期刊文献+
共找到718篇文章
< 1 2 36 >
每页显示 20 50 100
Remaining Useful Life Prediction of Rail Based on Improved Pulse Separable Convolution Enhanced Transformer Encoder
1
作者 Zhongmei Wang Min Li +2 位作者 Jing He Jianhua Liu Lin Jia 《Journal of Transportation Technologies》 2024年第2期137-160,共24页
In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is di... In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is difficult to capture the long-term dependency relationship of the time series in the modeling of the long time series of rail damage, due to the coupling relationship of multi-channel data from multiple sensors. Here, in this paper, a novel RUL prediction model with an enhanced pulse separable convolution is used to solve this issue. Firstly, a coding module based on the improved pulse separable convolutional network is established to effectively model the relationship between the data. To enhance the network, an alternate gradient back propagation method is implemented. And an efficient channel attention (ECA) mechanism is developed for better emphasizing the useful pulse characteristics. Secondly, an optimized Transformer encoder was designed to serve as the backbone of the model. It has the ability to efficiently understand relationship between the data itself and each other at each time step of long time series with a full life cycle. More importantly, the Transformer encoder is improved by integrating pulse maximum pooling to retain more pulse timing characteristics. Finally, based on the characteristics of the front layer, the final predicted RUL value was provided and served as the end-to-end solution. The empirical findings validate the efficacy of the suggested approach in forecasting the rail RUL, surpassing various existing data-driven prognostication techniques. Meanwhile, the proposed method also shows good generalization performance on PHM2012 bearing data set. 展开更多
关键词 Equipment Health Prognostics Remaining Useful Life Prediction Pulse Separable Convolution Attention Mechanism transformer encoder
下载PDF
Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis 被引量:1
