This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighte...This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighted.The influence of inter-layer couplings on the target controllability of multi-layer networks is discussed.It is found that even if there exists a layer which is not target controllable,the entire multi-layer network can still be target controllable due to the inter-layer couplings.For the multi-layer networks with general structure,a necessary and sufficient condition for target controllability is given by establishing the relationship between uncontrollable subspace and output matrix.By the derived condition,it can be found that the system may be target controllable even if it is not state controllable.On this basis,two corollaries are derived,which clarify the relationship between target controllability,state controllability and output controllability.For the multi-layer networks where the inter-layer couplings are directed chains and directed stars,sufficient conditions for target controllability of networked systems are given,respectively.These conditions are easier to verify than the classic criterion.展开更多
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ...In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.展开更多
Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory...Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production.展开更多
BACKGROUND Lymph node ratio(LNR)was demonstrated to play a crucial role in the prognosis of many tumors.However,research concerning the prognostic value of LNR in postoperative gastric neuroendocrine neoplasm(NEN)pati...BACKGROUND Lymph node ratio(LNR)was demonstrated to play a crucial role in the prognosis of many tumors.However,research concerning the prognostic value of LNR in postoperative gastric neuroendocrine neoplasm(NEN)patients was limited.AIM To explore the prognostic value of LNR in postoperative gastric NEN patients and to combine LNR to develop prognostic models.METHODS A total of 286 patients from the Surveillance,Epidemiology,and End Results database were divided into the training set and validation set at a ratio of 8:2.92 patients from the First Affiliated Hospital of Soochow University in China were designated as a test set.Cox regression analysis was used to explore the relationship between LNR and disease-specific survival(DSS)of gastric NEN patients.Random survival forest(RSF)algorithm and Cox proportional hazards(CoxPH)analysis were applied to develop models to predict DSS respectively,and compared with the 8th edition American Joint Committee on Cancer(AJCC)tumornode-metastasis(TNM)staging.RESULTS Multivariate analyses indicated that LNR was an independent prognostic factor for postoperative gastric NEN patients and a higher LNR was accompanied by a higher risk of death.The RSF model exhibited the best performance in predicting DSS,with the C-index in the test set being 0.769[95%confidence interval(CI):0.691-0.846]outperforming the CoxPH model(0.744,95%CI:0.665-0.822)and the 8th edition AJCC TNM staging(0.723,95%CI:0.613-0.833).The calibration curves and decision curve analysis(DCA)demonstrated the RSF model had good calibration and clinical benefits.Furthermore,the RSF model could perform risk stratification and individual prognosis prediction effectively.CONCLUSION A higher LNR indicated a lower DSS in postoperative gastric NEN patients.The RSF model outperformed the CoxPH model and the 8th edition AJCC TNM staging in the test set,showing potential in clinical practice.展开更多
Multi-layer sandstone reservoirs occur globally and are currently in international production. The 3D characteristics of these reservoirs are too complicated to be accurately delineated by general structural-facies-re...Multi-layer sandstone reservoirs occur globally and are currently in international production. The 3D characteristics of these reservoirs are too complicated to be accurately delineated by general structural-facies-reservoir modelling. In view of the special geological features, such as the vertical architecture of sandstone and mudstone interbeds, the lateral stable sedimentation and the strong heterogeneity of reservoir poroperm and fluid distribution, we developed a new three-stage and six-phase procedure for 3D characterization of multi-layer sandstone reservoirs. The procedure comprises two-phase structural modelling, two-phase facies modelling and modelling of two types of reservoir properties. Using this procedure, we established models of the formation structure, sand body structure and microfacies, reservoir facies and properties including porosity, permeability and gas saturation and provided a 3D fine-scale, systematic characterization of the Sebei multi-layer sandstone gas field, China. This new procedure, validated by the Sebei gas field, can be applied to characterize similar multi-layer sandstone reservoirs.展开更多
In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper c...In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation.展开更多
A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(...A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(FSS),which is printed on PI using conductive ink.To investigate this absorber,both one-dimensional analogous circuit analysis and three-dimensional full-wave simulation based on a physical model are provided.Various crucial electromagnetic properties,such as absorption,effective impedance,complex permittivity and permeability,electric current distribution and magnetic field distribution at resonant peak points,are studied in detail.Analysis shows that the working frequency of this absorber covers entire S,C,X,Ku,K and Ka bands with a minimum thickness of 0.098λ_(max)(λ_(max) is the maximum wavelength in the absorption band),and the fractional bandwidth(FBW)reaches 181.1%.Moreover,the reflection coefficient is less than-10 dB at 1.998 GHz–40.056 GHz at normal incidence,and the absorptivity of the plane wave is greater than 80%when the incident angle is smaller than 50°.Furthermore,the proposed absorber is experimentally validated,and the experimental results show good agreement with the simulation results,which demonstrates the potential applicability of this absorber at 2 GHz–40 GHz.展开更多
