期刊文献+
共找到1,811篇文章
< 1 2 91 >
每页显示 20 50 100
Advances in Liquid Crystal Epoxy:Molecular Structures,Thermal Conductivity,and Promising Applications in Thermal Management
1
作者 Wenying Zhou Yun Wang +6 位作者 Fanrong Kong Weiwei Peng Yandong Wang Mengxue Yuan Xiaopeng Han Xiangrong Liu Bo Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期315-343,共29页
Traditional heat conductive epoxy composites often fall short in meeting the escalating heat dissipation demands of large-power,high-frequency,and highvoltage insulating packaging applications,due to the challenge of ... Traditional heat conductive epoxy composites often fall short in meeting the escalating heat dissipation demands of large-power,high-frequency,and highvoltage insulating packaging applications,due to the challenge of achieving high thermal conductivity(k),desirable dielectric performance,and robust thermomechanical properties simultaneously.Liquid crystal epoxy(LCE)emerges as a unique epoxy,exhibiting inherently high k achieved through the self-assembly of mesogenic units into ordered structures.This characteristic enables liquid crystal epoxy to retain all the beneficial physical properties of pristine epoxy,while demonstrating a prominently enhanced k.As such,liquid crystal epoxy materials represent a promising solution for thermal management,with potential to tackle the critical issues and technical bottlenecks impeding the increasing miniaturization of microelectronic devices and electrical equipment.This article provides a comprehensive review on recent advances in liquid crystal epoxy,emphasizing the correlation between liquid crystal epoxy’s microscopic arrangement,organized mesoscopic domain,k,and relevant physical properties.The impacts of LC units and curing agents on the development of ordered structure are discussed,alongside the consequent effects on the k,dielectric,thermal,and other properties.External processing factors such as temperature and pressure and their influence on the formation and organization of structured domains are also evaluated.Finally,potential applications that could benefit from the emergence of liquid crystal epoxy are reviewed. 展开更多
关键词 intrinsically thermal conductive epoxy liquid crystal unit ordered structure phonon transport thermal conductivity
下载PDF
Hierarchical structures on platinum-iridium substrates enhancing conducting polymer adhesion
2
作者 Linze Li Changqing Jiang Luming Li 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第6期889-898,共10页
Conducting polymers(CPs),including poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS),are promising coating materials for neural electrodes.However,the weak adhesion of CP coatings to substrates such a... Conducting polymers(CPs),including poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS),are promising coating materials for neural electrodes.However,the weak adhesion of CP coatings to substrates such as platinum-iridium is a significant challenge that limits their practical application.To address this issue,we used femtosecond laser-prepared hierarchical structures on platinum-iridium(Pt-Ir)substrates to enhance the adhesion of PEDOT:PSS coatings.Next,we used cyclic voltammetry(CV)stress and accelerated aging tests to evaluate the stability of both drop cast and electrodeposited PEDOT:PSS coatings on Pt-Ir substrates,both with and without hierarchical structures.Our results showed that after 2000 CV cycles or five weeks of aging at 60℃,the morphology and electrochemical properties of the coatings on the Pt-Ir substrates with hierarchical structures remained relatively stable.In contrast,we found that smooth Pt-Ir substrate surfaces caused delamination of the PEDOT:PSS coating and exhibited both decreased charge storage capacity and increased impedance.Overall,enhancing the stability of PEDOT:PSS coatings used on common platinum-iridium neural electrodes offers great potential for improving their electrochemical performance and developing new functionalities. 展开更多
关键词 Hierarchical structures Femtosecond laser conducting polymers Neural electrodes Stability
下载PDF
Highly Thermally Conductive and Structurally Ultra‑Stable Graphitic Films with Seamless Heterointerfaces for Extreme Thermal Management
3
作者 Peijuan Zhang Yuanyuan Hao +17 位作者 Hang Shi Jiahao Lu Yingjun Liu Xin Ming Ya Wang Wenzhang Fang Yuxing Xia Yance Chen Peng Li Ziqiu Wang Qingyun Su Weidong Lv Ji Zhou Ying Zhang Haiwen Lai Weiwei Gao Zhen Xu Chao Gao 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期383-397,共15页
Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme altern... Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics. 展开更多
