Organic photovoltaic devices(OPVs) using chiral cyclohexene-fused [C_(60)]-fullerene derivatives that have(l)-menthyl ester moiety have been prepared and their properties evaluated as acceptor molecules with P3 HT pol...Organic photovoltaic devices(OPVs) using chiral cyclohexene-fused [C_(60)]-fullerene derivatives that have(l)-menthyl ester moiety have been prepared and their properties evaluated as acceptor molecules with P3 HT polymer: racemic cyclohexene-fused [C_(60)] fullenene,(RS)-(1 R,2 S,5 R)-2 a showed higher PCE(2.81%) than that of standard [C_(60)]-PCBM(2.64%) under the same analysis conditions. On the contrary, devices using chiral(R)-(1 R,2 S,5 R)-2 a and(S)-(1 R,2 S,5 R)-2 a, showed PCE as 1.08% and 1.10%, respectively. The main origin of the differences in PCE was found to be their poor Jsc values. The results indicate that the aggregation state might influence the interaction state with P3 HT and impact the results of the OPV properties, Jsc values in particular.展开更多
Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectivenes...Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectiveness of using platinum(Pt)in them.The cathode catalyst layer(CL)is considered a core component in PEMFCs,and its composition often considerably affects the cell performance(V_(cell))also PEMFC fabrication and production(C_(stack))costs.In this study,a data-driven multi-objective optimization analysis is conducted to effectively evaluate the effects of various cathode CL compositions on Vcelland Cstack.Four essential cathode CL parameters,i.e.,platinum loading(L_(Pt)),weight ratio of ionomer to carbon(wt_(I/C)),weight ratio of Pt to carbon(wt_(Pt/c)),and porosity of cathode CL(ε_(cCL)),are considered as the design variables.The simulation results of a three-dimensional,multi-scale,two-phase comprehensive PEMFC model are used to train and test two famous surrogates:multi-layer perceptron(MLP)and response surface analysis(RSA).Their accuracies are verified using root mean square error and adjusted R^(2).MLP which outperforms RSA in terms of prediction capability is then linked to a multi-objective non-dominated sorting genetic algorithmⅡ.Compared to a typical PEMFC stack,the results of the optimal study show that the single-cell voltage,Vcellis improved by 28 m V for the same stack price and the stack cost evaluated through the U.S department of energy cost model is reduced by$5.86/k W for the same stack performance.展开更多
Pb-free Sn-based perovskite solar cells(PSCs) have recently made inspiring progress, and power conversion efficiency(PCE) of 14.8% has been achieved. However, due to the energy-level mismatch and poor interfacial cont...Pb-free Sn-based perovskite solar cells(PSCs) have recently made inspiring progress, and power conversion efficiency(PCE) of 14.8% has been achieved. However, due to the energy-level mismatch and poor interfacial contact between commonly used hole transport layer(i.e., poly(3,4-ethylenedioxythio phene):poly(styrene sulfonate), PEDOT:PSS) and FASnI_(3) film, it is still challenging to effectively extract holes at the interface. Owing to the p-type nature of Sn-based perovskites, the efficient hole extraction is of particular significance to improve the PCE of their solar cells. In this work, for the first time, the role of chiral cations, a-methylbenzylamine(S-/R-/rac-MBA), in promoting hole transportation of FASnI_(3)-based PSCs is demonstrated. The introduction of MBAs is found to form 2D/3D film with lowdimensional structures locating at PEDOT:PSS/FASnI_(3) interface, which facilitates the energy level alignment and efficient charge transfer at the interface. Importantly, chiral-induced spin selectivity(CISS)effect of R-MBA_(2)SnI_(4)induced by chiral R-MBA cation is found to further assist the specific interfacial transport of accumulated holes. As a result, R-MBA-based PSCs achieve decent PCE of 10.73% with much suppressed hysteresis and enhanced device stability. This work opens up a new strategy to efficiently promote the interfacial extraction of accumulated charges in working PSCs.展开更多