The polyurethane foam(PU)compressible layer is a viable solution to the problem of damage to the secondary lining in squeezing tunnels.Nevertheless,the mechanical behaviour of the multi-layer yielding supports has not...The polyurethane foam(PU)compressible layer is a viable solution to the problem of damage to the secondary lining in squeezing tunnels.Nevertheless,the mechanical behaviour of the multi-layer yielding supports has not been thoroughly investigated.To fill this gap,large-scale model tests were conducted in this study.The synergistic load-bearing mechanics were analyzed using the convergenceconfinement method.Two types of multi-layer yielding supports with different thicknesses(2.5 cm,3.75 cm and 5 cm)of PU compressible layers were investigated respectively.Digital image correlation(DIC)analysis and acoustic emission(AE)techniques were used for detecting the deformation fields and damage evolution of the multi-layer yielding supports in real-time.Results indicated that the loaddisplacement relationship of the multi-layer yielding supports could be divided into the crack initiation,crack propagation,strain-hardening,and failure stages.Compared with those of the stiff support,the toughness,deformability and ultimate load of the yielding supports were increased by an average of 225%,61%and 32%,respectively.Additionally,the PU compressible layer is positioned between two primary linings to allow the yielding support to have greater mechanical properties.The analysis of the synergistic bearing effect suggested that the thickness of PU compressible layer and its location significantly affect the mechanical properties of the yielding supports.The use of yielding supports with a compressible layer positioned between the primary and secondary linings is recommended to mitigate the effects of high geo-stress in squeezing tunnels.展开更多
BACKGROUND Gastric cancer is one of the most common malignant tumors in the digestive system,ranking sixth in incidence and fourth in mortality worldwide.Since 42.5%of metastatic lymph nodes in gastric cancer belong t...BACKGROUND Gastric cancer is one of the most common malignant tumors in the digestive system,ranking sixth in incidence and fourth in mortality worldwide.Since 42.5%of metastatic lymph nodes in gastric cancer belong to nodule type and peripheral type,the application of imaging diagnosis is restricted.AIM To establish models for predicting the risk of lymph node metastasis in gastric cancer patients using machine learning(ML)algorithms and to evaluate their pre-dictive performance in clinical practice.METHODS Data of a total of 369 patients who underwent radical gastrectomy at the Depart-ment of General Surgery of Affiliated Hospital of Xuzhou Medical University(Xuzhou,China)from March 2016 to November 2019 were collected and retro-spectively analyzed as the training group.In addition,data of 123 patients who underwent radical gastrectomy at the Department of General Surgery of Jining First People’s Hospital(Jining,China)were collected and analyzed as the verifi-cation group.Seven ML models,including decision tree,random forest,support vector machine(SVM),gradient boosting machine,naive Bayes,neural network,and logistic regression,were developed to evaluate the occurrence of lymph node metastasis in patients with gastric cancer.The ML models were established fo-llowing ten cross-validation iterations using the training dataset,and subsequently,each model was assessed using the test dataset.The models’performance was evaluated by comparing the area under the receiver operating characteristic curve of each model.RESULTS Among the seven ML models,except for SVM,the other ones exhibited higher accuracy and reliability,and the influences of various risk factors on the models are intuitive.CONCLUSION The ML models developed exhibit strong predictive capabilities for lymph node metastasis in gastric cancer,which can aid in personalized clinical diagnosis and treatment.展开更多
This paper introduces the construction of the multi-layered biaxial weft knitted fabric (MBWK fabric) and studies the locking angle of this kind of fabric. Moreover, a locking angle model of the MBWK fabric is estab...This paper introduces the construction of the multi-layered biaxial weft knitted fabric (MBWK fabric) and studies the locking angle of this kind of fabric. Moreover, a locking angle model of the MBWK fabric is established for the first time according to its unique construction. Two kinds of locking angles are considered under different restraint conditions: the locking angle θ1 controlled by the inserting yarns and the locking angle θ2 controlled by the stitch yarns. It is concluded that the ultimate value of the locking angle θ is the larger one of the two angles.展开更多
In this paper, the new model of the real gas filtration problem has been presented multi-layered gas reservoir, when a gas well output and wellbore storage may be variable, and have obtained the exact solutions of pre...In this paper, the new model of the real gas filtration problem has been presented multi-layered gas reservoir, when a gas well output and wellbore storage may be variable, and have obtained the exact solutions of pressure distribution for each reservoir bed under three kinds of typical out-boundary conditions. As a special case, according to the new model have also obtained the qxact solutions of presssure distribution in homogeneous reservoir and is given important application in gas reservoir development.展开更多
The large-scale population accumulation in modem cities has become one of their important characteristics. With the development of urbanization in the world, the large-scale gathering activities are increasing, and th...The large-scale population accumulation in modem cities has become one of their important characteristics. With the development of urbanization in the world, the large-scale gathering activities are increasing, and the accidents caused by them are also rising. At the same time, the evacuation of visitors is faced with severe challenges in the event of an emergency such as terrorist attacks. The main problem for tourists is how to evacuate quickly and safely in an emergency. The Louvre is one of the largest and most visited art museums in the world.Visitors are large and come from all over the world, the volume of passengers varies greatly, and the interior architecture design is complicated, etc. These characteristics challenge the design of evacuation paths. Based on the consideration of these factors, we should develop the optimal evacuation scheme and minimize the accident risk and evacuation cost.展开更多