关键词 Highly thermally conductive structurally ultra-stable Graphitic film Extreme thermal management Liquid nitrogen bubbling
下载PDF
A micromechanical model for efective conductivity in granular electrode structures 被引量:2
4
作者 Julia Ott Benjamin Vlker +2 位作者 Yixiang Gan Robert M.Mc Meeking Marc Kamlah 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第5期682-698,共17页
Optimization of composition and microstructure is important to enhance performance of solid oxide fuel cells (SOFC) and lithium-ion batteries (LIB). For this, the porous electrode structures of both SOFC and LIB a... Optimization of composition and microstructure is important to enhance performance of solid oxide fuel cells (SOFC) and lithium-ion batteries (LIB). For this, the porous electrode structures of both SOFC and LIB are modeled as a binary mixture of electronic and ionic conducting particles to estimate effective transport properties. Particle packings of 10000 spherical, binary sized and randomly positioned particles are created numerically and densified considering the different manufacturing processes in SOFC and LIB: the sintering of SOFC electrodes is approximated geometrically, whereas the calendering process and volume change due to intercalation in LIB are modeled physically by a discrete el- ement approach. A combination of a tracking algorithm and a resistor network approach is developed to predict the con- nectivity and effective conductivity for the various densified structures. For SOFC, a systematic study of the influence of morphology on connectivity and conductivity is performed on a large number of assemblies with different compositions and particle size ratios between 1 and 10. In comparison to percolation theory, an enlarged percolation area is found, es- pecially for large size ratios. It is shown that in contrast to former studies the percolation threshold correlates to varying coordination numbers. The effective conductivity shows not only an increase with volume fraction as expected but also with size ratio. For LIB, a general increase of conductivity during the intercalation process was observed in correlation with increasing contact forces. The positive influence of cal- endering on the percolation threshold and the effective conductivity of carbon black is shown. The anisotropy caused by the calendering process does not influence the carbon black phase. 展开更多
关键词 Granular electrode structures Effective conductivity - Percolation
下载PDF
Laser Powder Bed Fusion of Multifunctional Bio-inspired Vertical Honeycomb Sandwich Structures:For the Application of Lightweight Bipolar Plates of Proton Exchange Membrane Fuel Cells
5
作者 Kaijie Lin Yong Xu +3 位作者 Dongdong Gu Junhao Shan Keyu Shi Wanli Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第5期60-75,共16页
The bipolar plate(BPP)is a crucial component of proton exchange membrane fuel cells(PEMFC).However,the weight of BPPs can account for around 80%of a PEMFC stack,posing a hindrance to the commercialization of PEMFCs.Th... The bipolar plate(BPP)is a crucial component of proton exchange membrane fuel cells(PEMFC).However,the weight of BPPs can account for around 80%of a PEMFC stack,posing a hindrance to the commercialization of PEMFCs.Therefore,the lightweight design of BPPs should be considered as a priority.Honeycomb sandwich structures meet some requirements for bipolar plates,such as high mechanical strength and lightweight.Animals and plants in nature provide many excellent structures with characteristics such as low density and high energy absorption capacity.In this work,inspired by the microstructures of the Cybister elytra,a novel bio-inspired vertical honeycomb sandwich(BVHS)structure was designed and manufactured by laser powder bed fusion(LPBF)for the application of lightweight BPPs.Compared with the conventional vertical honeycomb sandwich(CVHS)structure formed by LPBF under the same process parameters setting,the introduction of fractal thin walls enabled self-supporting and thus improved LPBF formability.In addition,the BVHS structure exhibited superior energy absorption(EA)capability and bending properties.It is worth noting that,compared with the CVHS structure,the specific energy absorption(SEA)and specific bending strength of the BVHS structure increased by 56.99%and 46.91%,respectively.Finite element analysis(FEA)was employed to study stress distributions in structures during bending and analyze the influence mechanism of the fractal feature on the mechanical properties of BVHS structures.The electrical conductivity of structures were also studied in this work,the BVHS structures were slightly lower than the CVHS structure.FEA was also conducted to analyze the current flow direction and current density distribution of BVHS structures under a constant voltage,illustrating the influence mechanism of fractal angles on electrical conductivity properties.Finally,in order to solve the problem of trapped powder inside the enclosed unit cells,a droplet-shaped powder outlet was designed for LPBF-processed components.The number of powder outlets was optimized based on bending properties.Results of this work could provide guidelines for the design of lightweight BPPs with high mechanical strength and high electrical conductivity. 展开更多