2
作者 Qiankun Zuo Junhua Hu +5 位作者 Yudong Zhang Junren Pan Changhong Jing Xuhang Chen Xiaobo Meng Jin Hong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2129-2147,共19页
The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders.The brain functional network is suitable to bridge the correlat... The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders.The brain functional network is suitable to bridge the correlation between abnormal connectivities and dementia disorders.However,it is challenging to access considerable amounts of brain functional network data,which hinders the widespread application of data-driven models in dementia diagnosis.In this study,a novel distribution-regularized adversarial graph auto-Encoder(DAGAE)with transformer is proposed to generate new fake brain functional networks to augment the brain functional network dataset,improving the dementia diagnosis accuracy of data-driven models.Specifically,the label distribution is estimated to regularize the latent space learned by the graph encoder,which canmake the learning process stable and the learned representation robust.Also,the transformer generator is devised to map the node representations into node-to-node connections by exploring the long-term dependence of highly-correlated distant brain regions.The typical topological properties and discriminative features can be preserved entirely.Furthermore,the generated brain functional networks improve the prediction performance using different classifiers,which can be applied to analyze other cognitive diseases.Attempts on the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset demonstrate that the proposed model can generate good brain functional networks.The classification results show adding generated data can achieve the best accuracy value of 85.33%,sensitivity value of 84.00%,specificity value of 86.67%.The proposed model also achieves superior performance compared with other related augmentedmodels.Overall,the proposedmodel effectively improves cognitive disease diagnosis by generating diverse brain functional networks. 展开更多