Background: According to the 7 th edition of the American Joint Committee on Cancer(AJCC) staging system, over50% of patients with nasopharyngeal carcinoma(NPC) have N1 disease at initial diagnosis. However, patients ...Background: According to the 7 th edition of the American Joint Committee on Cancer(AJCC) staging system, over50% of patients with nasopharyngeal carcinoma(NPC) have N1 disease at initial diagnosis. However, patients with N1 NPC are relatively under-researched, and the metastasis risk of this group is not well-stratified. This study aimed to evaluate the prognostic values of gross tumor volume of metastatic regional lymph node(GTVnd) and pretreatment serum copy number of Epstein-Barr virus(EBV) DNA in predicting distant metastasis of patients with N1 NPC, and to develop an integrated prognostic model that incorporates GTVnd and EBV DNA copy number for this group of patients.Methods: The medical records of 787 newly diagnosed patients with nonmetastatic, histologically proven N1 NPC who were treated at Sun Yat-sen University Cancer Center between November 2009 and February 2012 were analyzed. Computed tomography-derived GTVnd was measured using the summation-of-area technique. Blood samples were collected before treatment to quantify plasma EBV DNA. The receiver operating characteristic(ROC) curve analysis was used to evaluate the cut-off point for GTVnd, and the area under the ROC curve was used to assess the predicted validity of GTVnd. The survival rates were assessed by Kaplan-Meier analysis, and the survival curves were compared using a log-rank test. Multivariate analysis was conducted using the Cox proportional hazard regression model.Results: The 5-year distant metastasis-free survival(DMFS) rates for patients with GTVnd > 18.9 vs.≤ 18.9 mL were82.2% vs. 93.2%(P < 0.001), and for patients with EBV DNA copy number > 4000 vs. < 4000 copies/mL were 83.5% vs.93.9%(P < 0.001). After adjusting for GTVnd, EBV DNA copy number, and T category in the Cox regression model, both GTVnd > 18.9 mL and EBV DNA copy number > 4000 copies/mL were significantly associated with poor prognosis(both P < 0.05). According to combination of GTVnd and EBV DNA copy number, all patients were divided into low-,moderate-, and high-risk groups, with the 5-year DMFS rates of 96.1,87.4, and 73.8%, respectively(P < 0.001). Multivariate analysis confirmed the prognostic value of this model for distant metastatic risk stratification(hazard ratio [HR],4.17; 95% confidence interval [CI] 2.34-7.59; P < 0.001).Conclusions: GTVnd and serum EBV DNA copy number are independent prognostic factors for predicting distant metastasis in NPC patients with N1 disease. The prognostic model incorporating GTVnd and EBV DNA copy number may improve metastatic risk stratification for this group of patients.展开更多
Based on the static compression experiments, the compressive stress-strain curve of multi-layer corrugated boards is simplified into three sections of linear elasticity, sub-buckling going with local collapse and dens...Based on the static compression experiments, the compressive stress-strain curve of multi-layer corrugated boards is simplified into three sections of linear elasticity, sub-buckling going with local collapse and densification. By considering the structure factors of multi-layer corrugated boards, the energy absorption model is obtained and characterized by the structure factors of corrugated cell-wall. The model is standardized by the solid modulus and it is universal for corrugated structures of different basis material. In the liner-elastic section, with the increase of the load, the energy absorption per unit volume of multi-layer corrugated boards gradually increases; in the sub-buckling section going with local collapse, the compression resistance of multi-layer corrugated boards goes on under a nearly constant load, but the energy absorption per unit volume rapidly increases with the increase of the compression strain. It is shown as an ascending curve in the energy absorption diagram. In the densification section, the corrugated sandwich core has no energy absorption capability. A good consistency is achieved between theoretical and experimental energy absorption curves. In designing the cushioning package, the cushioning properties can be evaluated by the theoretical model without more experiments. The suggested method to develop the energy absorption diagram for corrugated boards can be used to characterize the cushioning properties and optimize the structures of corrugated sandwich structures.展开更多
We present a design method for calculating and optimizing sound absorption coefficient of multi-layered porous fibrous metals (PFM) in the low frequency range. PFM is simplified as an equivalent idealized sheet with...We present a design method for calculating and optimizing sound absorption coefficient of multi-layered porous fibrous metals (PFM) in the low frequency range. PFM is simplified as an equivalent idealized sheet with all metallic fibers aligned in one direction and distributed in periodic hexagonal patterns. We use a phenomenological model in the literature to investigate the effects of pore geometrical parameters (fiber diameter and gap) on sound absorption performance. The sound absorption coefficient of multi- layered PFMs is calculated using impedance translation theorem, To demonstrate the validity of the present model, we compare the predicted results with the experimental data. With the average sound absorption (low frequency range) as the objective function and the fiber gaps as the design variables, an optimization method for multi-layered fibrous metals is proposed. A new fibrous layout with given porosity of multi-layered fibrous metals is suggested to achieve optimal low frequency sound absorption. The sound absorption coefficient of the optimal multi-layered fibrous metal is higher than the single- layered fibrous metal, and a significant effect of the fibrous material on sound absorption is found due to the surface Dorosity of the multi-layered fibrous.展开更多
Overlapping community detection in a network is a challenging issue which attracts lots of attention in recent years.A notion of hesitant node(HN) is proposed. An HN contacts with multiple communities while the comm...Overlapping community detection in a network is a challenging issue which attracts lots of attention in recent years.A notion of hesitant node(HN) is proposed. An HN contacts with multiple communities while the communications are not strong or even accidental, thus the HN holds an implicit community structure.However, HNs are not rare in the real world network. It is important to identify them because they can be efficient hubs which form the overlapping portions of communities or simple attached nodes to some communities. Current approaches have difficulties in identifying and clustering HNs. A density-based rough set model(DBRSM) is proposed by combining the virtue of densitybased algorithms and rough set models. It incorporates the macro perspective of the community structure of the whole network and the micro perspective of the local information held by HNs, which would facilitate the further "growth" of HNs in community. We offer a theoretical support for this model from the point of strength of the trust path. The experiments on the real-world and synthetic datasets show the practical significance of analyzing and clustering the HNs based on DBRSM. Besides, the clustering based on DBRSM promotes the modularity optimization.展开更多
