Speech enhancement is the task of taking a noisy speech input and pro-ducing an enhanced speech output.In recent years,the need for speech enhance-ment has been increased due to challenges that occurred in various app...Speech enhancement is the task of taking a noisy speech input and pro-ducing an enhanced speech output.In recent years,the need for speech enhance-ment has been increased due to challenges that occurred in various applications such as hearing aids,Automatic Speech Recognition(ASR),and mobile speech communication systems.Most of the Speech Enhancement research work has been carried out for English,Chinese,and other European languages.Only a few research works involve speech enhancement in Indian regional Languages.In this paper,we propose a two-fold architecture to perform speech enhancement for Tamil speech signal based on convolutional recurrent neural network(CRN)that addresses the speech enhancement in a real-time single channel or track of sound created by the speaker.In thefirst stage mask based long short-term mem-ory(LSTM)is used for noise suppression along with loss function and in the sec-ond stage,Convolutional Encoder-Decoder(CED)is used for speech restoration.The proposed model is evaluated on various speaker and noisy environments like Babble noise,car noise,and white Gaussian noise.The proposed CRN model improves speech quality by 0.1 points when compared with the LSTM base model and also CRN requires fewer parameters for training.The performance of the pro-posed model is outstanding even in low Signal to Noise Ratio(SNR).展开更多
Memory deficit,which is often associated with aging and many psychiatric,neurological,and neurodegenerative diseases,has been a challenging issue for treatment.Up till now,all potential drug candidates have failed to ...Memory deficit,which is often associated with aging and many psychiatric,neurological,and neurodegenerative diseases,has been a challenging issue for treatment.Up till now,all potential drug candidates have failed to produce satisfa ctory effects.Therefore,in the search for a solution,we found that a treatment with the gene corresponding to the RGS14414protein in visual area V2,a brain area connected with brain circuits of the ventral stream and the medial temporal lobe,which is crucial for object recognition memory(ORM),can induce enhancement of ORM.In this study,we demonstrated that the same treatment with RGS14414in visual area V2,which is relatively unaffected in neurodegenerative diseases such as Alzheimer s disease,produced longlasting enhancement of ORM in young animals and prevent ORM deficits in rodent models of aging and Alzheimer’s disease.Furthermore,we found that the prevention of memory deficits was mediated through the upregulation of neuronal arbo rization and spine density,as well as an increase in brain-derived neurotrophic factor(BDNF).A knockdown of BDNF gene in RGS14414-treated aging rats and Alzheimer s disease model mice caused complete loss in the upregulation of neuronal structural plasticity and in the prevention of ORM deficits.These findings suggest that BDNF-mediated neuronal structural plasticity in area V2 is crucial in the prevention of memory deficits in RGS14414-treated rodent models of aging and Alzheimer’s disease.Therefore,our findings of RGS14414gene-mediated activation of neuronal circuits in visual area V2 have therapeutic relevance in the treatment of memory deficits.展开更多
A novel flash memory cell with stacked structure (Si substrate/SiGe quantum dots/tunneling oxide/polySi floating gate) is proposed and demonstrated to achieve enhanced F-N tunneling for both programming and erasing....A novel flash memory cell with stacked structure (Si substrate/SiGe quantum dots/tunneling oxide/polySi floating gate) is proposed and demonstrated to achieve enhanced F-N tunneling for both programming and erasing. Simulation results indicate the new structure provides high speed and reliability. Experimental results show that the operation voltage can be as much as 4V less than that of conventional full F-N tunneling NAND memory cells. Memory cells with the proposed structure can achieve higher speed, lower voltage, and higher reliability.展开更多
In this paper, a Distributed In-Memory Database (DIMDB) system is proposed to improve processing efficiency in mass data applications. The system uses an enhanced language similar to Structured Query Language (SQL...In this paper, a Distributed In-Memory Database (DIMDB) system is proposed to improve processing efficiency in mass data applications. The system uses an enhanced language similar to Structured Query Language (SQL) with a key-value storage schema. The design goals of the DIMDB system is described and its system architecture is discussed. Operation flow and the enhanced SOL-like language are also discussed, and experimental results are used to test the validity of the system.展开更多
