期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Multi-Scale Feature Fusion Model for Bridge Appearance Defect Detection
1
作者 Rong Pang Yan Yang +3 位作者 Aiguo Huang Yan Liu Peng Zhang Guangwu Tang 《Big Data Mining and Analytics》 EI CSCD 2024年第1期1-11,共11页
Although the Faster Region-based Convolutional Neural Network(Faster R-CNN)model has obvious advantages in defect recognition,it still cannot overcome challenging problems,such as time-consuming,small targets,irregula... Although the Faster Region-based Convolutional Neural Network(Faster R-CNN)model has obvious advantages in defect recognition,it still cannot overcome challenging problems,such as time-consuming,small targets,irregular shapes,and strong noise interference in bridge defect detection.To deal with these issues,this paper proposes a novel Multi-scale Feature Fusion(MFF)model for bridge appearance disease detection.First,the Faster R-CNN model adopts Region Of Interest(ROl)pooling,which omits the edge information of the target area,resulting in some missed detections and inaccuracies in both detecting and localizing bridge defects.Therefore,this paper proposes an MFF based on regional feature Aggregation(MFF-A),which reduces the missed detection rate of bridge defect detection and improves the positioning accuracy of the target area.Second,the Faster R-CNN model is insensitive to small targets,irregular shapes,and strong noises in bridge defect detection,which results in a long training time and low recognition accuracy.Accordingly,a novel Lightweight MFF(namely MFF-L)model for bridge appearance defect detection using a lightweight network EfficientNetV2 and a feature pyramid network is proposed,which fuses multi-scale features to shorten the training speed and improve recognition accuracy.Finally,the effectiveness of the proposed method is evaluated on the bridge disease dataset and public computational fluid dynamic dataset. 展开更多
关键词 defect detection Multi-scale feature fusion(mff) Region Of Interest(ROl)alignment lightweight network
原文传递
基于MFF与IWOA-LSSVM的电机轴承故障诊断研究 被引量:4
2
作者 董程阳 《机电工程》 CAS 北大核心 2022年第6期806-812,共7页
针对电机轴承故障诊断过程中,存在种种困难的问题,提出了一种基于多特征融合(MFF)与改进鲸鱼优化算法(IWOA)优化最小二乘支持向量机(LSSVM)的电机轴承状态诊断方法。首先,利用Sobol序列去初始化算法种群,在算法种群搜索过程中加入了莱... 针对电机轴承故障诊断过程中,存在种种困难的问题,提出了一种基于多特征融合(MFF)与改进鲸鱼优化算法(IWOA)优化最小二乘支持向量机(LSSVM)的电机轴承状态诊断方法。首先,利用Sobol序列去初始化算法种群,在算法种群搜索过程中加入了莱维飞行策略,并在WOA算法位置更新公式中添加了惯性权重;然后,提取了电机轴承振动信号的小波包能量特征、平均值和峭度,并将以上电机轴承振动信号特征作为算法的输入;最后,为了验证基于MFF与IWOA-LSSVM的电机轴承诊断方法的有效性,分别以单独使用小波包能量特征作为算法输入,以及小波包能量特征和时域特征共同作为算法输入,进行了两组相关的电机轴承状态识别对比实验。研究结果表明:相比于单一小波包能量特征,采用多特征融合能更全面地反映电机轴承真实运行状态;相比于PSO、GA算法,基于WOA算法可以更有效地避免局部最优;相比于基本WOA算法,改进后的WOA算法可以更有效地避免局部最优;相比于其他电机轴承状态识别算法,IWOA-LSSVM算法的分类性能更优,对电机轴承状态识别率达到99.5%。 展开更多
关键词 电机轴承 故障诊断 多特征融合 改进鲸鱼优化算法 最小二乘支持向量机
下载PDF
基于多特征融合的Chirp扩频通信调制样式分类识别方法 被引量:1
3
作者 王翔 宋川江 杨战鹏 《电子与信息学报》 EI CSCD 北大核心 2023年第11期4003-4015,共13页