关键词 Lightweight bipolar plates Bio-inspired honeycomb sandwich structures Laser powder bed fusion Forming quality Bending properties Electrical conductivity
下载PDF
Research of the Conductive Structure of Crust and the Upper Mantle beneath the South-Central Tibetan Plateau 被引量:1
6
作者 叶高峰 金胜 +1 位作者 魏文博 Martyn Unsworth 《Journal of China University of Geosciences》 SCIE CSCD 2007年第4期334-343,共10页
With the super-wide band magnetoteiluric sounding data of the JUong (吉隆)-Cuoqin (措勤) profile (named line 800) which was completed in 2001 and the Dingri (定日)-Cuomai (措迈) profile (named line 900) wh... With the super-wide band magnetoteiluric sounding data of the JUong (吉隆)-Cuoqin (措勤) profile (named line 800) which was completed in 2001 and the Dingri (定日)-Cuomai (措迈) profile (named line 900) which was completed in 2004, we obtained the strike direction of each MT station by strike analysis, then traced profiles that were perpendicular to the main strike direction, and finally obtained the resistivity model of each profile by nonlinear conjugate gradients (NLCG) inversion. With these two models, we described the resistivity structure features of the crust and the upper mantle of the center-southern Tibetan plateau and its relationship with Yalung Tsangpo suture: the upper crust of the research area is a resistive layer with resistivity value range of 200-3 000 Ω.m. The depth of its bottom surface is about 15-20 km generally, but the bottom surface of resistive layer is deeper in the middle of these two profiles. At llne 900, it is about 30 km deep, and even at line 800, it is about 38 km deep. There is a gradient belt of resistivity at the depth of 15-45 km, and a conductive layer is beneath it with resistivity even less than 5 Ω.m. This conductive layer is composed of individual conductive bodies, and at the south of the Yalung Tsangpo suture, the conductive bodies are smaller with thickness about 10 km and lean to the north slightly. However, at the north of the Yalung Tsangpo suture, the conductive bodies are larger with thickness about 30 km and also lean to the north slightly. Relatively, the conductive bodies of line 900 are thinner than those of line 800, and the depth of the bottom surface of line 900 is also shallower. At last, after analyzing the effect factors to the resistivity of rocks, it was concluded that the very conductive layer was caused by partial melt or connective water in rocks. It suggests that the middle and lower crust of the center-southern Tibetan plateau is very thick, hot, flabby, and waxy. 展开更多
关键词 south-central Tibet magnetotelluric sounding nonlinear conjugate gradients inversion conductive structure partial melt.
下载PDF
Advanced Functional Electromagnetic Shielding Materials:A Review Based on Micro‑Nano Structure Interface Control of Biomass Cell Walls
7
作者 Yang Shi Mingjun Wu +14 位作者 Shengbo Ge Jianzhang Li Anoud Saud Alshammari Jing Luo Mohammed A.Amin Hua Qiu Jinxuan Jiang Yazeed M.Asiri Runzhou Huang Hua Hou Zeinhom M.El‑Bahy Zhanhu Guo Chong Jia Kaimeng Xu Xiangmeng Chen 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期98-134,共37页
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and... Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field. 展开更多
关键词 Biomass materials Electromagnetic interference shielding Micro-nano structure interface control conductIVITY
下载PDF
Temperature-dependent dielectric properties of Au/Si_3N_4/n-Si (metal insulator semiconductor) structures
8
作者 T.Ataseven A.Tataroglu 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期541-546,共6页