A novel and readily available binaphthyl-based fluorescent probe(S)-1 was designed and synthesized.(S)-1 can be used to not only chemoselectively discriminate 3 basic amino acids out of common amino acids,but also ena...A novel and readily available binaphthyl-based fluorescent probe(S)-1 was designed and synthesized.(S)-1 can be used to not only chemoselectively discriminate 3 basic amino acids out of common amino acids,but also enantioselectively recognize histidine.Encouragingly,enantioselective imaging of histidine in cells was achieved for the first time by the probe(S)-1.These performances endowed it potential application in the chiral analysis of basic amino acids in asymmetric synthesis and cell imaging for diagnosis of diseases caused by racemization of histidine.Nuclear magnetic resonance(NMR)and mass spectrometry investigations suggested that different reaction extent of(S)-1 with L/D-histidine and different product structures generated the observed enantioselective fluorescent response.The molecular structures and thermodynamic stability of the complexes,formed from(S)-1+Zn2+and enantiomers of histidine,were calculated by Gaussian 16 based on density functional theory(DFT)to validate the above action mechanism.展开更多
The authors have designed and synthesized new chiral salen-type metal (M = Fe, Co, Ni, Cu, Zn) complexes (1-5) for new conceptual dyes (co-sensitizer or colorful multi-dyes) of DSSCs (dye-sensitized solar cells...The authors have designed and synthesized new chiral salen-type metal (M = Fe, Co, Ni, Cu, Zn) complexes (1-5) for new conceptual dyes (co-sensitizer or colorful multi-dyes) of DSSCs (dye-sensitized solar cells). The authors measured substituent effects on their absorption spectra and redox properties, and compared them with TD-DFT (time-dependent density functional theory) calculations. Electron withdrawing groups resulted in red-shift of ultraviolet-visible (UV-Vis) spectra. For the first time, the authors also proposed and confirmed the importance of substituent effects on their electric transition dipole moments, calculated by TD-DFT for designing dyes. Chemisorption for TiO2 of the complex by carboxyl groups was confirmed by XPS measurement. In view of electronic properties, all compounds have the possibility to be dyes of DSSCs.展开更多
Fluorine atoms confer desirable biophysical,chemical,and biological properties to peptides/proteins by participating in various intermolecular interactions with their environment,but they are rarely used to control su...Fluorine atoms confer desirable biophysical,chemical,and biological properties to peptides/proteins by participating in various intermolecular interactions with their environment,but they are rarely used to control supramolecular chirality and functional.Herein,to identify the effects of fluorine substitution on the chirality and function of supramolecular assem-blies,C2-symmetric benzene-paradicarboxamide-based phenylalanine(phe)derivatives and three monofluorinated variants that had a single fluorine atom on their benzyl side chain in either the ortho,meta,or para position were synthesized.The experimental and theoretical results clearly show that the resulting assembled fibrils were supported by multiple interactions,including hydrogen bonding,π–πstacking and C/O–H…F–CAr interactions.Compared to nonfluorinated analogs,fluorine and its ring position on the aromatic side chain dictated the type and strength of the F···H interaction and then induced changes in supramolecular chirality and fiber morphology.Further studies on cell behavior showed that the order of positive interac-tion between high-order supramolecular chirality(M,P)and molecular chirality(L,D)on cell proliferation and viability is LM>DM>LP>DP.These findings provide a protocol for leveraging fluorine atoms and their positional dependence on directing chiral nanostructures with desirable handedness and creating fluorinated supramolecular hydrogels as extracellular matrix-mimetic scaffolds for cell culture and regenerative medicine.展开更多
基金supported by a Grant-in-Aid for Scientific Research of the GSC Center of Tottori University from the Ministry of Education, Culture, Sports, Science and Technology of Japansupported by a fund for Environmental Research from Tottori Prefecture
文摘Organic photovoltaic devices(OPVs) using chiral cyclohexene-fused [C_(60)]-fullerene derivatives that have(l)-menthyl ester moiety have been prepared and their properties evaluated as acceptor molecules with P3 HT polymer: racemic cyclohexene-fused [C_(60)] fullenene,(RS)-(1 R,2 S,5 R)-2 a showed higher PCE(2.81%) than that of standard [C_(60)]-PCBM(2.64%) under the same analysis conditions. On the contrary, devices using chiral(R)-(1 R,2 S,5 R)-2 a and(S)-(1 R,2 S,5 R)-2 a, showed PCE as 1.08% and 1.10%, respectively. The main origin of the differences in PCE was found to be their poor Jsc values. The results indicate that the aggregation state might influence the interaction state with P3 HT and impact the results of the OPV properties, Jsc values in particular.