自动调制分类(AMC)在频谱监测和认知无线电中具有重要意义。近年来,Chirp扩频通信(CSS)由于其良好的抗干扰能力和稳健性得到了较大发展,但是对CSS信号的AMC方法却鲜有研究。针对这种情况,该文提出了一种基于多特征融合(MFF)的CSS信号调... 自动调制分类(AMC)在频谱监测和认知无线电中具有重要意义。近年来,Chirp扩频通信(CSS)由于其良好的抗干扰能力和稳健性得到了较大发展,但是对CSS信号的AMC方法却鲜有研究。针对这种情况,该文提出了一种基于多特征融合(MFF)的CSS信号调制分类方法,利用频谱和时频图特征融合学习并引入注意力模块来实现CSS信号调制识别。对11类CSS信号调制样式的仿真实验结果表明,该方法有优越的识别性能。 展开更多
关键词 CHIRP信号 CSS信号 自动调制分类 多特征融合
下载PDF
复杂场景下基于改进YOLOv4的小型舰船目标检测
4
作者 吴维林 方健 +2 位作者 屈毅 张宁 高洁 《传感器与微系统》 CSCD 北大核心 2023年第12期119-122,共4页
针对日益复杂的海洋环境对舰船目标检测更高识别率、实时性、智能化的需求,提出了一种基于改进YOLOv4的舰船目标检测算法。算法将新设计的多层特征融合(MFF)模块和多层接收域块(M-RFB)模块集成到YOLOv4的颈部,改进了网络特征提取的能力... 针对日益复杂的海洋环境对舰船目标检测更高识别率、实时性、智能化的需求,提出了一种基于改进YOLOv4的舰船目标检测算法。算法将新设计的多层特征融合(MFF)模块和多层接收域块(M-RFB)模块集成到YOLOv4的颈部,改进了网络特征提取的能力,解决了海洋环境中小型舰船的检测和分类问题,模型训练过程中引入迁移学习的策略防止模型过拟合并加速模型训练的参数。实验结果表明:该算法能有效解决小型舰船在复杂海洋环境下检测困难、识别率低的问题。与现有算法相比,该算法能够在复杂的海洋导航条件下获得更高的精度,特别是与YOLOv4相比,准确率提高了约11%。 展开更多
关键词 舰船目标检测 改进的YOLOv4 多层特征融合 多层接收域块
下载PDF
Intelligent Detection Method of Substation Environmental Targets Based on MD-Yolov7
5
作者 Tao Zhou Qian Huang +1 位作者 Xiaolong Zhang Yong Zhang 《Journal of Intelligent Learning Systems and Applications》 2023年第3期76-88,共13页
The complex operating environment in substations, with different safety distances for live equipment, is a typical high-risk working area, and it is crucial to accurately identify the type of live equipment during aut... The complex operating environment in substations, with different safety distances for live equipment, is a typical high-risk working area, and it is crucial to accurately identify the type of live equipment during automated operations. This paper investigates the detection of live equipment under complex backgrounds and noise disturbances, designs a method for expanding lightweight disturbance data by fitting Gaussian stretched positional information with recurrent neural networks and iterative optimization, and proposes an intelligent detection method for MD-Yolov7 substation environmental targets based on fused multilayer feature fusion (MLFF) and detection transformer (DETR). Subsequently, to verify the performance of the proposed method, an experimental test platform was built to carry out performance validation experiments. The results show that the proposed method has significantly improved the performance of the detection accuracy of live devices compared to the pairwise comparison algorithm, with an average mean accuracy (mAP) of 99.2%, which verifies the feasibility and accuracy of the proposed method and has a high application value. 展开更多
关键词 SUBSTATION Target Detection Deep Learning multi-layer feature fusion Unmanned Vehicles
下载PDF
结合深度学习与特征多尺度融合的微钙化簇检测 被引量:2
6
作者 张新生 王哲 《模式识别与人工智能》 EI CSCD 北大核心 2018年第11期1028-1039,共12页
为了准确识别X线图像中的微钙化簇以进行乳腺癌的辅助诊断与早期预防,结合细粒度级联增强网络(FCE-Net)与多尺度特征融合算法(MFF),提出微钙化簇目标检测方法.首先构建FCE-Net累加卷积模块层级权重,并增强多分支结构,得到细粒度卷积特征... 为了准确识别X线图像中的微钙化簇以进行乳腺癌的辅助诊断与早期预防,结合细粒度级联增强网络(FCE-Net)与多尺度特征融合算法(MFF),提出微钙化簇目标检测方法.首先构建FCE-Net累加卷积模块层级权重,并增强多分支结构,得到细粒度卷积特征图.然后构建MFF候选检测网络,通过二倍上采样融合多尺度特征,得到目标置信度和区域坐标.最后在感兴趣区域池化层分类目标并调整边界框.在MIAS数据集上实验表明,结合FCE-Net与MFF可以提升微小目标的深层特征提取能力,同时增强目标分类与定位的准确度. 展开更多