关键词 Adversarial graph encoder label distribution generative transformer functional brain connectivity graph convolutional network DEMENTIA
下载PDF
FMA-DETR:一种无编码器的Transformer目标检测方法 被引量:1
3
作者 周全 倪英豪 +2 位作者 莫玉玮 康彬 张索非 《信号处理》 CSCD 北大核心 2024年第6期1160-1170,共11页
DETR是第一个将Transformer应用于目标检测的视觉模型。在DETR结构中,Transformer编码器对已高度编码的图像特征进行再编码,这在一定程度上导致了网络功能的重复。此外,由于Transformer编码器具有多层深度堆叠的结构和巨大的参数量,导... DETR是第一个将Transformer应用于目标检测的视觉模型。在DETR结构中,Transformer编码器对已高度编码的图像特征进行再编码,这在一定程度上导致了网络功能的重复。此外,由于Transformer编码器具有多层深度堆叠的结构和巨大的参数量,导致网络优化变得困难,模型收敛速度缓慢。本文设计了一种无编码器的Transformer目标检测网络模型。由于不需要引入Transformer编码器,本文的模型比DETR参数量更小、计算量更低、模型收敛速度更快。但是,直接去除Transformer编码器将降低网络的表达能力,导致Transformer解码器无法从数量庞大的图像特征中关注到包含目标的图像特征,从而使检测性能大幅降低。为了缓解这个问题,本文提出了一种混合特征注意力(fusion-feature mixing attention,FMA)机制,它通过自适应特征混合和通道交叉注意力弥补检测网络特征表达能力的下降,将其应用于Transformer解码器可以减轻由于去除Transformer编码器带来的性能降低。在MS-COCO数据集上,本文网络模型(称为FMA-DETR)实现了与DETR相近的性能表现,同时本文的模型拥有更快的收敛速度、更小的参数量以及更低的计算量。本文还进行了大量消融实验来验证所提出方法的有效性。 展开更多
关键词 目标检测 transformer 编码器 DETR 混合注意力
下载PDF
基于Transformer的多尺度遥感语义分割网络 被引量:1
4
作者 邵凯 王明政 王光宇 《智能系统学报》 CSCD 北大核心 2024年第4期920-929,共10页
为了提升遥感图像语义分割效果,本文针对分割目标类间方差小、类内方差大的特点,从全局上下文信息和多尺度语义特征2个关键点提出一种基于Transformer的多尺度遥感语义分割网络(muliti-scale Transformer network,MSTNet)。其由编码器... 为了提升遥感图像语义分割效果,本文针对分割目标类间方差小、类内方差大的特点,从全局上下文信息和多尺度语义特征2个关键点提出一种基于Transformer的多尺度遥感语义分割网络(muliti-scale Transformer network,MSTNet)。其由编码器和解码器2个部分组成,编码器包含基于Transformer改进的视觉注意网络(visual attention network,VAN)主干和基于空洞空间金字塔池化(atrous spatial pyramid pooling, ASPP)结构改进的多尺度语义特征提取模块(multi-scale semantic feature extraction module, MSFEM)。解码器采用轻量级多层感知器(multi-layer perception,MLP)配合编码器设计,充分分析所提取的包含全局上下文信息和多尺度表示的语义特征。MSTNet在2个高分辨率遥感语义分割数据集ISPRS Potsdam和LoveDA上进行验证,平均交并比(mIoU)分别达到79.50%和54.12%,平均F1-score(m F1)分别达到87.46%和69.34%,实验结果验证了本文所提方法有效提升了遥感图像语义分割的效果。 展开更多
关键词 遥感图像 语义分割 卷积神经网络 transformer 全局上下文信息 多尺度感受野 编码器 解码器
下载PDF
融合Transformer和卷积LSTM的轨迹分类网络 被引量:1
5
作者 夏英 陈航 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第1期29-38,共10页