Technologically, multi-layer fluid models are important in understanding fluid-fluid or fluid-nanoparticle interactions and their effects on flow and heat transfer characteristics. However, to the best of the authors...Technologically, multi-layer fluid models are important in understanding fluid-fluid or fluid-nanoparticle interactions and their effects on flow and heat transfer characteristics. However, to the best of the authors' knowledge, little attention has been paid to the study of three-layer fluid models with nanofluids. Therefore, a three-layer fluid flow model with nanofluids is formulated in this paper. The governing coupled nonlinear differential equations of the problem are non-dimensionalized by using appropriate fundamental quantities. The resulting multi-point boundary value problem is solved numerically by quasi-linearization and Richardson's extrapolation with modified boundary conditions. The effects of the model parameters on the flow and heat transfer are obtained and analyzed. The results show that an increase in the nanoparticle concentration in the base fluid can modify the fluid-velocity at the interface of the two fluids and reduce the shear not only at the surface of the clear fluid but also at the interface between them. That is, nanofluids play a vital role in modifying the flow phenomena. Therefore, one can use nanofluids to obtain the desired qualities for the multi-fluid flow and heat transfer characteristics.展开更多
To deploy sensor nodes over the area of interest,a scheme,named node scattering manipulation,was proposed.It adopted the following method:during node scattering,the initial states of every node,including the velocity ...To deploy sensor nodes over the area of interest,a scheme,named node scattering manipulation,was proposed.It adopted the following method:during node scattering,the initial states of every node,including the velocity and direction,were manipulated so that it would land in a region with a certain probability;every sensor was relocated in order to improve the coverage and connectivity.Simultaneously,to easily analyze the process of scattering sensors,a trajectory model was also proposed.Integrating node scattering manipulation with trajectory model,the node deployment in wireless sensor network was thoroughly renovated,that is,this scheme can scatter sensors.In practice,the scheme was operable compared with the previous achievements.The simulation results demonstrate the superiority and feasibility of the scheme,and also show that the energy consumption for sensors relocation is reduced.展开更多
Based on the Gurson-Tvergaard-Needleman(GTN)damage model considering the defect damage evolution,the influence of void defects caused by the casting process on cast steel nodes mechanical properties was studied.Firstl...Based on the Gurson-Tvergaard-Needleman(GTN)damage model considering the defect damage evolution,the influence of void defects caused by the casting process on cast steel nodes mechanical properties was studied.Firstly,based on the GTN damage model,the model s parameter combination of G20Mn5N cast steel was given.Then,the mechanical properties of cast steel nodes were evaluated using the GTN damage model in ABAQUS software,and the influence of model parameters on the failure results was investigated.The results show that the cast steel node considering the GTN damage model fails under 1.93 times of the load.The bearing capacity is lower than that of the bilinear model,and the failure speed is faster.Changes in model parameters will cause a shift in the failure critical point.Meanwhile,the plastic strain index affects the void volume fractions,which shows different variation laws under uniaxial tensile and cyclic loads.Therefore,the GTN damage model establishes the relationship between the micro-defects and macro-mechanical properties of materials,which can better simulate the failure results of structures.展开更多
Accurate identification of influential nodes facilitates the control of rumor propagation and interrupts the spread of computer viruses.Many classical approaches have been proposed by researchers regarding different a...Accurate identification of influential nodes facilitates the control of rumor propagation and interrupts the spread of computer viruses.Many classical approaches have been proposed by researchers regarding different aspects.To explore the impact of location information in depth,this paper proposes an improved global structure model to characterize the influence of nodes.The method considers both the node’s self-information and the role of the location information of neighboring nodes.First,degree centrality of each node is calculated,and then degree value of each node is used to represent self-influence,and degree values of the neighbor layer nodes are divided by the power of the path length,which is path attenuation used to represent global influence.Finally,an extended improved global structure model that considers the nearest neighbor information after combining self-influence and global influence is proposed to identify influential nodes.In this paper,the propagation process of a real network is obtained by simulation with the SIR model,and the effectiveness of the proposed method is verified from two aspects of discrimination and accuracy.The experimental results show that the proposed method is more accurate in identifying influential nodes than other comparative methods with multiple networks.展开更多
基金supported by the National Natural Science Foundation of China (U1808205)Hebei Natural Science Foundation (F2000501005)。
文摘This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighted.The influence of inter-layer couplings on the target controllability of multi-layer networks is discussed.It is found that even if there exists a layer which is not target controllable,the entire multi-layer network can still be target controllable due to the inter-layer couplings.For the multi-layer networks with general structure,a necessary and sufficient condition for target controllability is given by establishing the relationship between uncontrollable subspace and output matrix.By the derived condition,it can be found that the system may be target controllable even if it is not state controllable.On this basis,two corollaries are derived,which clarify the relationship between target controllability,state controllability and output controllability.For the multi-layer networks where the inter-layer couplings are directed chains and directed stars,sufficient conditions for target controllability of networked systems are given,respectively.These conditions are easier to verify than the classic criterion.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62373197 and 61873326)。
文摘In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.
