Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional ...Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional attention schemes have not considered the impact of lesion type differences on grading,resulting in unreasonable extraction of important lesion features.Therefore,this paper proposes a DR diagnosis scheme that integrates a multi-level patch attention generator(MPAG)and a lesion localization module(LLM).Firstly,MPAGis used to predict patches of different sizes and generate a weighted attention map based on the prediction score and the types of lesions contained in the patches,fully considering the impact of lesion type differences on grading,solving the problem that the attention maps of lesions cannot be further refined and then adapted to the final DR diagnosis task.Secondly,the LLM generates a global attention map based on localization.Finally,the weighted attention map and global attention map are weighted with the fundus map to fully explore effective DR lesion information and increase the attention of the classification network to lesion details.This paper demonstrates the effectiveness of the proposed method through extensive experiments on the public DDR dataset,obtaining an accuracy of 0.8064.展开更多
Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior know...Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.展开更多
The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orient...The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orientation detection.Political articles(especially in the Arab world)are different from other articles due to their subjectivity,in which the author’s beliefs and political affiliation might have a significant influence on a political article.With categories representing the main political ideologies,this problem may be thought of as a subset of the text categorization(classification).In general,the performance of machine learning models for text classification is sensitive to hyperparameter settings.Furthermore,the feature vector used to represent a document must capture,to some extent,the complex semantics of natural language.To this end,this paper presents an intelligent system to detect political Arabic article orientation that adapts the categorical boosting(CatBoost)method combined with a multi-level feature concept.Extracting features at multiple levels can enhance the model’s ability to discriminate between different classes or patterns.Each level may capture different aspects of the input data,contributing to a more comprehensive representation.CatBoost,a robust and efficient gradient-boosting algorithm,is utilized to effectively learn and predict the complex relationships between these features and the political orientation labels associated with the articles.A dataset of political Arabic texts collected from diverse sources,including postings and articles,is used to assess the suggested technique.Conservative,reform,and revolutionary are the three subcategories of these opinions.The results of this study demonstrate that compared to other frequently used machine learning models for text classification,the CatBoost method using multi-level features performs better with an accuracy of 98.14%.展开更多
Through SWOT(strengths,weaknesses,opportunities,and threats)and PEST(political,economic,social,and technological)analysis,this study discusses the construction of a multi-level strategic system for the cultivation of ...Through SWOT(strengths,weaknesses,opportunities,and threats)and PEST(political,economic,social,and technological)analysis,this study discusses the construction of a multi-level strategic system for the cultivation of cultural industry management talents in colleges and universities.First of all,based on SWOT analysis,it is found that colleges and universities have rich educational resources and policy support,but they face challenges such as insufficient practical teaching and intensified international competition.External opportunities come from the rapid development of the cultivation of cultural industry management talents and policy promotion,while threats come from global market competition and talent flow.Secondly,PEST analysis reveals the key factors in the macro-environment:at the political level,the state vigorously supports the cultivation of cultural industry management talents;at the economic level,the market demand for cultural industries is strong;at the social level,the public cultural consumption is upgraded;at the technological level,digital transformation promotes industry innovation.On this basis,this paper puts forward a multi-level strategic system covering theoretical education,practical skill improvement,interdisciplinary integration,and international vision training.The system aims to solve the problems existing in talent training in colleges and universities and cultivate high-quality cultural industry management talents with theoretical knowledge,practical skills,and global vision,so as to adapt to the increasingly complex and diversified cultural industry management talents market demand and promote the long-term development of the industry.展开更多