The dielectric properties of Au/Si3N4/n-Si (MIS) structures are studied using the admittance measurements (C–V and G/ω–V) each as a function of temperature in a range from 80 K to 400 K for two frequencies (10... The dielectric properties of Au/Si3N4/n-Si (MIS) structures are studied using the admittance measurements (C–V and G/ω–V) each as a function of temperature in a range from 80 K to 400 K for two frequencies (100 kHz and 1 MHz). Experimental results show that both the dielectric constant (ε’) and the dielectric loss (ε") increase with temperature increasing and decrease with frequency increasing. The measurements also show that the ac conductivity (σac) increases with temperature and frequency increasing. The lnσac versus 1000/T plot shows two linear regions with different slopes which correspond to low (120 K–240 K) and high (280 K–400 K) temperature ranges for the two frequencies. It is found that activation energy increases with frequency and temperature increasing. 展开更多
关键词 Au/Si3N4/n-Si (metal-insulator-semiconductor) structure admittance measurements dielectricproperties ac conductivity
下载PDF
Thermal Conductivity of Diamond-Based Silicon-on-Insulator Structures
9
作者 GU Chang-zhi JIN Zeng-sun +5 位作者 LU Xiang-yi ZOU Guang-tian LU Jian-xia YAO Da ZHANG Ji-fa FANG Rong-chuan 《Chinese Physics Letters》 SCIE CAS CSCD 1996年第8期610-612,共3页
Diamond films of various thickness(1-300μm)were deposited on single-crystal Si active(300μm)by a microwave plasma chemical vapor deposition method using gaseous mixtures of methane and hydrogen.After thinning of the... Diamond films of various thickness(1-300μm)were deposited on single-crystal Si active(300μm)by a microwave plasma chemical vapor deposition method using gaseous mixtures of methane and hydrogen.After thinning of the Si layer by machine and ion-beam polishing a diamond-based silicon-on-insulator structure with final Si layer thickness of about 1μm is formed.Thermal conductivity of this structure material with various thicknesses of diamond and Si layer was measured.Compared with bulk silicon,the thermal conductivity of the siliconon-diamond structure with 300μm diamond and 1μm silicon increases by 850%. 展开更多
关键词 DIAMOND conductIVITY structurE
下载PDF
An analytic model for transient heat conduction in bi-layered structures with flexible serpentine heaters
10
作者 Zhao ZHAO Yuhang LI +2 位作者 Sujun DONG Yi CUI Zheng DAI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第9期1279-1296,共18页
Uniform heating of complex surfaces,especially non-developable surfaces,is a crucial problem that traditional rigid heaters cannot solve.Inspired by flexible electronic devices,a novel design for the stretchable heati... Uniform heating of complex surfaces,especially non-developable surfaces,is a crucial problem that traditional rigid heaters cannot solve.Inspired by flexible electronic devices,a novel design for the stretchable heating film is proposed with the flexible serpentine wire embedded in the soft polymer film,which can be attached to non-developable surfaces conformally.It provides a new way for the stretchable heaters to realize uniform heating of complex surfaces.However,the thermal field of flexible serpentine heaters(FSHs)depends on the configurations of the embedded serpentine heating wire,which requires accurate theoretical prediction of real-time temperature distribution.Therefore,the analytical model for the transient heat conduction in FSHs is solved by the separation of variables method and validated by the finite element analysis(FEA)in this paper.Based on this model,the effects of the geometric parameters,such as the radius and the length of the serpentine heaters,on the thermal uniformity are systematically investigated.This study can help to design and fabricate flexible heaters with uniform heating in the future. 展开更多
关键词 serpentine heater bi-layered structure transient heat conduction temperature distribution
下载PDF
Conductive Polymer Composites Fabricated by Disposable Face Masks and Multi-Walled Carbon Nanotubes: Crystalline Structure and Enhancement Effect
11
作者 Meng Xiang Zhou Yang +5 位作者 Jingjing Yang Tong Lu Danqi Wu Zhijun Liu Rongjie Xue Shuang Dong 《Journal of Renewable Materials》 SCIE EI 2022年第3期821-831,共11页
Influenced by recent COVID-19,wearing face masks to block the spread of the epidemic has become the simplest and most effective way.However,after the people wear masks,thousands of tons of medical waste by used dis-po... Influenced by recent COVID-19,wearing face masks to block the spread of the epidemic has become the simplest and most effective way.However,after the people wear masks,thousands of tons of medical waste by used dis-posable masks will be generated every day in the world,causing great pressure on the environment.Herein,con-ductive polymer composites are fabricated by simple melt blending of mask fragments(mask polypropylene,short for mPP)and multi-walled carbon nanotubes(MWNTs).MWNTs were used as modifiers for composites because of their high strength and high conductivity.The crystalline structure,mechanical,electrical