文摘Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production.
基金Supported by the Science and Technology Plan of Suzhou City,No.SKY2021038.
文摘BACKGROUND Lymph node ratio(LNR)was demonstrated to play a crucial role in the prognosis of many tumors.However,research concerning the prognostic value of LNR in postoperative gastric neuroendocrine neoplasm(NEN)patients was limited.AIM To explore the prognostic value of LNR in postoperative gastric NEN patients and to combine LNR to develop prognostic models.METHODS A total of 286 patients from the Surveillance,Epidemiology,and End Results database were divided into the training set and validation set at a ratio of 8:2.92 patients from the First Affiliated Hospital of Soochow University in China were designated as a test set.Cox regression analysis was used to explore the relationship between LNR and disease-specific survival(DSS)of gastric NEN patients.Random survival forest(RSF)algorithm and Cox proportional hazards(CoxPH)analysis were applied to develop models to predict DSS respectively,and compared with the 8th edition American Joint Committee on Cancer(AJCC)tumornode-metastasis(TNM)staging.RESULTS Multivariate analyses indicated that LNR was an independent prognostic factor for postoperative gastric NEN patients and a higher LNR was accompanied by a higher risk of death.The RSF model exhibited the best performance in predicting DSS,with the C-index in the test set being 0.769[95%confidence interval(CI):0.691-0.846]outperforming the CoxPH model(0.744,95%CI:0.665-0.822)and the 8th edition AJCC TNM staging(0.723,95%CI:0.613-0.833).The calibration curves and decision curve analysis(DCA)demonstrated the RSF model had good calibration and clinical benefits.Furthermore,the RSF model could perform risk stratification and individual prognosis prediction effectively.CONCLUSION A higher LNR indicated a lower DSS in postoperative gastric NEN patients.The RSF model outperformed the CoxPH model and the 8th edition AJCC TNM staging in the test set,showing potential in clinical practice.
基金granted by the National Basic Research Program of China(grant no.2014CB239205)National Science and Technology Major Project of China (grant no.20011ZX05030-005-003)
文摘Multi-layer sandstone reservoirs occur globally and are currently in international production. The 3D characteristics of these reservoirs are too complicated to be accurately delineated by general structural-facies-reservoir modelling. In view of the special geological features, such as the vertical architecture of sandstone and mudstone interbeds, the lateral stable sedimentation and the strong heterogeneity of reservoir poroperm and fluid distribution, we developed a new three-stage and six-phase procedure for 3D characterization of multi-layer sandstone reservoirs. The procedure comprises two-phase structural modelling, two-phase facies modelling and modelling of two types of reservoir properties. Using this procedure, we established models of the formation structure, sand body structure and microfacies, reservoir facies and properties including porosity, permeability and gas saturation and provided a 3D fine-scale, systematic characterization of the Sebei multi-layer sandstone gas field, China. This new procedure, validated by the Sebei gas field, can be applied to characterize similar multi-layer sandstone reservoirs.
基金This project (No. 49070196) is funded by the National Science Foundation of China.
文摘In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation.
基金Project supported by the China Post-doctoral Science Foundation(Grant No.2020M671834)the Anhui Province Post-doctoral Science Foundation,China(Grant No.2020A397).
文摘A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(FSS),which is printed on PI using conductive ink.To investigate this absorber,both one-dimensional analogous circuit analysis and three-dimensional full-wave simulation based on a physical model are provided.Various crucial electromagnetic properties,such as absorption,effective impedance,complex permittivity and permeability,electric current distribution and magnetic field distribution at resonant peak points,are studied in detail.Analysis shows that the working frequency of this absorber covers entire S,C,X,Ku,K and Ka bands with a minimum thickness of 0.098λ_(max)(λ_(max) is the maximum wavelength in the absorption band),and the fractional bandwidth(FBW)reaches 181.1%.Moreover,the reflection coefficient is less than-10 dB at 1.998 GHz–40.056 GHz at normal incidence,and the absorptivity of the plane wave is greater than 80%when the incident angle is smaller than 50°.Furthermore,the proposed absorber is experimentally validated,and the experimental results show good agreement with the simulation results,which demonstrates the potential applicability of this absorber at 2 GHz–40 GHz.