为了减少原始轨迹数据的噪声,充分提取轨迹的时空特征,提高基于轨迹数据的交通模式分类精度,提出一种融合堆叠降噪自编码器、Transformer和卷积长短期记忆网络的轨迹分类网络(networks fusing stacked denoising auto-encoder, Transfor... 为了减少原始轨迹数据的噪声,充分提取轨迹的时空特征,提高基于轨迹数据的交通模式分类精度,提出一种融合堆叠降噪自编码器、Transformer和卷积长短期记忆网络的轨迹分类网络(networks fusing stacked denoising auto-encoder, Transformer and ConvLSTM,SDAETC)。通过堆叠降噪自编码器减少原始轨迹数据中的噪声;利用结合了Transformer的递归图自编码器,提取到更为丰富的时间特征,同时利用特征图自编码器提取空间特征;改进卷积长短期记忆网络,充分提取轨迹中的时空特征,并与提取到的时间特征和空间特征相融合,从而实现交通模式分类。实验结果表明,提出的SDAETC与基线模型相比,在GeoLife和SHL数据集上的准确率分别提升了1.8%和2%。此外,消融实验结果和模型训练时间分析表明,引入堆叠降噪自编码器、Transfomer和ConvLSTM虽然增加了时间消耗,但是对分类精度有积极贡献。 展开更多
关键词 轨迹数据 交通方式分类 时空特征 堆叠降噪自编码器 transformer 卷积长短期记忆网络
下载PDF
基于改进Transformer的滚动轴承剩余寿命预测方法
6
作者 温江涛 张哲 《燕山大学学报》 CAS 北大核心 2024年第4期312-321,共10页
针对现有的滚动轴承剩余使用寿命预测方法存在预测准确度不足、训练效率不高等问题,提出一种时频分析结合改进Transformer的轴承剩余使用寿命预测方法。首先用短时傅里叶变换提取轴承的时频特征,为了改善Transformer的特征提取能力,研... 针对现有的滚动轴承剩余使用寿命预测方法存在预测准确度不足、训练效率不高等问题,提出一种时频分析结合改进Transformer的轴承剩余使用寿命预测方法。首先用短时傅里叶变换提取轴承的时频特征,为了改善Transformer的特征提取能力,研究了基于膨胀因果卷积的可变长度数据分析结构,并设计了自适应位置编码模块替代Transformer的传统编码方式,改进的模型增强了对时频数据的分析能力,实现了高效、准确的端到端的滚动轴承剩余寿命预测。在PHM2012轴承数据集上的实验结果表明提出的方法的效率比LSTM高20%,同时预测精度相比于多种现有传统方法均具有16%以上的提升。 展开更多
关键词 剩余寿命预测 transformer 膨胀因果卷积 自适应位置编码
下载PDF
基于视觉Transformer和双解码器的红外小目标检测方法
7
作者 代少升 刘科生 +3 位作者 黄炼 贺自强 毛兴华 任汶皓 《红外技术》 CSCD 北大核心 2024年第9期1070-1080,共11页
当前基于卷积神经网络的红外小目标检测方法在编码器阶段受限于感受野,且解码器在多尺度特征融合中缺乏有效的特征交互。本文提出了一种基于编码器-解码器结构的新方法,针对现有红外小目标检测方法中的问题进行改进。该方法使用视觉Tran... 当前基于卷积神经网络的红外小目标检测方法在编码器阶段受限于感受野,且解码器在多尺度特征融合中缺乏有效的特征交互。本文提出了一种基于编码器-解码器结构的新方法,针对现有红外小目标检测方法中的问题进行改进。该方法使用视觉Transformer作为编码器,能够有效地提取红外小目标图像的多尺度特征。视觉Transformer是一种新兴的深度学习架构,其通过自注意力机制捕捉图像中像素之间的全局关系,以处理长程依赖性和上下文信息。此外,本文还设计了一个由交互式解码器和辅助解码器组成的双解码器模块,旨在提高解码器对红外小目标的重构能力。该双解码器模块能够充分利用不同特征之间的互补信息,促进深层特征和浅层特征之间的交互,并通过将两个解码器的结果进行叠加,以更好地重构红外小目标。在广泛使用的公共数据集上的实验结果表明,本文提出的方法在F1和mIoU两个评价指标上的性能优于其他对比方法。 展开更多
关键词 红外小目标检测 视觉transformer 多尺度特征融合 编解码结构
下载PDF
一种基于Transformer编码器与LSTM的飞机轨迹预测方法 被引量:1
8
作者 李明阳 鲁之君 +1 位作者 曹东晶 曹世翔 《航天返回与遥感》 CSCD 北大核心 2024年第2期163-176,共14页
为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和... 为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和长短期记忆网络(Long Short Term Memory,LSTM)的飞机目标轨迹预测方法,即Transformer-Encoder-LSTM模型。新模型可同时提供LSTM和Transformer编码器模块的补充历史信息和基于注意力的信息表示,提高了模型能力。通过与一些经典神经网络模型进行对比分析,发现在数据集上,新方法的平均位移误差减小到0.22,显著优于CNN-LSTMAttention模型的0.35。相比其他网络,该算法能够提取复杂轨迹中的隐藏特征,在面对飞机连续转弯、大机动转弯的复杂轨迹时,能够保证模型的鲁棒性,提升了对于复杂轨迹预测的准确性。 展开更多