and thermal enhancement effect of the composites were investigated.MWNTs with high thermal stability acted the role of promoting the crystallisation of mPP by expediting the crystalline nucleation,leading to the improvement of amount for crystalline nucleus.MWNTs fibers interpenetrate with each other in mPP matrix to form conducting network.With 2.0 wt% MWNTs loading,the tensile strength and electrical conductivity of the composites were increased by 809% and 7 orders of magnitude.MWNTs fibers interpenetrate with each other in mPP matrix to form conducting network.Thus,more conducting paths were constructed to transport carriers.The findings may open a way for high value utilization of the disposable masks. 展开更多
关键词 Disposable face masks multi-walled carbon nanotubes crystalline structure mechanical enhancement effect conducting network
下载PDF
Spatial Electronic Structures and Different Magnitude of Electroconductivity
12
作者 Titorov Dmitriy Borisovich 《材料科学与工程(中英文B版)》 2012年第10期575-581,共7页
关键词 电子结构 导电性 空间 电子密度 不均匀 电子层 凝聚态 决定性
下载PDF
Regularity and mechanism of coal resistivity response with different conductive characteristics in complete stress-strain process 被引量:4
13
作者 Chen Peng Wang Enyuan +3 位作者 Chen Xuexi Liu Zhentang Li Zhonghui Shen Rongxi 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期779-786,共8页
The stress,strain as well as resistivity of coal during uniaxial compression process were tested based on self-built real-time testing system of loaded coal resistivity.Furthermore,the coal resistivity regularity and ... The stress,strain as well as resistivity of coal during uniaxial compression process were tested based on self-built real-time testing system of loaded coal resistivity.Furthermore,the coal resistivity regularity and mechanism were analyzed at different stages of complete stress-strain process,which includes the two kinds of coal body with typical conductive characteristics.The results indicate that coal resistivity with different conductive characteristics has different change rules in complete stress-strain process.It is mainly represented at the densification and flexibility phases before dilatation occurs.The variation of resistivity can be divided into two kinds,named down and up.Dilatation of coal samples occurred between 66%σ_(max) and 87%σ_(max).Because of dilatation,coal resistivity involves sudden change.The overall representation is shifting from reducing into improving or from slow improving into accelerated improving.Thus,coal resistivity always shows an increasing tendency at the plastic stage.After peak stress,coal body enters into failure stage.The expanding and communicating of macro fracture causes further improvement of coal resistivity.The maximum value of resistivity rangeability named λ reached 3.49.Through making real-time monitoring on coal resistivity,variation rules of resistivity can be deemed as precursory information so as to reflect the dilatation and sudden change before coal body reaches buckling failure,which can provide a new technological means for forecasting the dynamic disaster of coal petrography. 展开更多
关键词 RESISTIVITY STRESS-STRAIN DILATATION conductive characteristics Coal structure
下载PDF
Microstructures and properties of porous TiAl-based intermetallics prepared by freeze-casting 被引量:3
14
作者 Zhong-liang LU Wen-liang XU +3 位作者 Ji-wei CAO Yuan-lin XIA Qing-hua DENG Di-chen LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第2期382-391,共10页
Preparation of porous Ti Al-based intermetallics with aligned and elongated pores by freeze-casting was investigated. Engineering Ti-43 Al-9V-1Y powder(D50=50 μm), carboxymethyl cellulose, and guar gum were used to p... Preparation of porous Ti Al-based intermetallics with aligned and elongated pores by freeze-casting was investigated. Engineering Ti-43 Al-9V-1Y powder(D50=50 μm), carboxymethyl cellulose, and guar gum were used to prepare the aqueous-based slurries for freeze-casting. Results showed that the porous Ti Al was obtained by using a freezing temperature of -5 ℃ and the pore structure was tailored by varying the particle content of slurry. The total porosity reduced from 81% to 62% and the aligned pore width dropped from approximately 500 to around 270 μm, with increasing the particle content from 10 to 30 vol.%. Furthermore, the compressive strength along the aligned pores increased from 16 to 120 MPa with the reduction of porosity. The effective thermal conductivities of porous Ti Al were lower than 1.81 W/(m·K) and showed anisotropic property with respect to the pore orientation. 展开更多
关键词 porous TiAl freeze-casting pore structures mechanical properties thermal conductivity