With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provi...With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provides reliable support for reconfiguration optimization in urban distribution networks.Thus,this study proposed a deep reinforcement learning based multi-level dynamic reconfiguration method for urban distribution networks in a cloud-edge collaboration architecture to obtain a real-time optimal multi-level dynamic reconfiguration solution.First,the multi-level dynamic reconfiguration method was discussed,which included feeder-,transformer-,and substation-levels.Subsequently,the multi-agent system was combined with the cloud-edge collaboration architecture to build a deep reinforcement learning model for multi-level dynamic reconfiguration in an urban distribution network.The cloud-edge collaboration architecture can effectively support the multi-agent system to conduct“centralized training and decentralized execution”operation modes and improve the learning efficiency of the model.Thereafter,for a multi-agent system,this study adopted a combination of offline and online learning to endow the model with the ability to realize automatic optimization and updation of the strategy.In the offline learning phase,a Q-learning-based multi-agent conservative Q-learning(MACQL)algorithm was proposed to stabilize the learning results and reduce the risk of the next online learning phase.In the online learning phase,a multi-agent deep deterministic policy gradient(MADDPG)algorithm based on policy gradients was proposed to explore the action space and update the experience pool.Finally,the effectiveness of the proposed method was verified through a simulation analysis of a real-world 445-node system.展开更多
We report a design and implementation of a field-programmable-gate-arrays(FPGA)based hardware platform,which is used to realize control and signal readout of trapped-ion-based multi-level quantum systems.This platform...We report a design and implementation of a field-programmable-gate-arrays(FPGA)based hardware platform,which is used to realize control and signal readout of trapped-ion-based multi-level quantum systems.This platform integrates a four-channel 2.8 Gsps@14 bits arbitrary waveform generator,a 16-channel 1 Gsps@14 bits direct-digital-synthesisbased radio-frequency generator,a 16-channel 8 ns resolution pulse generator,a 10-channel 16 bits digital-to-analogconverter module,and a 2-channel proportion integration differentiation controller.The hardware platform can be applied in the trapped-ion-based multi-level quantum systems,enabling quantum control of multi-level quantum system and highdimensional quantum simulation.The platform is scalable and more channels for control and signal readout can be implemented by utilizing more parallel duplications of the hardware.The hardware platform also has a bright future to be applied in scaled trapped-ion-based quantum systems.展开更多
Massive rural-to-urban migration in China is consequential for political trust: rural-to-urban migrants have been found to hold lower levels of trust in local government than their rural peers who choose to stay in th...Massive rural-to-urban migration in China is consequential for political trust: rural-to-urban migrants have been found to hold lower levels of trust in local government than their rural peers who choose to stay in the countryside (mean 4.92 and 6.34 out of 10, respectively, p < 0.001). This article explores why migrants have a certain level of political trust in their county-level government. Using data of rural-to-urban migrants from the China Family Panel Survey, this study performs a hierarchical linear modeling (HLM) to unpack the multi-level explanatory factors of rural-to-urban migrants’ political trust. Findings show that the individual-level socio-economic characteristics and perceptions of government performance (Level-1), the neighborhood-level characteristics-the physical and social status and environment of neighborhoods (Level-2), and the objective macroeconomic performance of county-level government (Level-3), work together to explain migrants’ trust levels. These results suggest that considering the effects of neighborhood-level factors on rural-to-urban migrants’ political trust merits policy and public management attention in rapidly urbanizing countries.展开更多
Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this ...Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this paper,we propose pixelated programmable Si_(3)N_(4)PICs with record-high 20-level intermediate states at 785 nm wavelength.Such flexibility in phase or amplitude modulation is achieved by a programmable Sb_(2)S_(3)matrix,the footprint of whose elements can be as small as 1.2μm,limited only by the optical diffraction limit of anin-house developed pulsed laser writing system.We believe our work lays the foundation for laser-writing ultra-high-level(20 levels and even more)programmable photonic systems and metasurfaces based on phase change materials,which could catalyze diverse applications such as programmable neuromorphic photonics,biosensing,optical computing,photonic quantum computing,and reconfigurable metasurfaces.展开更多
An access control model is proposed based on the famous Bell-LaPadula (BLP) model.In the proposed model,hierarchical relationships among departments are built,a new concept named post is proposed,and assigning secur...An access control model is proposed based on the famous Bell-LaPadula (BLP) model.In the proposed model,hierarchical relationships among departments are built,a new concept named post is proposed,and assigning security tags to subjects and objects is greatly simplified.The interoperation among different departments is implemented through assigning multiple security tags to one post, and the more departments are closed on the organization tree,the more secret objects can be exchanged by the staff of the departments.The access control matrices of the department,post and staff are defined.By using the three access control matrices,a multi granularity and flexible discretionary access control policy is implemented.The outstanding merit of the BLP model is inherited,and the new model can guarantee that all the information flow is under control.Finally,our study shows that compared to the BLP model,the proposed model is more flexible.展开更多
