The fluid mechanics of water entry is studied through investigating the underwater acoustics and the supercavitation.Underwater acoustic signals in water entry are extensively measured at about 30 different positions ...The fluid mechanics of water entry is studied through investigating the underwater acoustics and the supercavitation.Underwater acoustic signals in water entry are extensively measured at about 30 different positions by using a PVDF needle hydrophone.From the measurements we obtain (1)the primary shock wave caused by the impact of the blunt body on free surface;(2)the vapor pressure inside the cavity;(3)the secondary shock wave caused by pulling away of the cavity from free surface;and so on.The supercavitation induced by the blunt body is observed by using a digital high-speed video camera as well as the single shot photography.The periodic and 3 dimensional motion of the supercavitation is revealed.The experiment is carried out at room temperature.展开更多
The traditional performing arts and theatrical buildings in China can be traced back to a long history and were well developed during Song and Yuan Dynasties, 11th-14th centuries. Pavilion stage, opened on three sides...The traditional performing arts and theatrical buildings in China can be traced back to a long history and were well developed during Song and Yuan Dynasties, 11th-14th centuries. Pavilion stage, opened on three sides and thrusting into the audience area, was unique and the most popular form in the open-air theatres, the courtyard theatres, and the indoor theatres up to the present day. As the traditional Chinese opera is performed in an abstract way, no stage settings are required and used. Therefore, the pavilion stage including the flat or domed ceiling and the back wall is virtually functioned as a reflective shell, which increases the early reflections and also intensifies the sound in the audience area. Meanwhile, it provides sufficient self-support to the performers. Acoustical parameters including reverberation time RT, early decay time EDT, acoustic ratio C (50), strength index (loudness) G, and stage support factor ST1 were measured and reported on several traditional theatrical buildings.展开更多
Of the three mutually coupled fundamental processes (shearing, compressing, and thermal) in a general fluid motion, only the general formulation for the compress- ing process and a subprocess of it, the subject of a...Of the three mutually coupled fundamental processes (shearing, compressing, and thermal) in a general fluid motion, only the general formulation for the compress- ing process and a subprocess of it, the subject of aeroacous- tics, as well as their physical coupling with shearing and thermal processes, have so far not reached a consensus. This situation has caused difficulties for various in-depth complex multiprocess flow diagnosis, optimal configuration design, and flow/noise control. As the first step toward the desired formulation in fully nonlinear regime, this paper employs the operator factorization method to revisit the analytic linear theories of the fundamental processes and their decomposi- tion, especially the further splitting of compressing process into acoustic and entropy modes, developed in 1940s-1980s. The flow treated here is small disturbances of a compressible, viscous, and heat-conducting polytropic gas in an unbounded domain with arbitrary source of mass, external body force, and heat addition. Previous results are thereby revised and extended to a complete and unified theory. The theory pro- vides a necessary basis and valuable guidance for developing corresponding nonlinear theory by clarifying certain basic issues, such as the proper choice of characteristic variables of compressing process and the feature of their governing equations.展开更多
Acoustic propagation problems in the sheared mean flow are numerically investigated using different acoustic propagation equations , including linearized Euler equations ( LEE ) and acoustic perturbation equations ( A...Acoustic propagation problems in the sheared mean flow are numerically investigated using different acoustic propagation equations , including linearized Euler equations ( LEE ) and acoustic perturbation equations ( APE ) .The resulted acoustic pressure is compared for the cases of uniform mean flow and sheared mean flow using both APE and LEE.Numerical results show that interactions between acoustics and mean flow should be properly considered to better understand noise propagation problems , and the suitable option of the different acoustic equations is indicated by the present comparisons.Moreover , the ability of APE to predict acoustic propagation is validated.APE can replace LEE when the 3-D flow-induced noise problem is solved , thus computational cost can decrease.展开更多
The objective of receptivity is to investigate the mechanisms by which external disturbances generate unsta- ble waves. In hypersonic boundary layers, a new receptivity process is revealed, which is that fast and slow...The objective of receptivity is to investigate the mechanisms by which external disturbances generate unsta- ble waves. In hypersonic boundary layers, a new receptivity process is revealed, which is that fast and slow acoustics through nonlinear interaction can excite the second mode near the lower-branch of the second mode. They can generate a sum-frequency disturbance though nonlinear interaction, which can excite the second mode. This receptivity process is generated by the nonlinear interaction and the nonparal- lel nature of the boundary layer. The receptivity coefficient is sensitive to the wavenumber difference between the sumfrequency disturbance and the lower-branch second mode. When the wavenumber difference is zero, the receptivity coefficient is maximum. The receptivity coefficient decreases with the increase of the wavenumber difference. It is also found that the evolution of the sum-frequency disturbance grows linearly in the beginning. It indicates that the forced term generated by the sum-frequency disturbance resonates with the second mode.展开更多
