to be applied in a simple agricultural environment.展开更多
The complex operating environment in substations, with different safety distances for live equipment, is a typical high-risk working area, and it is crucial to accurately identify the type of live equipment during aut...The complex operating environment in substations, with different safety distances for live equipment, is a typical high-risk working area, and it is crucial to accurately identify the type of live equipment during automated operations. This paper investigates the detection of live equipment under complex backgrounds and noise disturbances, designs a method for expanding lightweight disturbance data by fitting Gaussian stretched positional information with recurrent neural networks and iterative optimization, and proposes an intelligent detection method for MD-Yolov7 substation environmental targets based on fused multilayer feature fusion (MLFF) and detection transformer (DETR). Subsequently, to verify the performance of the proposed method, an experimental test platform was built to carry out performance validation experiments. The results show that the proposed method has significantly improved the performance of the detection accuracy of live devices compared to the pairwise comparison algorithm, with an average mean accuracy (mAP) of 99.2%, which verifies the feasibility and accuracy of the proposed method and has a high application value.展开更多
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2023R1A2C1005950)Jana Shafi is supported via funding from Prince Sattam bin Abdulaziz University Project Number(PSAU/2024/R/1445).
文摘Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To know the status of the fetus,doctors monitor blood reports,Ultrasounds,cardiotocography(CTG)data,etc.Still,in this research,we have considered CTG data,which provides information on heart rate and uterine contractions during pregnancy.Several researchers have proposed various methods for classifying the status of fetus growth.Manual processing of CTG data is time-consuming and unreliable.So,automated tools should be used to classify fetal health.This study proposes a novel neural network-based architecture,the Dynamic Multi-Layer Perceptron model,evaluated from a single layer to several layers to classify fetal health.Various strategies were applied,including pre-processing data using techniques like Balancing,Scaling,Normalization hyperparameter tuning,batch normalization,early stopping,etc.,to enhance the model’s performance.A comparative analysis of the proposed method is done against the traditional machine learning models to showcase its accuracy(97%).An ablation study without any pre-processing techniques is also illustrated.This study easily provides valuable interpretations for healthcare professionals in the decision-making process.
文摘Considering that real communication signals corrupted by noise are generally nonstationary, and timefrequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributions are introduced for the modulation classification of communication signals: The extracted time-frequency features have good classification information, and they are insensitive to signal to noise ratio (SNR) variation. According to good classification by the correct rate of a neural network classifier, a multilayer perceptron (MLP) classifier with better generalization, as well as, addition of time-frequency features set for classifying six different modulation types has been proposed. Computer simulations show that the MLP classifier outperforms the decision-theoretic classifier at low SNRs, and the classification experiments for real MPSK signals verify engineering significance of the MLP classifier.
文摘One aspect of cybersecurity,incorporates the study of Portable Executables(PE)files maleficence.Artificial Intelligence(AI)can be employed in such studies,since AI has the ability to discriminate benign from malicious files.In this study,an exclusive set of 29 features was collected from trusted implementations,this set was used as a baseline to analyze the presented work in this research.A Decision Tree(DT)and Neural Network Multi-Layer Perceptron(NN-MLPC)algorithms were utilized during this work.Both algorithms were chosen after testing a few diverse procedures.This work implements a method of subgrouping features to answer questions such as,which feature has a positive impact on accuracy when added?Is it possible to determine a reliable feature set to distinguish a malicious PE file from a benign one?when combining features,would it have any effect on malware detection accuracy in a PE file?Results obtained using the proposed method were improved and carried few observations.Generally,the obtained results had practical and numerical parts,for the practical part,the number of features and which features included are the main factors impacting the calculated accuracy,also,the combination of features is as crucial in these calculations.Numerical results included,finding accuracies with enhanced values,for example,NN_MLPC attained 0.979 and 0.98;for DT an accuracy of 0.9825 and 0.986 was attained.
基金supported in part by the National Science Foundation of China under Grant 62001236in part by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant 20KJA520003.
文摘In the textile industry,the presence of defects on the surface of fabric is an essential factor in determining fabric quality.Therefore,identifying fabric defects forms a crucial part of the fabric production process.Traditional fabric defect detection algorithms can only detect specific materials and specific fabric defect types;in addition,their detection efficiency is low,and their detection results are relatively poor.Deep learning-based methods have many advantages in the field of fabric defect detection,however,such methods are less effective in identifying multiscale fabric defects and defects with complex shapes.Therefore,we propose an effective algorithm,namely multilayer feature extraction combined with deformable convolution(MFDC),for fabric defect detection.In MFDC,multi-layer feature extraction is used to fuse the underlying location features with high-level classification features through a horizontally connected top-down architecture to improve the detection of multi-scale fabric defects.On this basis,a deformable convolution is added to solve the problem of the algorithm’s weak detection ability of irregularly shaped fabric defects.In this approach,Roi Align and Cascade-RCNN are integrated to enhance the adaptability of the algorithm in materials with complex patterned backgrounds.The experimental results show that the MFDC algorithm can achieve good detection results for both multi-scale fabric defects and defects with complex shapes,at the expense of a small increase in detection time.