The relentless progress in the research of geographic spatial data models and their application scenarios is propelling an unprecedented rich Level of Detail(LoD)in realistic 3D representation and smart cities.This pu...The relentless progress in the research of geographic spatial data models and their application scenarios is propelling an unprecedented rich Level of Detail(LoD)in realistic 3D representation and smart cities.This pursuit of rich details not only adds complexity to entity models but also poses significant computational challenges for model visualization and 3D GIS.This paper introduces a novel method for deriving multi-LOD models,which can enhance the efficiency of spatial computing in complex 3D building models.Firstly,we extract multiple facades from a 3D building model(LoD3)and convert them into individual semantic facade models.Through the utilization of the developed facade layout graph,each semantic facade model is then transformed into a parametric model.Furthermore,we explore the specification of geometric and semantic details in building facades and define three different LODs for facades,offering a unique expression.Finally,an innovative heuristic method is introduced to simplify the parameterized facade.Through rigorous experimentation and evaluation,the effectiveness of the proposed parameterization methodology in capturing complex geometric details,semantic richness,and topological relationships of 3D building models is demonstrated.展开更多
An effective shape signature namely multi-level included angle functions MIAFs is proposed to describe the hierarchy information ranging from global information to local variations of shape.Invariance to rotation tran...An effective shape signature namely multi-level included angle functions MIAFs is proposed to describe the hierarchy information ranging from global information to local variations of shape.Invariance to rotation translation and scaling are the intrinsic properties of the MIAFs.For each contour point the multi-level included angles are obtained based on the paired line segments derived from unequal-arc-length partitions of contour.And a Fourier descriptor derived from multi-level included angle functions MIAFD is presented for efficient shape retrieval.The proposed descriptor is evaluated with the standard performance evaluation method on three shape image databases the MPEG-7 database the Kimia-99 database and the Swedish leaf database. The experimental results of shape retrieval indicate that the MIAFD outperforms the existing Fourier descriptors and has low computational complexity.And the comparison of the MIAFD with other shape description methods also shows that the proposed descriptor has the highest precision at the same recall value which verifies its effectiveness.展开更多
基金supported in part by the Research on the Application of Multimodal Artificial Intelligence in Diagnosis and Treatment of Type 2 Diabetes under Grant No.2020SK50910in part by the Hunan Provincial Natural Science Foundation of China under Grant 2023JJ60020.
文摘Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional attention schemes have not considered the impact of lesion type differences on grading,resulting in unreasonable extraction of important lesion features.Therefore,this paper proposes a DR diagnosis scheme that integrates a multi-level patch attention generator(MPAG)and a lesion localization module(LLM).Firstly,MPAGis used to predict patches of different sizes and generate a weighted attention map based on the prediction score and the types of lesions contained in the patches,fully considering the impact of lesion type differences on grading,solving the problem that the attention maps of lesions cannot be further refined and then adapted to the final DR diagnosis task.Secondly,the LLM generates a global attention map based on localization.Finally,the weighted attention map and global attention map are weighted with the fundus map to fully explore effective DR lesion information and increase the attention of the classification network to lesion details.This paper demonstrates the effectiveness of the proposed method through extensive experiments on the public DDR dataset,obtaining an accuracy of 0.8064.
基金supported by the National Natural Science Foundation of China(Grant Nos.62005307 and 61975228).
文摘Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.
文摘The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orientation detection.Political articles(especially in the Arab world)are different from other articles due to their subjectivity,in which the author’s beliefs and political affiliation might have a significant influence on a political article.With categories representing the main political ideologies,this problem may be thought of as a subset of the text categorization(classification).In general,the performance of machine learning models for text classification is sensitive to hyperparameter settings.Furthermore,the feature vector used to represent a document must capture,to some extent,the complex semantics of natural language.To this end,this paper presents an intelligent system to detect political Arabic article orientation that adapts the categorical boosting(CatBoost)method combined with a multi-level feature concept.Extracting features at multiple levels can enhance the model’s ability to discriminate between different classes or patterns.Each level may capture different aspects of the input data,contributing to a more comprehensive representation.CatBoost,a robust and efficient gradient-boosting algorithm,is utilized to effectively learn and predict the complex relationships between these features and the political orientation labels associated with the articles.A dataset of political Arabic texts collected from diverse sources,including postings and articles,is used to assess the suggested technique.Conservative,reform,and revolutionary are the three subcategories of these opinions.The results of this study demonstrate that compared to other frequently used machine learning models for text classification,the CatBoost method using multi-level features performs better with an accuracy of 98.14%.