关键词 轨迹预测 transformer编码器 神经网络 飞机目标 transformer-encoder-LSTM模型
下载PDF
基于Transformer_LSTM编解码器模型的船舶轨迹异常检测方法 被引量:2
9
作者 李可欣 郭健 +3 位作者 李冉冲 王宇君 李宗明 缪坤 《中国舰船研究》 CSCD 北大核心 2024年第2期223-232,共10页
[目的]为提升船舶轨迹异常检测的精度和效率,解决传统异常检测方法存在的特征表征能力有限、补偿精度不足、容易出现梯度消失、过拟合等问题,提出一种基于Transformer_LSTM编解码器模型的无监督船舶轨迹异常检测方法。[方法]该方法基于... [目的]为提升船舶轨迹异常检测的精度和效率,解决传统异常检测方法存在的特征表征能力有限、补偿精度不足、容易出现梯度消失、过拟合等问题,提出一种基于Transformer_LSTM编解码器模型的无监督船舶轨迹异常检测方法。[方法]该方法基于编码器解码器架构,由Transformer_LSTM模块替代传统神经网络实现轨迹特征提取和轨迹重构;将Transformer嵌入LSTM的递归机制,结合循环单元和注意力机制,利用自注意力和交叉注意力实现对循环单元状态向量的计算,实现对长序列模型的有效构建;通过最小化重构输出和原始输入之间的差异,使模型学习一般轨迹的特征和运动模式,将重构误差大于异常阈值的轨迹判定为异常轨迹。[结果]采用2021年1月的船舶AIS数据进行实验,结果表明,模型在准确率、精确率以及召回率上相较于LOF,DBSCAN,VAE,LSTM等经典模型有着明显提升;F1分数相较于VAE_LSTM模型提升约8.11%。[结论]该方法的异常检测性能在各项指标上显著优于传统算法,可有效、可靠地运用于海上船舶轨迹异常检测。 展开更多
关键词 异常检测 深度学习 编码器解码器 transformer 长短期记忆 轨迹重建
下载PDF
融合双阶段特征与Transformer编码的交互式图像分割
10
作者 封筠 张天 +2 位作者 史屹琛 王辉 胡晶晶 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第6期831-843,共13页
为了快速、精确地分割用户感兴趣的前景目标,获得高质量且低成本的标注分割数据,提出一种基于双阶段特征融合与Transformer编码的交互式图像分割算法.首先采用轻量化Transformer骨干网络对输入图像提取多尺度特征编码,更好地利用上下文... 为了快速、精确地分割用户感兴趣的前景目标,获得高质量且低成本的标注分割数据,提出一种基于双阶段特征融合与Transformer编码的交互式图像分割算法.首先采用轻量化Transformer骨干网络对输入图像提取多尺度特征编码,更好地利用上下文信息;然后使用点击交互的方式引入主观先验知识,依次通过初级与加强阶段将交互特征融入Transformer网络;最后结合空洞卷积、注意力机制和多层感知机对骨干网络获取的特征图解码.实验结果表明,所提算法在GrabCut,Berkeley和DAVIS数据集上的mNoC@90%值分别达到2.18,4.04和7.39,优于其他对比算法;且算法的时间与空间复杂度低于f-BRS-B,对交互点击位置及点击类型的扰动变化具有较好的稳定性,说明该算法能够快速、精确与稳定地分割用户感兴趣目标,提升用户交互的使用体验感. 展开更多
关键词 交互式图像分割 深度学习 transformer编码 交互特征融合 轻量化网络
下载PDF
融合Transformer与多阶段学习框架的点云上采样网络
11
作者 李泽锴 柏正尧 +2 位作者 肖霄 张奕涵 尤逸琳 《计算机科学》 CSCD 北大核心 2024年第6期231-238,共8页