基金supported by the Technology Innovation Program of the Korea Evaluation Institute of Industrial Technology (KEIT)under the Ministry of Trade,Industry and Energy (MOTIE)of Republic of Korea (20012121)by the National Research Foundation of Korea (NRF)grant funded by the Korea government (MSIT) (2022M3J7A106294)。
文摘Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectiveness of using platinum(Pt)in them.The cathode catalyst layer(CL)is considered a core component in PEMFCs,and its composition often considerably affects the cell performance(V_(cell))also PEMFC fabrication and production(C_(stack))costs.In this study,a data-driven multi-objective optimization analysis is conducted to effectively evaluate the effects of various cathode CL compositions on Vcelland Cstack.Four essential cathode CL parameters,i.e.,platinum loading(L_(Pt)),weight ratio of ionomer to carbon(wt_(I/C)),weight ratio of Pt to carbon(wt_(Pt/c)),and porosity of cathode CL(ε_(cCL)),are considered as the design variables.The simulation results of a three-dimensional,multi-scale,two-phase comprehensive PEMFC model are used to train and test two famous surrogates:multi-layer perceptron(MLP)and response surface analysis(RSA).Their accuracies are verified using root mean square error and adjusted R^(2).MLP which outperforms RSA in terms of prediction capability is then linked to a multi-objective non-dominated sorting genetic algorithmⅡ.Compared to a typical PEMFC stack,the results of the optimal study show that the single-cell voltage,Vcellis improved by 28 m V for the same stack price and the stack cost evaluated through the U.S department of energy cost model is reduced by$5.86/k W for the same stack performance.
基金financially supported by the Natural Science Foundation of China (Grants 51802253, 51972172, 61705102,61904152, and 91833304)the China Postdoctoral Science Foundation (Grant 2021M692630)+6 种基金the Natural Science Basic Research Plan in Shaanxi Province of China (2019JM-326)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University (No. 2020GXLH-Z-007)the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars,China (Grant BK20200034)the Young 1000 Talents Global Recruitment Program of Chinathe Jiangsu Specially Appointed Professor programthe “Six talent peaks” Project in Jiangsu Province,Chinathe Fundamental Research Funds for the Central Universities。
文摘Pb-free Sn-based perovskite solar cells(PSCs) have recently made inspiring progress, and power conversion efficiency(PCE) of 14.8% has been achieved. However, due to the energy-level mismatch and poor interfacial contact between commonly used hole transport layer(i.e., poly(3,4-ethylenedioxythio phene):poly(styrene sulfonate), PEDOT:PSS) and FASnI_(3) film, it is still challenging to effectively extract holes at the interface. Owing to the p-type nature of Sn-based perovskites, the efficient hole extraction is of particular significance to improve the PCE of their solar cells. In this work, for the first time, the role of chiral cations, a-methylbenzylamine(S-/R-/rac-MBA), in promoting hole transportation of FASnI_(3)-based PSCs is demonstrated. The introduction of MBAs is found to form 2D/3D film with lowdimensional structures locating at PEDOT:PSS/FASnI_(3) interface, which facilitates the energy level alignment and efficient charge transfer at the interface. Importantly, chiral-induced spin selectivity(CISS)effect of R-MBA_(2)SnI_(4)induced by chiral R-MBA cation is found to further assist the specific interfacial transport of accumulated holes. As a result, R-MBA-based PSCs achieve decent PCE of 10.73% with much suppressed hysteresis and enhanced device stability. This work opens up a new strategy to efficiently promote the interfacial extraction of accumulated charges in working PSCs.