基金Achievements of Sichuan Fine Arts Institute Education and Teaching Reform Research Project“Construction of Multi-Level Strategic System for Cultivating Cultural Industry Management Talents in Colleges and Universities”(2024jg10)。
文摘Through SWOT(strengths,weaknesses,opportunities,and threats)and PEST(political,economic,social,and technological)analysis,this study discusses the construction of a multi-level strategic system for the cultivation of cultural industry management talents in colleges and universities.First of all,based on SWOT analysis,it is found that colleges and universities have rich educational resources and policy support,but they face challenges such as insufficient practical teaching and intensified international competition.External opportunities come from the rapid development of the cultivation of cultural industry management talents and policy promotion,while threats come from global market competition and talent flow.Secondly,PEST analysis reveals the key factors in the macro-environment:at the political level,the state vigorously supports the cultivation of cultural industry management talents;at the economic level,the market demand for cultural industries is strong;at the social level,the public cultural consumption is upgraded;at the technological level,digital transformation promotes industry innovation.On this basis,this paper puts forward a multi-level strategic system covering theoretical education,practical skill improvement,interdisciplinary integration,and international vision training.The system aims to solve the problems existing in talent training in colleges and universities and cultivate high-quality cultural industry management talents with theoretical knowledge,practical skills,and global vision,so as to adapt to the increasingly complex and diversified cultural industry management talents market demand and promote the long-term development of the industry.
基金supported by the National Natural Science Foundation of China under Grant 52077146.
文摘With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provides reliable support for reconfiguration optimization in urban distribution networks.Thus,this study proposed a deep reinforcement learning based multi-level dynamic reconfiguration method for urban distribution networks in a cloud-edge collaboration architecture to obtain a real-time optimal multi-level dynamic reconfiguration solution.First,the multi-level dynamic reconfiguration method was discussed,which included feeder-,transformer-,and substation-levels.Subsequently,the multi-agent system was combined with the cloud-edge collaboration architecture to build a deep reinforcement learning model for multi-level dynamic reconfiguration in an urban distribution network.The cloud-edge collaboration architecture can effectively support the multi-agent system to conduct“centralized training and decentralized execution”operation modes and improve the learning efficiency of the model.Thereafter,for a multi-agent system,this study adopted a combination of offline and online learning to endow the model with the ability to realize automatic optimization and updation of the strategy.In the offline learning phase,a Q-learning-based multi-agent conservative Q-learning(MACQL)algorithm was proposed to stabilize the learning results and reduce the risk of the next online learning phase.In the online learning phase,a multi-agent deep deterministic policy gradient(MADDPG)algorithm based on policy gradients was proposed to explore the action space and update the experience pool.Finally,the effectiveness of the proposed method was verified through a simulation analysis of a real-world 445-node system.
基金the Strategic Priority Research Program of CAS(Grant No.XDC07020200)the National Key R&D Program of China(Grants No.2018YFA0306600)+5 种基金the National Natural Science Foundation of China(Grant Nos.11974330 and 92165206)the Chinese Academy of Sciences(Grant No.QYZDY-SSW-SLH004)the Innovation Program for Quantum Science and Technology(Grant Nos.2021ZD0302200 and 2021ZD0301603)the Anhui Initiative in Quantum Information Technologies(Grant No.AHY050000)the Hefei Comprehensive National Science Centerthe Fundamental Research Funds for the Central Universities。
文摘We report a design and implementation of a field-programmable-gate-arrays(FPGA)based hardware platform,which is used to realize control and signal readout of trapped-ion-based multi-level quantum systems.This platform integrates a four-channel 2.8 Gsps@14 bits arbitrary waveform generator,a 16-channel 1 Gsps@14 bits direct-digital-synthesisbased radio-frequency generator,a 16-channel 8 ns resolution pulse generator,a 10-channel 16 bits digital-to-analogconverter module,and a 2-channel proportion integration differentiation controller.The hardware platform can be applied in the trapped-ion-based multi-level quantum systems,enabling quantum control of multi-level quantum system and highdimensional quantum simulation.The platform is scalable and more channels for control and signal readout can be implemented by utilizing more parallel duplications of the hardware.The hardware platform also has a bright future to be applied in scaled trapped-ion-based quantum systems.