Generation of magnetic micrbubbles and their basic magnetic and acoustic mechanism are reviewed. The ultrasound (US) and magnetic resonance (MR) dual imaging, the controlled therapeutic delivery, as well as theran...Generation of magnetic micrbubbles and their basic magnetic and acoustic mechanism are reviewed. The ultrasound (US) and magnetic resonance (MR) dual imaging, the controlled therapeutic delivery, as well as theranostic multifunctions are all introduced based on recent research results. Some on-going research is also discussed.展开更多
Gearbox condition monitoring(CM)plays a significant role in ensuring the operational reliability and efficiency of a wide range of critical industrial systems such as wind turbines and helicopters.Accurate and timely ...Gearbox condition monitoring(CM)plays a significant role in ensuring the operational reliability and efficiency of a wide range of critical industrial systems such as wind turbines and helicopters.Accurate and timely diagnosis of gear faults will improve the maintenance of gearboxes operating under sub-optimal conditions,avoid excessive energy consumption and prevent avoidable damages to systems.This study focuses on developing CM for a multi-stage helical gearbox using airborne sound.Based on signal phase alignments,Modulation Signal Bispectrum(MSB)analysis allows random noise and interrupting events in sound signals to be suppressed greatly and obtains nonlinear modulation features in association with gear dynamics.MSB coherence is evaluated for selecting the reliable bi-spectral peaks for indication of gear deterioration.A run-to-failure test of two industrial gearboxes was tested under various loading conditions.Two omnidirectional microphones were fixed near the gearboxes to sense acoustic information during operation.It has been shown that compared against vibration based CM,acoustics can perceive the responses of vibration in a larger areas and contains more comprehensive and stable information related to gear dynamics variation due to wear.Also,the MSB magnitude peaks at the first three harmonic components of gear mesh and rotation components are demonstrated to be sufficient in characterizing the gradual deterioration of gear transmission.Consequently,the combining of MSB peaks with baseline normalization yields more accurate monitoring trends and diagnostics,allowing the gradual deterioration process and gear wear location to be represented more consistently.展开更多
This paper presents autonomous docking of an inhouse built resident Remotely Operated Vehicle(ROV),called Rover ROV,through acoustic guided techniques.A novel cage-type docking station has been developed.The docking s...This paper presents autonomous docking of an inhouse built resident Remotely Operated Vehicle(ROV),called Rover ROV,through acoustic guided techniques.A novel cage-type docking station has been developed.The docking station can be placed on a deep-sea lander,taking the Rover ROV to the seafloor.Instead of using vision-based pose estimation techniques and expensive navigation sensors,the Rover ROV docking adopts an ultra-short baseline(USBL)and low-cost inertial sensors to build an adaptive fault-tolerant integrated navigation system.To solve the problem of sonar-based failure positioning,the measurement residuals are exploited to detect measurement faults.Then,an adaptation scheme for estimating the statistical characteristics of noise in real-time is proposed,which can provide robust and smooth positioning results.It is more suitable for a compact and low-cost deep-sea resident ROV.Field experiments have been conducted successfully in the Qiandao Lake and the South China Sea area with a depth of 3000 m,respectively.The experimental results show that the functionality of autonomous docking has been achieved.Under the guidance of the navigation system,the Rover ROV can autonomously and efficiently return to the docking station within a range of 100 m even when the amounts of outliers exist in the acoustic positioning data.These achievements can be applied to current ROVs by an easy retrofit.展开更多
Based on the efficient sound absorption characteristics of Helmholtz resonance structures in the range of medium and low frequency acoustic waves,this paper investigates an effective solution for light timber construc...Based on the efficient sound absorption characteristics of Helmholtz resonance structures in the range of medium and low frequency acoustic waves,this paper investigates an effective solution for light timber construction walls with acoustic problems.This study takes the light timber construction wall structure as the research object.Based on the Helmholtz resonance principle,the structure design of the wall unit,impedance tube experiment and COMSOL MULTIPHYSICS simulation calculation were carried out to obtain the change rule of acoustic performance of the Helmholtz resonance wall unit structure.The research results show that the overall stability of sound insulation of the structure is improved,and the frequency range with sound transmission loss more than 50 dB in the experimental group is 640–1600 Hz,while in the control group is 500–906 Hz and 1238–1600 Hz;the sound absorption performance of the structure is obviously better than that of the ordinary structure,especially in the low frequency acoustic wave range of 100–320 Hz,the sound absorption coefficient of the experimental group is more than 0.49,while the sound absorption coefficient of the control group is less than 0.1.It is expected that these results will contribute to the optimization of the acoustic performance of light timber construction walls and have high application and popularization value.展开更多