下载PDF
Micrometer-sized ferrosilicon composites wrapped with multi-layered carbon nanosheets as industrialized anodes for high energy lithium-ion batteries 被引量:2
15
作者 Meng Li Jingyi Qiu +6 位作者 Songtong Zhang Pengcheng Zhao Zhaoqing Jin Anbang Wang Yue Wang Yusheng Yang Hai Ming 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期286-295,共10页
Various nanostructured architectures have been demonstrated to be effective to address the issues of high capacity Si anodes. However, the scale-up of these nano-Si materials is still a critical obstacle for commercia... Various nanostructured architectures have been demonstrated to be effective to address the issues of high capacity Si anodes. However, the scale-up of these nano-Si materials is still a critical obstacle for commercialization. Herein, we use industrial ferrosilicon as low-cost Si source and introduce a facile and scalable method to fabricate a micrometer-sized ferrosilicon/C composite anode, in which ferrosilicon microparticles are wrapped with multi-layered carbon nanosheets. The multi-layered carbon nanosheets could effectively buffer the volume variation of Si as well as create an abundant and reliable conductivity framework, ensuring fast transport of electrons. As a result, the micrometer-sized ferrosilicon/C anode achieves a stable cycling with 805.9 m Ah g-1 over 200 cycles at 500 mA g-1 and a good rate capability of455.6 mAh g-1 at 10 A g-1. Therefore, our approach based on ferrosilicon provides a new opportunity in fabricating cost-effective, pollution-free, and large-scale Si electrode materials for high energy lithium-ion batteries. 展开更多
关键词 FERROSILICON multi-layered carbon nanosheets Micrometer-sized Si Material structural design Anode Lithium-ion batteries
下载PDF
Study on Band Structure of YbB_6 and Analysis of Its Optical Conductivity Spectrum 被引量:1
16
作者 姜骏 卞江 黎乐民 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第6期654-664,共11页
The electronic structure of YbB6 crystal was studied by means of density functional (GGA + U) method. The calculations were performed by FLAPW method. The high accurate band structure was achieved. The correlation ... The electronic structure of YbB6 crystal was studied by means of density functional (GGA + U) method. The calculations were performed by FLAPW method. The high accurate band structure was achieved. The correlation between the feature of the band structure and the Yb-B6 bonding in YbB6 was analyzed. On this basis, some optical constants of YbB6 such as reflectivity, dielectric function, optical conductivity, and energy-loss function were calculated. The results are in good agreement with the experiments. The real part of the optical conductivity spectrum and the energy-loss function spectrum were analyzed in detail. The assignments of the spectra were carried out to correlate the spectral peaks with the interband electronic transitions, which justify the reasonable part of previous empirical assignments and renew the missed or incorrect ones. 展开更多
关键词 YbB6 band structure optical conductivity energy-loss function spectrum assignment rare earths
下载PDF
Conductive metal-organic frameworks: Recent advances in electrochemical energy-related applications and perspectives 被引量:4
17
作者 Lingzhi Guo Jinfeng Sun +3 位作者 Jingxuan Wei Yang Liu Linrui Hou Changzhou Yuan 《Carbon Energy》 CAS 2020年第2期203-222,共20页
Metal-organic frameworks(MOFs),typically constructed with metallic nodes and organic linkers,have influenced the development of modular solid materials.Their adjustable molecular structure provides a remarkable variet... Metal-organic frameworks(MOFs),typically constructed with metallic nodes and organic linkers,have influenced the development of modular solid materials.Their adjustable molecular structure provides a remarkable variety of MOF-based solid-state structures towards diverse applications.However,the low conductivity of traditional MOFs extremely hinders their applications in electronic and electrochemical devices.The emerging conductive MOFs,generally possessing twodimensional layered structures,are endowed with both the structural merits of common MOFs and exceptional electronic/ionic conductivities.Besides,the selection and optimization of ligands and metal centers,as well as synthetic methods enormously affects the intrinsic conductivity of conductive MOFs.The distinctive crystal structures and superb conductivity promise their appealing applications in electrochemical energy-related fields.In the review,we mainly summarize representative crystal features,conducting mechanisms and recent advances in rational design and synthesis of conductive MOFs,along with their versatile applications as electrodes for electrochemical capacitors and rechargeable batteries,and as catalysts towards electrocatalysis.Finally,the involved challenges and future trends/prospects of the conductive MOFs for electrochemical energyrelated applications are further proposed. 展开更多