基金supported by the National Key Research and Development Program of China (Grant No.2021YFB2600800)the National Key Research and Development 451 Program of China (Grant No.2021YFC3100803)the Guangdong Innovative and Entrepreneurial Research Team Program (Grant No.2016ZT06N340).
文摘The polyurethane foam(PU)compressible layer is a viable solution to the problem of damage to the secondary lining in squeezing tunnels.Nevertheless,the mechanical behaviour of the multi-layer yielding supports has not been thoroughly investigated.To fill this gap,large-scale model tests were conducted in this study.The synergistic load-bearing mechanics were analyzed using the convergenceconfinement method.Two types of multi-layer yielding supports with different thicknesses(2.5 cm,3.75 cm and 5 cm)of PU compressible layers were investigated respectively.Digital image correlation(DIC)analysis and acoustic emission(AE)techniques were used for detecting the deformation fields and damage evolution of the multi-layer yielding supports in real-time.Results indicated that the loaddisplacement relationship of the multi-layer yielding supports could be divided into the crack initiation,crack propagation,strain-hardening,and failure stages.Compared with those of the stiff support,the toughness,deformability and ultimate load of the yielding supports were increased by an average of 225%,61%and 32%,respectively.Additionally,the PU compressible layer is positioned between two primary linings to allow the yielding support to have greater mechanical properties.The analysis of the synergistic bearing effect suggested that the thickness of PU compressible layer and its location significantly affect the mechanical properties of the yielding supports.The use of yielding supports with a compressible layer positioned between the primary and secondary linings is recommended to mitigate the effects of high geo-stress in squeezing tunnels.
文摘BACKGROUND Gastric cancer is one of the most common malignant tumors in the digestive system,ranking sixth in incidence and fourth in mortality worldwide.Since 42.5%of metastatic lymph nodes in gastric cancer belong to nodule type and peripheral type,the application of imaging diagnosis is restricted.AIM To establish models for predicting the risk of lymph node metastasis in gastric cancer patients using machine learning(ML)algorithms and to evaluate their pre-dictive performance in clinical practice.METHODS Data of a total of 369 patients who underwent radical gastrectomy at the Depart-ment of General Surgery of Affiliated Hospital of Xuzhou Medical University(Xuzhou,China)from March 2016 to November 2019 were collected and retro-spectively analyzed as the training group.In addition,data of 123 patients who underwent radical gastrectomy at the Department of General Surgery of Jining First People’s Hospital(Jining,China)were collected and analyzed as the verifi-cation group.Seven ML models,including decision tree,random forest,support vector machine(SVM),gradient boosting machine,naive Bayes,neural network,and logistic regression,were developed to evaluate the occurrence of lymph node metastasis in patients with gastric cancer.The ML models were established fo-llowing ten cross-validation iterations using the training dataset,and subsequently,each model was assessed using the test dataset.The models’performance was evaluated by comparing the area under the receiver operating characteristic curve of each model.RESULTS Among the seven ML models,except for SVM,the other ones exhibited higher accuracy and reliability,and the influences of various risk factors on the models are intuitive.CONCLUSION The ML models developed exhibit strong predictive capabilities for lymph node metastasis in gastric cancer,which can aid in personalized clinical diagnosis and treatment.
文摘This paper introduces the construction of the multi-layered biaxial weft knitted fabric (MBWK fabric) and studies the locking angle of this kind of fabric. Moreover, a locking angle model of the MBWK fabric is established for the first time according to its unique construction. Two kinds of locking angles are considered under different restraint conditions: the locking angle θ1 controlled by the inserting yarns and the locking angle θ2 controlled by the stitch yarns. It is concluded that the ultimate value of the locking angle θ is the larger one of the two angles.
文摘In this paper, the new model of the real gas filtration problem has been presented multi-layered gas reservoir, when a gas well output and wellbore storage may be variable, and have obtained the exact solutions of pressure distribution for each reservoir bed under three kinds of typical out-boundary conditions. As a special case, according to the new model have also obtained the qxact solutions of presssure distribution in homogeneous reservoir and is given important application in gas reservoir development.
文摘The large-scale population accumulation in modem cities has become one of their important characteristics. With the development of urbanization in the world, the large-scale gathering activities are increasing, and the accidents caused by them are also rising. At the same time, the evacuation of visitors is faced with severe challenges in the event of an emergency such as terrorist attacks. The main problem for tourists is how to evacuate quickly and safely in an emergency. The Louvre is one of the largest and most visited art museums in the world.Visitors are large and come from all over the world, the volume of passengers varies greatly, and the interior architecture design is complicated, etc. These characteristics challenge the design of evacuation paths. Based on the consideration of these factors, we should develop the optimal evacuation scheme and minimize the accident risk and evacuation cost.