借鉴Transformer在自然语言和计算机视觉领域强大的特征编码能力,同时受多阶段学习框架的启发,设计了一种融合Transformer与多阶段学习框架的点云上采样网络——MSPUiT。该网络采用二阶段网络模型,第一阶段是密集点生成网络,利用多层Tra... 借鉴Transformer在自然语言和计算机视觉领域强大的特征编码能力,同时受多阶段学习框架的启发,设计了一种融合Transformer与多阶段学习框架的点云上采样网络——MSPUiT。该网络采用二阶段网络模型,第一阶段是密集点生成网络,利用多层Transformer编码器逐步实现从输入点云的局部几何信息、局部特征信息到点云高级语义特征的转换,特征扩充模块在特征空间中,对点云特征上采样,坐标回归模块将点云从特征空间重新映射回欧氏空间中初步生成密集点云M′;第二阶段是逐点优化网络,使用Transformer编码器对密集点云M′中潜藏的语义特征进行编码,联合上一阶段语义特征得到点云完整的语义特征,特征精炼单元从M′的几何信息和语义特征中提取点的误差信息特征,误差回归模块从误差信息特征中计算得到欧氏空间中点的坐标偏移量,实现对点云M′的逐点优化,使得点云上点的分布更加均匀,并且更加贴近真实物体表面。在大型合成数据集PU1K上进行了大量实验,MSPUiT生成的高分辨率点云在倒角距离(CD)、豪斯多夫距离(HD)、生成点云到原始点云块的距离(P2F)上的指标分别降至0.501×10^(-3),5.958×10^(-3),1.756×10^(-3)。实验结果表明,MSPUiT上采样后的点云表面更加光滑,噪声点更少,生成的点云质量高于当前主流的点云上采样网络。 展开更多
关键词 transformer编码器 多阶段学习框架 特征转换 点云上采样 深度学习
下载PDF
融合Transformer和DeepLabv3+的电力线语义分割网络
12
作者 秦伦明 王朝举 +2 位作者 边后琴 崔昊杨 王悉 《现代电子技术》 北大核心 2024年第17期109-116,共8页
为解决目前语义分割算法在电力线分割领域存在预测速度缓慢和分割精度不高的双重问题,提出一种电力线分割网络STDC-DeepLabv3+。首先,为提升网络预测速度,在编码器部分采用Swin Transformer V2设计轻量化的主干特征提取网络;其次,为提... 为解决目前语义分割算法在电力线分割领域存在预测速度缓慢和分割精度不高的双重问题,提出一种电力线分割网络STDC-DeepLabv3+。首先,为提升网络预测速度,在编码器部分采用Swin Transformer V2设计轻量化的主干特征提取网络;其次,为提高分割精度,针对电力线的细长结构以及贯穿整幅图片的特点,提出动态蛇形空间金字塔池化(DSASPP)模块,同时,在解码器部分设计多尺度特征融合模块,使网络更好地利用不同层次的语义信息提取电力线特征,减少网络对电力线的漏分割现象;最后,引入坐标注意力(CA)机制减少背景干扰,进一步提升分割的准确率。实验结果表明,改进后的算法平均交并比(MIoU)和平均像素精度(MPA)分别达到了84.18%和92.85%,与现有分割算法相比,分割精度和预测速度均有所提升,预测速度与DeepLabv3+相比提升了93.92%。 展开更多
关键词 电力线分割 transformer DeepLabv3+ 多尺度特征融合 编码器 解码器 坐标注意力机制
下载PDF
基于CNN-Transformer网络融合模型的动态肌肉疲劳状态识别研究
13
作者 刘景轩 陶庆 +3 位作者 赵暮超 胡学政 马金旭 袁陆 《陕西科技大学学报》 北大核心 2024年第2期208-215,共8页
为了解决现有的肌肉疲劳状态分类较少以及识别准确率不高的问题,提出一种基于表面肌电信号的CNN-Transformer肌肉疲劳识别模型,实现了动态肌肉疲劳的准确分类.该模型将传统的卷积神经网络与Transformer编码器模块相结合,相比单一卷积神... 为了解决现有的肌肉疲劳状态分类较少以及识别准确率不高的问题,提出一种基于表面肌电信号的CNN-Transformer肌肉疲劳识别模型,实现了动态肌肉疲劳的准确分类.该模型将传统的卷积神经网络与Transformer编码器模块相结合,相比单一卷积神经网络模型有更好的全局信息捕捉能力,对运动性肌肉疲劳识别具有更好的分类精度.首先,对15名健康受试者进行肘关节屈伸运动疲劳实验并基于疲劳程度划分了四种状态;其次,将获取的表面肌电信号数据进行预处理,并提取近似熵和排列熵两个非线性特征作为机器学习的特征输入;最后,利用原始表面肌电信号数据构建CNN-Transformer识别模型,与卷积神经网络、Transformer、随机森林模型进行比较.结果表明,在识别肌肉疲劳状态准确率方面CNN-Transformer模型比卷积神经网络、Transformer和随机森林模型分别高出2.89%、5.48%、7.24%,可见该模型具有良好的分类效果. 展开更多
关键词 表面肌电信号 动态肌肉疲劳 卷积神经网络 transformer编码器
下载PDF
基于图Transformer的快速布局估计算法
14
作者 张靖贤 郭传磊 +1 位作者 周萌萌 杨杰 《青岛大学学报(工程技术版)》 CAS 2024年第2期24-31,共8页