文摘Massive rural-to-urban migration in China is consequential for political trust: rural-to-urban migrants have been found to hold lower levels of trust in local government than their rural peers who choose to stay in the countryside (mean 4.92 and 6.34 out of 10, respectively, p < 0.001). This article explores why migrants have a certain level of political trust in their county-level government. Using data of rural-to-urban migrants from the China Family Panel Survey, this study performs a hierarchical linear modeling (HLM) to unpack the multi-level explanatory factors of rural-to-urban migrants’ political trust. Findings show that the individual-level socio-economic characteristics and perceptions of government performance (Level-1), the neighborhood-level characteristics-the physical and social status and environment of neighborhoods (Level-2), and the objective macroeconomic performance of county-level government (Level-3), work together to explain migrants’ trust levels. These results suggest that considering the effects of neighborhood-level factors on rural-to-urban migrants’ political trust merits policy and public management attention in rapidly urbanizing countries.
基金funded by the National Nature Science Foundation of China(Grant Nos.52175509 and 52130504)National Key Research and Development Program of China(2017YFF0204705)2021 Postdoctoral Innovation Research Plan of Hubei Province(0106100226)。
文摘Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this paper,we propose pixelated programmable Si_(3)N_(4)PICs with record-high 20-level intermediate states at 785 nm wavelength.Such flexibility in phase or amplitude modulation is achieved by a programmable Sb_(2)S_(3)matrix,the footprint of whose elements can be as small as 1.2μm,limited only by the optical diffraction limit of anin-house developed pulsed laser writing system.We believe our work lays the foundation for laser-writing ultra-high-level(20 levels and even more)programmable photonic systems and metasurfaces based on phase change materials,which could catalyze diverse applications such as programmable neuromorphic photonics,biosensing,optical computing,photonic quantum computing,and reconfigurable metasurfaces.
基金The National Natural Science Foundation of China(No.60403027,60773191,70771043)the National High Technology Research and Development Program of China(863 Program)(No.2007AA01Z403)
文摘An access control model is proposed based on the famous Bell-LaPadula (BLP) model.In the proposed model,hierarchical relationships among departments are built,a new concept named post is proposed,and assigning security tags to subjects and objects is greatly simplified.The interoperation among different departments is implemented through assigning multiple security tags to one post, and the more departments are closed on the organization tree,the more secret objects can be exchanged by the staff of the departments.The access control matrices of the department,post and staff are defined.By using the three access control matrices,a multi granularity and flexible discretionary access control policy is implemented.The outstanding merit of the BLP model is inherited,and the new model can guarantee that all the information flow is under control.Finally,our study shows that compared to the BLP model,the proposed model is more flexible.
基金National Natural Science of China(No.42201463)Guangxi Natural Science Foundation(No.2023GXNSFBA026350)+1 种基金Special Fund of Guangxi Science and Technology Base and Talent(Nos.Guike AD22035158,Guike AD23026167)Guangxi Young and Middle-aged Teachers’Basic Scientific Research Ability Improvement Project(No.2023KY0056).
文摘The relentless progress in the research of geographic spatial data models and their application scenarios is propelling an unprecedented rich Level of Detail(LoD)in realistic 3D representation and smart cities.This pursuit of rich details not only adds complexity to entity models but also poses significant computational challenges for model visualization and 3D GIS.This paper introduces a novel method for deriving multi-LOD models,which can enhance the efficiency of spatial computing in complex 3D building models.Firstly,we extract multiple facades from a 3D building model(LoD3)and convert them into individual semantic facade models.Through the utilization of the developed facade layout graph,each semantic facade model is then transformed into a parametric model.Furthermore,we explore the specification of geometric and semantic details in building facades and define three different LODs for facades,offering a unique expression.Finally,an innovative heuristic method is introduced to simplify the parameterized facade.Through rigorous experimentation and evaluation,the effectiveness of the proposed parameterization methodology in capturing complex geometric details,semantic richness,and topological relationships of 3D building models is demonstrated.
基金The National Natural Science Foundation of China(No.61170116,61375010,60973064)
文摘An effective shape signature namely multi-level included angle functions MIAFs is proposed to describe the hierarchy information ranging from global information to local variations of shape.Invariance to rotation translation and scaling are the intrinsic properties of the MIAFs.For each contour point the multi-level included angles are obtained based on the paired line segments derived from unequal-arc-length partitions of contour.And a Fourier descriptor derived from multi-level included angle functions MIAFD is presented for efficient shape retrieval.The proposed descriptor is evaluated with the standard performance evaluation method on three shape image databases the MPEG-7 database the Kimia-99 database and the Swedish leaf database. The experimental results of shape retrieval indicate that the MIAFD outperforms the existing Fourier descriptors and has low computational complexity.And the comparison of the MIAFD with other shape description methods also shows that the proposed descriptor has the highest precision at the same recall value which verifies its effectiveness.