Transformation acoustics(TA)has emerged as a powerful tool for designing several intriguing conceptual devices,which can manipulate acoustic waves in a flexible manner,yet their applications are limited in Hermitian m...Transformation acoustics(TA)has emerged as a powerful tool for designing several intriguing conceptual devices,which can manipulate acoustic waves in a flexible manner,yet their applications are limited in Hermitian materials.In this work,we propose the theory of complex-coordinate transformation acoustics(CCTA)and verify the effectiveness in realizing acoustic non-Hermitian metamaterials.Especially,we apply this theory for the first time to the design of acoustic parity-time(PT)and antisymmetric parity-time(APT)metamaterials and demonstrate two distinctive examples.First,we use this method to obtain the exceptional points(EPs)of the PT/APT system and observe the spontaneous phase transition of the scattering matrix in the transformation parameter space.Second,by selecting the Jacobian matrix's constitutive parameters,the PT/APT-symmetric system can also be configured to approach the zero and pole of the scattering matrix,behaving as an acoustic coherent perfect absorber and equivalent laser.We envision our proposed CCTAbased paradigm to open the way for exploring the non-Hermitian physics and finding application in the design of acoustic functional devices such as absorbers and amplifiers whose material parameters are hard to realize by using the conventional transformation method.展开更多
Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional ...Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional attention schemes have not considered the impact of lesion type differences on grading,resulting in unreasonable extraction of important lesion features.Therefore,this paper proposes a DR diagnosis scheme that integrates a multi-level patch attention generator(MPAG)and a lesion localization module(LLM).Firstly,MPAGis used to predict patches of different sizes and generate a weighted attention map based on the prediction score and the types of lesions contained in the patches,fully considering the impact of lesion type differences on grading,solving the problem that the attention maps of lesions cannot be further refined and then adapted to the final DR diagnosis task.Secondly,the LLM generates a global attention map based on localization.Finally,the weighted attention map and global attention map are weighted with the fundus map to fully explore effective DR lesion information and increase the attention of the classification network to lesion details.This paper demonstrates the effectiveness of the proposed method through extensive experiments on the public DDR dataset,obtaining an accuracy of 0.8064.展开更多
In this paper we present the Projection Based Interpolation (PBI) technique for construction of continuous approximation of MRI scan data of the human head. We utilize the result of the PBI algorithm to perform three ...In this paper we present the Projection Based Interpolation (PBI) technique for construction of continuous approximation of MRI scan data of the human head. We utilize the result of the PBI algorithm to perform three dimensional (3D) Finite Element Method (FEM) simulations of the acoustics of the human head. The computational problem is a multi-physics problem modeled as acoustics coupled with linear elasticity. The computational grid contains tetrahedral finite elements with the number of equations and polynomial orders of approximation varying locally on finite element edges, faces, and interiors. We utilize our own out-of-core parallel direct solver for the solution of this multi-physics problem. The solver minimizes the memory usage by dumping out all local systems from all nodes of the entire elimination tree during the elimination phase.展开更多
Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties...Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties and acoustic emission characteristics of soft rocks with different water contents under dynamic disturbance.The mechanical properties and acoustic emission characteristics of muddy sandstones at different water contents were analysed.Results of experimental studies show that water is a key factor in the mechanical properties of rocks,softening them,increasing their porosity,reducing their brittleness and increasing their plasticity.Under uniaxial compression,the macroscopic damage characteristics of the muddy sandstone change from mono-bevel shear damage and‘X’type conjugate bevel shear damage to a roadway bottom-drum type damage as the water content increases.Dynamic perturbation has a strengthening effect on the mechanical properties of samples with 60%and less water content,and a weakening effect on samples with 80%and more water content,but the weakening effect is not obvious.Macroscopic damage characteristics of dry samples remain unchanged,water samples from shear damage and tensile–shear composite damage gradually transformed into cleavage damage,until saturation transformation monoclinic shear damage.The evolution of acoustic emission energy and event number is mainly divided into four stages:loading stage(Ⅰ),dynamic loading stage(Ⅱ),yield failure stage(Ⅲ),and post-peak stage(Ⅳ),the acoustic emission characteristics of the stages were different for different water contents.The characteristic value of acoustic emission key point frequency gradually decreases,and the damage degree of the specimen increases,corresponding to low water content—high main frequency—low damage and high water content—low main frequency—high damage.展开更多
Comfort in buildings is one of the most requested value to reach. Today, designers have to deal with so many technical features including outer appearance, air-conditioning, structural layouts, acoustic insulation and...Comfort in buildings is one of the most requested value to reach. Today, designers have to deal with so many technical features including outer appearance, air-conditioning, structural layouts, acoustic insulation and inner treatments, materials bio-compatibility, material recycling and reuse, water wasting and so on. In the same time, costumers want to buy buildings which won’t cost a lot in terms of heating and cooling as in the past. Besides, every single apartment, loft, office etc., even if there are many of them in a single building, has to be very quiet. Voluntary or compulsory standards, protocols and state laws lead the designers throughout the project and in some cases to the final in field tests too. Nevertheless, different sort of calculations, leading philosophy, expected results, parameters and tags are included in order to achieve the final aims. In this paper, energy efficiency and acoustic performances of buildings are discussed, proposing and comparing designing solutions for a specific case study.展开更多