基金supported by Grants from the National Natural Science Foundation of China(Nos.81372409,81402532)the Sun Yat-sen University Clinical Research 5010 Program(No.2012011)
文摘Background: According to the 7 th edition of the American Joint Committee on Cancer(AJCC) staging system, over50% of patients with nasopharyngeal carcinoma(NPC) have N1 disease at initial diagnosis. However, patients with N1 NPC are relatively under-researched, and the metastasis risk of this group is not well-stratified. This study aimed to evaluate the prognostic values of gross tumor volume of metastatic regional lymph node(GTVnd) and pretreatment serum copy number of Epstein-Barr virus(EBV) DNA in predicting distant metastasis of patients with N1 NPC, and to develop an integrated prognostic model that incorporates GTVnd and EBV DNA copy number for this group of patients.Methods: The medical records of 787 newly diagnosed patients with nonmetastatic, histologically proven N1 NPC who were treated at Sun Yat-sen University Cancer Center between November 2009 and February 2012 were analyzed. Computed tomography-derived GTVnd was measured using the summation-of-area technique. Blood samples were collected before treatment to quantify plasma EBV DNA. The receiver operating characteristic(ROC) curve analysis was used to evaluate the cut-off point for GTVnd, and the area under the ROC curve was used to assess the predicted validity of GTVnd. The survival rates were assessed by Kaplan-Meier analysis, and the survival curves were compared using a log-rank test. Multivariate analysis was conducted using the Cox proportional hazard regression model.Results: The 5-year distant metastasis-free survival(DMFS) rates for patients with GTVnd > 18.9 vs.≤ 18.9 mL were82.2% vs. 93.2%(P < 0.001), and for patients with EBV DNA copy number > 4000 vs. < 4000 copies/mL were 83.5% vs.93.9%(P < 0.001). After adjusting for GTVnd, EBV DNA copy number, and T category in the Cox regression model, both GTVnd > 18.9 mL and EBV DNA copy number > 4000 copies/mL were significantly associated with poor prognosis(both P < 0.05). According to combination of GTVnd and EBV DNA copy number, all patients were divided into low-,moderate-, and high-risk groups, with the 5-year DMFS rates of 96.1,87.4, and 73.8%, respectively(P < 0.001). Multivariate analysis confirmed the prognostic value of this model for distant metastatic risk stratification(hazard ratio [HR],4.17; 95% confidence interval [CI] 2.34-7.59; P < 0.001).Conclusions: GTVnd and serum EBV DNA copy number are independent prognostic factors for predicting distant metastasis in NPC patients with N1 disease. The prognostic model incorporating GTVnd and EBV DNA copy number may improve metastatic risk stratification for this group of patients.
基金Funded by the National Natural Science Foundation of China (No.50905120)
文摘Based on the static compression experiments, the compressive stress-strain curve of multi-layer corrugated boards is simplified into three sections of linear elasticity, sub-buckling going with local collapse and densification. By considering the structure factors of multi-layer corrugated boards, the energy absorption model is obtained and characterized by the structure factors of corrugated cell-wall. The model is standardized by the solid modulus and it is universal for corrugated structures of different basis material. In the liner-elastic section, with the increase of the load, the energy absorption per unit volume of multi-layer corrugated boards gradually increases; in the sub-buckling section going with local collapse, the compression resistance of multi-layer corrugated boards goes on under a nearly constant load, but the energy absorption per unit volume rapidly increases with the increase of the compression strain. It is shown as an ascending curve in the energy absorption diagram. In the densification section, the corrugated sandwich core has no energy absorption capability. A good consistency is achieved between theoretical and experimental energy absorption curves. In designing the cushioning package, the cushioning properties can be evaluated by the theoretical model without more experiments. The suggested method to develop the energy absorption diagram for corrugated boards can be used to characterize the cushioning properties and optimize the structures of corrugated sandwich structures.
基金the support of the National Basic Research Program(973 Program)of China(Grant No.2011CB610304)the National Natural Science Foundation of China(Grant Nos.11332004 and 11402046)+2 种基金China Postdoctoral Science Foundation(No.2015M571296)the 111 Project(B14013)the CATIC Industrial Production Projects(Grant No.CXY2013DLLG32)
文摘We present a design method for calculating and optimizing sound absorption coefficient of multi-layered porous fibrous metals (PFM) in the low frequency range. PFM is simplified as an equivalent idealized sheet with all metallic fibers aligned in one direction and distributed in periodic hexagonal patterns. We use a phenomenological model in the literature to investigate the effects of pore geometrical parameters (fiber diameter and gap) on sound absorption performance. The sound absorption coefficient of multi- layered PFMs is calculated using impedance translation theorem, To demonstrate the validity of the present model, we compare the predicted results with the experimental data. With the average sound absorption (low frequency range) as the objective function and the fiber gaps as the design variables, an optimization method for multi-layered fibrous metals is proposed. A new fibrous layout with given porosity of multi-layered fibrous metals is suggested to achieve optimal low frequency sound absorption. The sound absorption coefficient of the optimal multi-layered fibrous metal is higher than the single- layered fibrous metal, and a significant effect of the fibrous material on sound absorption is found due to the surface Dorosity of the multi-layered fibrous.