在图像模式识别应用中,针对布局估计任务后处理步骤繁琐、生成算法耗时较长等问题,基于相机成像原理设计了一种快速的布局生成算法,利用图Transformer节点与邻边信息融合的特性,将复杂耗时的后处理步骤转换为平面与线段特征的交叉计算... 在图像模式识别应用中,针对布局估计任务后处理步骤繁琐、生成算法耗时较长等问题,基于相机成像原理设计了一种快速的布局生成算法,利用图Transformer节点与邻边信息融合的特性,将复杂耗时的后处理步骤转换为平面与线段特征的交叉计算过程。使用Structured3D数据集对整体算法进行测试,结果表明各项评价指标均取得提升,单张图片计算耗时达到87 ms,整体推理速度与主流方法相比提升20%。布局生成算法耗时由单张图片66.31 ms下降至3.18 ms,速度提升了95.21%。 展开更多
关键词 布局估计 transformer 二维位置编码 计算机视觉
下载PDF
基于DRSN融合Transformer编码器的轴承故障诊断方法研究
15
作者 陈松 陈文华 张文广 《自动化与仪表》 2024年第5期103-108,共6页
针对轴承故障在复杂工况环境中诊断准确率低和泛化性能弱的问题,提出了一种基于深度残差收缩网络(deep residual shrinkage network,DRSN)融合Transformer编码器的轴承故障诊断方法。首先,采用DRSN通过软阈值模块自动去掉振动信号中的... 针对轴承故障在复杂工况环境中诊断准确率低和泛化性能弱的问题,提出了一种基于深度残差收缩网络(deep residual shrinkage network,DRSN)融合Transformer编码器的轴承故障诊断方法。首先,采用DRSN通过软阈值模块自动去掉振动信号中的噪声信息,并使用注意力机制增强提取到的特征;然后,采用Transformer编码器来进一步解决振动信号中的长期依赖性问题;最后,利用Softmax函数实现多故障模式识别。在凯斯西储大学轴承数据集上通过不同噪声等级对提出的模型进行测试,实验结果表明,该方法实现了对轴承故障分类,强噪声环境下准确率更高,训练时间更快。 展开更多
关键词 故障诊断 轴承 深度残差收缩网络 transformer编码器
下载PDF
基于三维特征和Transformer的数字化古籍文档图像矫正
16
作者 赵微 牟大中 +2 位作者 李夏童 屈千林 曹鹏 《北京印刷学院学报》 2024年第8期66-72,共7页
古籍文档图像矫正是古籍文档数字化中的一个关键环节,对提高古籍数字化质量具有重要的现实意义。针对古籍中普遍存在的氧化弯曲、粘连折叠、装订方式特殊等原因导致的形变复杂、矫正难度大的问题,本文提出了一种基于深度学习和三维特征... 古籍文档图像矫正是古籍文档数字化中的一个关键环节,对提高古籍数字化质量具有重要的现实意义。针对古籍中普遍存在的氧化弯曲、粘连折叠、装订方式特殊等原因导致的形变复杂、矫正难度大的问题,本文提出了一种基于深度学习和三维特征信息提取的古籍文档图像矫正方法。首先使用U-Net形式的编码器-解码器提取古籍文档图像的三维特征,然后基于Transformer模型对得到的三维特征图进行后向映射,最后使用双线性插值得到矫正后的图像。为了验证所提出方法的有效性,在两个自制测试集上分别进行实验。实验结果表明,该方法在局部失真(Local Distortion,LD)概率上,相较于DewarpNet模型降低了2.61%~6.58%。实验证明所提出的方法能有效完成古籍文档图像的矫正任务,提升古籍数字化质量。 展开更多
关键词 古籍图像 文档图像矫正 三维信息提取 transformer 编码器-解码器
下载PDF
基于Transformer的多编码器端到端语音识别 被引量:1
17
作者 庞江飞 孙占全 《电子科技》 2024年第4期1-7,共7页
当前广泛使用的Transformer模型具有良好的全局依赖关系捕捉能力,但其在浅层时容易忽略局部特征信息。针对该问题,文中提出了一种使用多个编码器来改善语音特征信息提取能力的方法。通过附加一个额外的卷积编码器分支来强化对局部特征... 当前广泛使用的Transformer模型具有良好的全局依赖关系捕捉能力,但其在浅层时容易忽略局部特征信息。针对该问题,文中提出了一种使用多个编码器来改善语音特征信息提取能力的方法。通过附加一个额外的卷积编码器分支来强化对局部特征信息的捕捉,弥补浅层Transformer对局部特征信息的忽视,有效实现音频特征序列全局和局部依赖关系的融合,即提出了基于Transformer的多编码器模型。在开源中文普通话数据集Aishell-1上的实验表明,在没有外部语言模型的情况下,相比于Transformer模型,基于Transformer的多编码器模型的字符错误率降低了4.00%。在内部非公开的上海话方言数据集上,文中所提模型的性能提升更加明显,其字符错误率从19.92%降低至10.31%,降低了48.24%。 展开更多
关键词 transformer 语音识别 端到端 深度神经网络 多编码器 多头注意力 特征融合 卷积分支网络
下载PDF
融合模体感知和图Transformer编码的社区检测
18
作者 郭兴君 李晓红 +1 位作者 史婉媱 高文超 《计算机工程与科学》 CSCD 北大核心 2024年第11期2081-2090,共10页