关键词 conducting mechanisms conductive metal-organic frameworks crystal structure ELECTROCATALYSIS electrochemical capacitors rechargeable batteries
下载PDF
A Valence Electron Structure Criterion of Ionic Conductivity of Sr- and Mg-doped LaGaO_3 Ceramics 被引量:1
18
作者 Min SHI Ning LIU +3 位作者 Yudong XU Can WANG Yupeng YUAN P.Majewski 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第2期215-219,共5页
The valence electron structures of Sr- and Mg-doped LaGaO3 ceramics with different compositions were calculated by Empirical Electron Theory of Solids and Molecules (EET). A criterion for the ionic conductivity was ... The valence electron structures of Sr- and Mg-doped LaGaO3 ceramics with different compositions were calculated by Empirical Electron Theory of Solids and Molecules (EET). A criterion for the ionic conductivity was proposed, i.e. the 1/(nAnB) increases with increasing the ionic conductivity when x or y〈20% (in molar fraction). 展开更多
关键词 Empirical electron theory of solids and molecules (EET) Valence electron structure LaGaO3 ceramics Ionic conductivity
下载PDF
Annealing time dependent structural, morphological, optical and electrical properties of RF sputtered p-type transparent conducting SnO_2/Al/SnO_2 thin films 被引量:1
19
作者 Keun Young PARK Ho Je CHO +2 位作者 Tae Kwon SONG Hang Joo KO Bon Heun KOO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第S1期129-133,共5页
Transparent p-type conducting SnO2/Al/SnO2 multilayer films were fabricated on quartz substrates by radio frequency(RF) sputtering using SnO2 and Al targets. The deposited films were annealed at a fix temperature of 5... Transparent p-type conducting SnO2/Al/SnO2 multilayer films were fabricated on quartz substrates by radio frequency(RF) sputtering using SnO2 and Al targets. The deposited films were annealed at a fix temperature of 500 °C for different time durations(1-8 h). The effect of annealing time on the structural, morphological, optical and electrical performances of SnO2/Al/SnO2 multilayer films was studied. X-ray diffraction(XRD) results show that all the p-type conducting films possess polycrystalline SnO2 with tetragonal rutile structure. Hall-effect results indicate that 500 °C for 1 h is the optimum annealing condition for p-type SnO2/Al/SnO2 multilayer films, resulting in a hole concentration of 1.14×1018 cm-3 and a low resistivity of 1.38 ?·cm, respectively. The optical transmittance of the p-type SnO2/Al/SnO2 multilayer films is above 80% within annealing time range of 1-8 h, showing maximum for the films annealed for 1 h. 展开更多
关键词 pulsed laser deposition(PLD) transparent conducting oxide(TCO) P-TYPE multi-layer TRANSMITTANCE
下载PDF
Influences of Structure Disorder and Temperature on Properties of Proton Conductivity in Hydrogen-Bond Molecular Systems 被引量:1
20
作者 PANG Xiao-Feng YU Jia-Feng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第2期235-243,共9页
The dynamic properties of proton conductivity along hydrogen-bonded molecular systems, for example, ice crystal, with structure disorder or damping and finite temperatures exposed in an externally applied electric-fie... The dynamic properties of proton conductivity along hydrogen-bonded molecular systems, for example, ice crystal, with structure disorder or damping and finite temperatures exposed in an externally applied electric-field have been numerically studied by Runge-Kutta way in our soliton model. The results obtained show that the proton-soliton is very robust against the structure disorder including the fluctuation of the force constant and disorder in the sequence of masses and thermal perturbation and damping of medium, the velocity of its conductivity increases with increasing of the externally applied electric-field and decreasing of the damping coefficient of medium, but the proton-soliton disperses for quite great fluctuation of the "force constant and damping coefficient. In the numerical simulation we find that the proton-soliton in our model is thermally stable in a large region of temperature of T ≤ 273 K under influences of damping and externally applied electric-field in ice crvstal. This shows that our model is available and appropriate to ice. 展开更多
关键词 proton conductivity structure disorder temperature hydrogen bonded system
下载PDF
上一页 1 2 91 下一页 到第
使用帮助 返回顶部