基金financial support from the National Natural Science Foundation of China(Nos.22074114,22377097,21877087)Natural Science Foundation of Hubei Province of China(Nos.2020CFB623,2021CFB556)+2 种基金Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education(No.LCX202305)Wuhan Institute of Technology Graduate Education and Teaching Reform Research Project(Nos.2022JYXM09,2021JYXM07)Wuhan Institute of Technology Graduate Innovation Fund(No.CX2022450)are greatly appreciated。
文摘A novel and readily available binaphthyl-based fluorescent probe(S)-1 was designed and synthesized.(S)-1 can be used to not only chemoselectively discriminate 3 basic amino acids out of common amino acids,but also enantioselectively recognize histidine.Encouragingly,enantioselective imaging of histidine in cells was achieved for the first time by the probe(S)-1.These performances endowed it potential application in the chiral analysis of basic amino acids in asymmetric synthesis and cell imaging for diagnosis of diseases caused by racemization of histidine.Nuclear magnetic resonance(NMR)and mass spectrometry investigations suggested that different reaction extent of(S)-1 with L/D-histidine and different product structures generated the observed enantioselective fluorescent response.The molecular structures and thermodynamic stability of the complexes,formed from(S)-1+Zn2+and enantiomers of histidine,were calculated by Gaussian 16 based on density functional theory(DFT)to validate the above action mechanism.
文摘The authors have designed and synthesized new chiral salen-type metal (M = Fe, Co, Ni, Cu, Zn) complexes (1-5) for new conceptual dyes (co-sensitizer or colorful multi-dyes) of DSSCs (dye-sensitized solar cells). The authors measured substituent effects on their absorption spectra and redox properties, and compared them with TD-DFT (time-dependent density functional theory) calculations. Electron withdrawing groups resulted in red-shift of ultraviolet-visible (UV-Vis) spectra. For the first time, the authors also proposed and confirmed the importance of substituent effects on their electric transition dipole moments, calculated by TD-DFT for designing dyes. Chemisorption for TiO2 of the complex by carboxyl groups was confirmed by XPS measurement. In view of electronic properties, all compounds have the possibility to be dyes of DSSCs.
基金supported by the National Natural Science Foundation of China(Nos.52003072,51833006)Chinese Postdoctoral Science Foundation(2021M690891)+1 种基金the GHfund B(20220202,ghfund202202021124)Key Scientific and Technological Project of Henan Province 222102310494,and Startup Fund for Young Faculty at SJTU.
文摘Fluorine atoms confer desirable biophysical,chemical,and biological properties to peptides/proteins by participating in various intermolecular interactions with their environment,but they are rarely used to control supramolecular chirality and functional.Herein,to identify the effects of fluorine substitution on the chirality and function of supramolecular assem-blies,C2-symmetric benzene-paradicarboxamide-based phenylalanine(phe)derivatives and three monofluorinated variants that had a single fluorine atom on their benzyl side chain in either the ortho,meta,or para position were synthesized.The experimental and theoretical results clearly show that the resulting assembled fibrils were supported by multiple interactions,including hydrogen bonding,π–πstacking and C/O–H…F–CAr interactions.Compared to nonfluorinated analogs,fluorine and its ring position on the aromatic side chain dictated the type and strength of the F···H interaction and then induced changes in supramolecular chirality and fiber morphology.Further studies on cell behavior showed that the order of positive interac-tion between high-order supramolecular chirality(M,P)and molecular chirality(L,D)on cell proliferation and viability is LM>DM>LP>DP.These findings provide a protocol for leveraging fluorine atoms and their positional dependence on directing chiral nanostructures with desirable handedness and creating fluorinated supramolecular hydrogels as extracellular matrix-mimetic scaffolds for cell culture and regenerative medicine.