关键词 目标检测 深度学习 卷积神经网络 多尺度特征融合(mff) 微钙化簇
下载PDF
YOLOv2PD:An Efficient Pedestrian Detection Algorithm Using Improved YOLOv2 Model 被引量:9
7
作者 Chintakindi Balaram Murthy Mohammad Farukh Hashmi +1 位作者 Ghulam Muhammad Salman A.AlQahtani 《Computers, Materials & Continua》 SCIE EI 2021年第12期3015-3031,共17页
Real-time pedestrian detection is an important task for unmanned driving systems and video surveillance.The existing pedestrian detection methods often work at low speed and also fail to detect smaller and densely dis... Real-time pedestrian detection is an important task for unmanned driving systems and video surveillance.The existing pedestrian detection methods often work at low speed and also fail to detect smaller and densely distributed pedestrians by losing some of their detection accuracy in such cases.Therefore,the proposed algorithm YOLOv2(“YOU ONLY LOOK ONCE Version 2”)-based pedestrian detection(referred to as YOLOv2PD)would be more suitable for detecting smaller and densely distributed pedestrians in real-time complex road scenes.The proposed YOLOv2PD algorithm adopts a Multi-layer Feature Fusion(MLFF)strategy,which helps to improve the model’s feature extraction ability.In addition,one repeated convolution layer is removed from the final layer,which in turn reduces the computational complexity without losing any detection accuracy.The proposed algorithm applies the K-means clustering method on the Pascal Voc-2007+2012 pedestrian dataset before training to find the optimal anchor boxes.Both the proposed network structure and the loss function are improved to make the model more accurate and faster while detecting smaller pedestrians.Experimental results show that,at 544×544 image resolution,the proposed model achieves 80.7%average precision(AP),which is 2.1%higher than the YOLOv2 Model on the Pascal Voc-2007+2012 pedestrian dataset.Besides,based on the experimental results,the proposed model YOLOv2PD achieves a good trade-off balance between detection accuracy and real-time speed when evaluated on INRIA and Caltech test pedestrian datasets and achieves state-of-the-art detection results. 展开更多
关键词 Computer vision K-means clustering multi-layer feature fusion strategy pedestrian detection YOLOv2PD
下载PDF
一种金属类酒瓶盖瑕疵质检算法 被引量:1
8
作者 李玉洁 韩进 刘恩爽 《中国科技论文》 CAS 北大核心 2022年第11期1236-1244,共9页
针对酒瓶盖瑕疵会影响产品质量的问题,提出了一种酒瓶盖瑕疵YOLOv3-MRHA检测算法,基于YOLOv3算法,对其主干网络和特征提取层进行改进。为减少主干网络特征丢失现象,提出了多级特征融合(multilevel feature fusion,MFF)模块;为提高检测... 针对酒瓶盖瑕疵会影响产品质量的问题,提出了一种酒瓶盖瑕疵YOLOv3-MRHA检测算法,基于YOLOv3算法,对其主干网络和特征提取层进行改进。为减少主干网络特征丢失现象,提出了多级特征融合(multilevel feature fusion,MFF)模块;为提高检测的准确率,增加了尺度为104×104的特征层,并构造了一种增强特征信息的残差特征增强(residual feature enhancement,RFE)模块;为提高深层特征层的检测能力,引入了空洞卷积,使浅层信息向下融合,在特征提取层使用通道注意力机制。结果表明,所提YOLOv3-MRHA算法的检测精度比YOLOv3算法提高近6%,可有效地提高瑕疵检测的准确率,满足工业质检的要求。 展开更多
关键词 酒瓶盖瑕疵检测 多级特征融合 残差特征增强 空洞卷积 通道注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部