针对已有社区检测方法存在忽略高阶结构信息,且在信息引入过程中极易产生碎片的问题,提出了一种融合模体感知和图Transformer编码的社区检测方法。首先,将原图中的极大完全子图视为模体,并以模体为顶点对原图进行重构,捕获模体邻接矩阵... 针对已有社区检测方法存在忽略高阶结构信息,且在信息引入过程中极易产生碎片的问题,提出了一种融合模体感知和图Transformer编码的社区检测方法。首先,将原图中的极大完全子图视为模体,并以模体为顶点对原图进行重构,捕获模体邻接矩阵。同时,使用混阶外切边编码获取原图的残留边信息,解决碎片问题,利用位置编码和内权边编码捕获重构图上的位置信息和边信息。其次,使用图Transformer提取原图携带的初始特征,再对编码所得的位置信息和边信息及初始特征进行融合,获得模体嵌入矩阵,实现社区检测。最后,在几个不同数据集上的实验结果表明,所提方法可以有效提高社区检测的性能,而且,对重叠社区检测和多社区公共顶点检测也是有效的。 展开更多
关键词 社区检测 transformer 模体 图编码
下载PDF
基于卡尔曼滤波算法优化Transformer模型的锂离子电池健康状态预测方法
19
作者 黄煜峰 梁焕超 许磊 《储能科学与技术》 CAS CSCD 北大核心 2024年第8期2791-2802,共12页
回顾了锂离子电池健康状态(state of health,SOH)的预测方法,本文提出了一种基于卡尔曼滤波器(Kalman filter)优化的Transformer网络,利用历史数据预测电池SOH。首先,通过添加高斯噪声、自动编码器重构对电池数据进行预处理,去除电池数... 回顾了锂离子电池健康状态(state of health,SOH)的预测方法,本文提出了一种基于卡尔曼滤波器(Kalman filter)优化的Transformer网络,利用历史数据预测电池SOH。首先,通过添加高斯噪声、自动编码器重构对电池数据进行预处理,去除电池数据中原始噪声并强化数据特征;其次,利用提出的KF-Transformer(Kalman filter-transformer)算法模型提取电池健康状态变化特征,使得Transformer网络能够更好地捕捉电池健康状态的非线性变化;最后,通过线性层完成电池健康状态变化特征到电池健康状态预测的映射,得到锂离子电池健康状态的预测结果。本文使用3个不同充放电策略、不同测试环境下的锂离子电池数据集[分别为美国国家航空航天局(NASA)数据集、马里兰大学CALCE CS2数据集和CALCE CX2数据集]来验证本文提出的锂离子电池健康状态预测算法的鲁棒性和准确性,且本文算法对于SOH不同状态、不同循环次数的预测均具有较好的结果。研究结果显示,本文方法的平均绝对百分比误差(mean absolute percentage error,MAPE)能控制在2%,决定系数(R-square,R2)为0.987,并与多层感知机(MLP,multilayer perceptron)、循环神经网络(RNN,recurrent neura network)、长短时记忆(LSTM,long short-term memory)、门控循环单元(GRU,gated recurrent unit)进行比较,证明了本文方法的优越性。 展开更多
关键词 锂离子电池 电池健康状态 自动编码器 transformer网络 卡尔曼滤波器
下载PDF
基于Transformer的海上船舶轨迹预测方法
20
作者 古英汉 王峰 《舰船电子工程》 2024年第6期36-40,92,共6页
海上船舶的轨迹预测在船舶安全运行和海上监管方面有着重要的应用前景。针对海上船舶的轨迹预测问题,论文提出基于Transformer的海上船舶轨迹预测方法。首先,对轨迹数据进行预处理,剔除其中的停泊点和异常点,然后使用轨迹重采样技术实... 海上船舶的轨迹预测在船舶安全运行和海上监管方面有着重要的应用前景。针对海上船舶的轨迹预测问题,论文提出基于Transformer的海上船舶轨迹预测方法。首先,对轨迹数据进行预处理,剔除其中的停泊点和异常点,然后使用轨迹重采样技术实现轨迹的等时间间隔的采样,从而减少时序特征对轨迹预测的影响;然后,借鉴GeoHash技术空间剖分的理念,论文通过将经纬度等距切分并用one-hot进行表示,然后将经纬度的one-hot向量进行拼接,从而将其转换为高维嵌入空间;最后,使用Transformer技术对轨迹进行预测。结果表明:相比于RNN、LSTM、卡尔曼滤波方法,论文方法在30 min和60 min的轨迹预测精度方面有了较大的性能提升。 展开更多
关键词 transformer 船舶轨迹预测 数据编码 特征提取
下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部