文摘Deep Learning is a powerful technique that is widely applied to Image Recognition and Natural Language Processing tasks amongst many other tasks. In this work, we propose an efficient technique to utilize pre-trained Convolutional Neural Network (CNN) architectures to extract powerful features from images for object recognition purposes. We have built on the existing concept of extending the learning from pre-trained CNNs to new databases through activations by proposing to consider multiple deep layers. We have exploited the progressive learning that happens at the various intermediate layers of the CNNs to construct Deep Multi-Layer (DM-L) based Feature Extraction vectors to achieve excellent object recognition performance. Two popular pre-trained CNN architecture models i.e. the VGG_16 and VGG_19 have been used in this work to extract the feature sets from 3 deep fully connected multiple layers namely “fc6”, “fc7” and “fc8” from inside the models for object recognition purposes. Using the Principal Component Analysis (PCA) technique, the Dimensionality of the DM-L feature vectors has been reduced to form powerful feature vectors that have been fed to an external Classifier Ensemble for classification instead of the Softmax based classification layers of the two original pre-trained CNN models. The proposed DM-L technique has been applied to the Benchmark Caltech-101 object recognition database. Conventional wisdom may suggest that feature extractions based on the deepest layer i.e. “fc8” compared to “fc6” will result in the best recognition performance but our results have proved it otherwise for the two considered models. Our experiments have revealed that for the two models under consideration, the “fc6” based feature vectors have achieved the best recognition performance. State-of-the-Art recognition performances of 91.17% and 91.35% have been achieved by utilizing the “fc6” based feature vectors for the VGG_16 and VGG_19 models respectively. The recognition performance has been achieved by considering 30 sample images per class whereas the proposed system is capable of achieving improved performance by considering all sample images per class. Our research shows that for feature extraction based on CNNs, multiple layers should be considered and then the best layer can be selected that maximizes the recognition performance.
文摘The field of sentiment analysis(SA)has grown in tandem with the aid of social networking platforms to exchange opinions and ideas.Many people share their views and ideas around the world through social media like Facebook and Twitter.The goal of opinion mining,commonly referred to as sentiment analysis,is to categorise and forecast a target’s opinion.Depending on if they provide a positive or negative perspective on a given topic,text documents or sentences can be classified.When compared to sentiment analysis,text categorization may appear to be a simple process,but number of challenges have prompted numerous studies in this area.A feature selection-based classification algorithm in conjunction with the firefly with levy and multilayer perceptron(MLP)techniques has been proposed as a way to automate sentiment analysis(SA).In this study,online product reviews can be enhanced by integrating classification and feature election.The firefly(FF)algorithm was used to extract features from online product reviews,and a multi-layer perceptron was used to classify sentiment(MLP).The experiment employs two datasets,and the results are assessed using a variety of criteria.On account of these tests,it is possible to conclude that the FFL-MLP algorithm has the better classification performance for Canon(98%accuracy)and iPod(99%accuracy).
基金funded by the Directorate of Research and Community Service,Deputy for Strengthening Research and Development,Ministry of Research,Technology/National Research and Innovation Agency of the Republic of Indonesia in the PMDSU program with grant ID 018/E5/PG.02.00.PT/2022 and 1773/UN1/DITLIT/Dit-Lit/PT.01.03/2022.
文摘Macronutrient deficiency inhibits the growth and development of chili plants.One of the non-destructive methods that plays a role in processing plant image data based on specific characteristics is computer vision.This study uses 5166 image data after augmentation process for six plant health conditions.But the analysis of one feature cannot represent plant health condition.Therefore,a careful combination of features is required.This study combines three types of features with HSV and RGB for color,GLCM and LBP for texture,and Hu moments and centroid distance for shapes.Each feature and its combination are trained and tested using the same MLP architecture.The combination of RGB,GLCM,Hu moments,and Distance of centroid features results the best performance.In addition,this study compares the MLP architecture used with previous studies such as SVM,Random Forest Technique,Naive Bayes,and CNN.CNN produced the best performance,followed by SVM and MLP,with accuracy reaching 97.76%,90.55%and 89.70%,respectively.Although MLP has lower accuracy than CNN,the model for identifying plant health conditions has a reasonably good success rate to be applied in a simple agricultural environment.
文摘The complex operating environment in substations, with different safety distances for live equipment, is a typical high-risk working area, and it is crucial to accurately identify the type of live equipment during automated operations. This paper investigates the detection of live equipment under complex backgrounds and noise disturbances, designs a method for expanding lightweight disturbance data by fitting Gaussian stretched positional information with recurrent neural networks and iterative optimization, and proposes an intelligent detection method for MD-Yolov7 substation environmental targets based on fused multilayer feature fusion (MLFF) and detection transformer (DETR). Subsequently, to verify the performance of the proposed method, an experimental test platform was built to carry out performance validation experiments. The results show that the proposed method has significantly improved the performance of the detection accuracy of live devices compared to the pairwise comparison algorithm, with an average mean accuracy (mAP) of 99.2%, which verifies the feasibility and accuracy of the proposed method and has a high application value.