基金supported by the National Natural Science Foundation of China(71271018)
文摘Overlapping community detection in a network is a challenging issue which attracts lots of attention in recent years.A notion of hesitant node(HN) is proposed. An HN contacts with multiple communities while the communications are not strong or even accidental, thus the HN holds an implicit community structure.However, HNs are not rare in the real world network. It is important to identify them because they can be efficient hubs which form the overlapping portions of communities or simple attached nodes to some communities. Current approaches have difficulties in identifying and clustering HNs. A density-based rough set model(DBRSM) is proposed by combining the virtue of densitybased algorithms and rough set models. It incorporates the macro perspective of the community structure of the whole network and the micro perspective of the local information held by HNs, which would facilitate the further "growth" of HNs in community. We offer a theoretical support for this model from the point of strength of the trust path. The experiments on the real-world and synthetic datasets show the practical significance of analyzing and clustering the HNs based on DBRSM. Besides, the clustering based on DBRSM promotes the modularity optimization.
基金supported by the Imam Khomeini International University of Iran(No.751166-91)
文摘Technologically, multi-layer fluid models are important in understanding fluid-fluid or fluid-nanoparticle interactions and their effects on flow and heat transfer characteristics. However, to the best of the authors' knowledge, little attention has been paid to the study of three-layer fluid models with nanofluids. Therefore, a three-layer fluid flow model with nanofluids is formulated in this paper. The governing coupled nonlinear differential equations of the problem are non-dimensionalized by using appropriate fundamental quantities. The resulting multi-point boundary value problem is solved numerically by quasi-linearization and Richardson's extrapolation with modified boundary conditions. The effects of the model parameters on the flow and heat transfer are obtained and analyzed. The results show that an increase in the nanoparticle concentration in the base fluid can modify the fluid-velocity at the interface of the two fluids and reduce the shear not only at the surface of the clear fluid but also at the interface between them. That is, nanofluids play a vital role in modifying the flow phenomena. Therefore, one can use nanofluids to obtain the desired qualities for the multi-fluid flow and heat transfer characteristics.
基金Project(2007AA01Z224) supported by National High-Tech Research and Development Program of China
文摘To deploy sensor nodes over the area of interest,a scheme,named node scattering manipulation,was proposed.It adopted the following method:during node scattering,the initial states of every node,including the velocity and direction,were manipulated so that it would land in a region with a certain probability;every sensor was relocated in order to improve the coverage and connectivity.Simultaneously,to easily analyze the process of scattering sensors,a trajectory model was also proposed.Integrating node scattering manipulation with trajectory model,the node deployment in wireless sensor network was thoroughly renovated,that is,this scheme can scatter sensors.In practice,the scheme was operable compared with the previous achievements.The simulation results demonstrate the superiority and feasibility of the scheme,and also show that the energy consumption for sensors relocation is reduced.
基金The National Key Research and Development Program of China(No.2017YFC0805100)the National Natural Science Foundation of China(No.51578137)the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Open Research Fund Program of Jiangsu Key Laboratory of Engineering Mechanics.
文摘Based on the Gurson-Tvergaard-Needleman(GTN)damage model considering the defect damage evolution,the influence of void defects caused by the casting process on cast steel nodes mechanical properties was studied.Firstly,based on the GTN damage model,the model s parameter combination of G20Mn5N cast steel was given.Then,the mechanical properties of cast steel nodes were evaluated using the GTN damage model in ABAQUS software,and the influence of model parameters on the failure results was investigated.The results show that the cast steel node considering the GTN damage model fails under 1.93 times of the load.The bearing capacity is lower than that of the bilinear model,and the failure speed is faster.Changes in model parameters will cause a shift in the failure critical point.Meanwhile,the plastic strain index affects the void volume fractions,which shows different variation laws under uniaxial tensile and cyclic loads.Therefore,the GTN damage model establishes the relationship between the micro-defects and macro-mechanical properties of materials,which can better simulate the failure results of structures.
基金supported by the National Natural Science Foundation of China(Grant No.11975307).
文摘Accurate identification of influential nodes facilitates the control of rumor propagation and interrupts the spread of computer viruses.Many classical approaches have been proposed by researchers regarding different aspects.To explore the impact of location information in depth,this paper proposes an improved global structure model to characterize the influence of nodes.The method considers both the node’s self-information and the role of the location information of neighboring nodes.First,degree centrality of each node is calculated,and then degree value of each node is used to represent self-influence,and degree values of the neighbor layer nodes are divided by the power of the path length,which is path attenuation used to represent global influence.Finally,an extended improved global structure model that considers the nearest neighbor information after combining self-influence and global influence is proposed to identify influential nodes.In this paper,the propagation process of a real network is obtained by simulation with the SIR model,and the effectiveness of the proposed method is verified from two aspects of discrimination and accuracy.The experimental results show that the proposed method is more accurate in identifying influential nodes than other comparative methods with multiple networks.