基于深度神经网络的方法已经在语声增强领域得到了广泛的应用,然而若想取得理想的性能,一般需要规模较大且复杂度较高的模型。因此,在计算资源有限的设备或对延时要求高的环境下容易出现部署困难的问题。为了解决此问题,提出了一种基于...基于深度神经网络的方法已经在语声增强领域得到了广泛的应用,然而若想取得理想的性能,一般需要规模较大且复杂度较高的模型。因此,在计算资源有限的设备或对延时要求高的环境下容易出现部署困难的问题。为了解决此问题,提出了一种基于深度复卷积递归网络的师生学习语声增强方法。在师生深度复卷积递归网络模型结构中间的复长短时记忆递归模块提取实部和虚部特征流,并分别计算帧级师生距离损失以进行知识转移。同时使用多分辨率频谱损失以进一步提升低复杂度学生模型的性能。实验在公开数据集Voice Bank Demand和DNS Challenge上进行,结果显示所提方法相对于基线学生模型在各项指标上均有明显提升。展开更多
文摘Speech enhancement is the task of taking a noisy speech input and pro-ducing an enhanced speech output.In recent years,the need for speech enhance-ment has been increased due to challenges that occurred in various applications such as hearing aids,Automatic Speech Recognition(ASR),and mobile speech communication systems.Most of the Speech Enhancement research work has been carried out for English,Chinese,and other European languages.Only a few research works involve speech enhancement in Indian regional Languages.In this paper,we propose a two-fold architecture to perform speech enhancement for Tamil speech signal based on convolutional recurrent neural network(CRN)that addresses the speech enhancement in a real-time single channel or track of sound created by the speaker.In thefirst stage mask based long short-term mem-ory(LSTM)is used for noise suppression along with loss function and in the sec-ond stage,Convolutional Encoder-Decoder(CED)is used for speech restoration.The proposed model is evaluated on various speaker and noisy environments like Babble noise,car noise,and white Gaussian noise.The proposed CRN model improves speech quality by 0.1 points when compared with the LSTM base model and also CRN requires fewer parameters for training.The performance of the pro-posed model is outstanding even in low Signal to Noise Ratio(SNR).
基金supported by grants from the Ministerio de Economia y Competitividad(BFU2013-43458-R)Junta de Andalucia(P12-CTS-1694 and Proyexcel-00422)to ZUK。
文摘Memory deficit,which is often associated with aging and many psychiatric,neurological,and neurodegenerative diseases,has been a challenging issue for treatment.Up till now,all potential drug candidates have failed to produce satisfa ctory effects.Therefore,in the search for a solution,we found that a treatment with the gene corresponding to the RGS14414protein in visual area V2,a brain area connected with brain circuits of the ventral stream and the medial temporal lobe,which is crucial for object recognition memory(ORM),can induce enhancement of ORM.In this study,we demonstrated that the same treatment with RGS14414in visual area V2,which is relatively unaffected in neurodegenerative diseases such as Alzheimer s disease,produced longlasting enhancement of ORM in young animals and prevent ORM deficits in rodent models of aging and Alzheimer’s disease.Furthermore,we found that the prevention of memory deficits was mediated through the upregulation of neuronal arbo rization and spine density,as well as an increase in brain-derived neurotrophic factor(BDNF).A knockdown of BDNF gene in RGS14414-treated aging rats and Alzheimer s disease model mice caused complete loss in the upregulation of neuronal structural plasticity and in the prevention of ORM deficits.These findings suggest that BDNF-mediated neuronal structural plasticity in area V2 is crucial in the prevention of memory deficits in RGS14414-treated rodent models of aging and Alzheimer’s disease.Therefore,our findings of RGS14414gene-mediated activation of neuronal circuits in visual area V2 have therapeutic relevance in the treatment of memory deficits.
文摘A novel flash memory cell with stacked structure (Si substrate/SiGe quantum dots/tunneling oxide/polySi floating gate) is proposed and demonstrated to achieve enhanced F-N tunneling for both programming and erasing. Simulation results indicate the new structure provides high speed and reliability. Experimental results show that the operation voltage can be as much as 4V less than that of conventional full F-N tunneling NAND memory cells. Memory cells with the proposed structure can achieve higher speed, lower voltage, and higher reliability.
文摘In this paper, a Distributed In-Memory Database (DIMDB) system is proposed to improve processing efficiency in mass data applications. The system uses an enhanced language similar to Structured Query Language (SQL) with a key-value storage schema. The design goals of the DIMDB system is described and its system architecture is discussed. Operation flow and the enhanced SOL-like language are also discussed, and experimental results are used to test the validity of the system.
文摘基于深度神经网络的方法已经在语声增强领域得到了广泛的应用,然而若想取得理想的性能,一般需要规模较大且复杂度较高的模型。因此,在计算资源有限的设备或对延时要求高的环境下容易出现部署困难的问题。为了解决此问题,提出了一种基于深度复卷积递归网络的师生学习语声增强方法。在师生深度复卷积递归网络模型结构中间的复长短时记忆递归模块提取实部和虚部特征流,并分别计算帧级师生距离损失以进行知识转移。同时使用多分辨率频谱损失以进一步提升低复杂度学生模型的性能。实验在公开数据集Voice Bank Demand和DNS Challenge上进行,结果显示所提方法相对于基线学生模型在各项指标上均有明显提升。