Room acoustics play an important role in the intelligibility of speech. The main aspect of acoustics that is usually studied is the duration of the reverberation decay, since a long decay causes a blurring of phonemes...Room acoustics play an important role in the intelligibility of speech. The main aspect of acoustics that is usually studied is the duration of the reverberation decay, since a long decay causes a blurring of phonemes. However, other parameters of the acoustics such as the strength of the reverberation can actually improve intelligibility. These factors do not receive the same attention. In many common practical situations such as classrooms and residential rooms, it would be of value to quantitatively study the acoustics to optimize the room’s function, but this is not done routinely due to the expected expense or difficulty involved. This research explores inexpensive first-principle methods to quantitatively measure three key parameters of a room’s acoustics: the reverberation decay time RT60, the reverberant intensity IR, and the room’s total absorption A. The required equipment includes two laptops installed with certain free softwares. Generation of the required noise signal and level detection are carried out using the REW software, and long-duration recordings are carried out using the Audacity software. The procedures are simple enough to be performed without specialized training and do not require specialized equipment, only commonly available household resources. This research also sheds light on the fact that not all reverberation is bad and that strong but short-duration reverberation can enhance communication. This information can be expected to benefit schools and other venues where speech intelligibility is vital.展开更多
Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates wa...Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates waves.It offers efficient energy focalization and broad-spectrum vibration suppression,making it highly promising for applications in large equipment such as aircraft,trains,and ships.Despite previous advancements in ABH-DVA development,certain challenges remain,particularly in ensuring effective coupling with host structures during control.To address these issues,this study proposes a partitioned ABH-featured dynamic vibration absorber(PABH-DVA)with partitions in the radial direction of the disc.By employing a plate as the host structure,simulations and experiments were conducted,demonstrating that the PABH-DVA outperforms the original symmetric ABH-DVA in terms of damping performance.The study also calculated and compared the coupling coefficients of the two ABH-DVAs to uncover the mechanism behind the enhanced damping.Simulation results revealed that the PABH-DVA exhibits more coupled modes,occasionally with lower coupling coefficients than the symmetric ABH-DVA.The influence of frequency ratio and modal mass was further analyzed to explain the reasons behind the PABH-DVA's superior damping performance.Additionally,the study discussed the impact of the number of slits and their orientation.This research further explains the coupling mechanism between the ABH-DVA and the controlled structure,and provides new ideas for the further application of ABH in engineering.展开更多
In automotive industries,panel acoustic contribution analysis(PACA)is used to investigate the contributions of the body panels to the acoustic pressure at a certain point of interest.Currently,PACA is implementedmostl...In automotive industries,panel acoustic contribution analysis(PACA)is used to investigate the contributions of the body panels to the acoustic pressure at a certain point of interest.Currently,PACA is implementedmostly by either experiment-based methods or traditional numerical methods.However,these schemes are effort-consuming and inefficient in solving engineering problems,thereby restraining the further development of PACA in automotive acoustics.In this work,we propose a PACA scheme using discontinuous isogeometric boundary element method(IGABEM)to build an easily implementable and efficient method to identify the relative acoustic contributions of each automotive body panel.Discontinuous IGABEMis more accurate and converges faster than continuous BEM and IGABEM in the interior sound pressure evaluation of automotive compartments.In this work,a contribution ratio is defined to estimate the relative acoustic contribution of the structure panels;it can be calculated by reusing the coefficient matrix that has already been generated in the sound pressure evaluation process.The utilization of the parallel technique enables the proposed method to be more efficient than conventional methods;it is validated in two numerical examples,including a car passenger compartment subjected to realistic boundary conditions.A sound pressure response experiment based on a steel box is conducted to verify the accuracy of the interior sound pressure calculation using discontinuous IGABEM.This work is expected to promote the practical process of IGABEM for application in automotive acoustic problems.展开更多
CRC Press,Talor&Francis Group,ISBN:978-1-4822-6043-4(Hardback),2017,6th Ed.This book represents a classical text in room acoustics-its original edition having been first pubfished in 1973.The author was a chair pr...CRC Press,Talor&Francis Group,ISBN:978-1-4822-6043-4(Hardback),2017,6th Ed.This book represents a classical text in room acoustics-its original edition having been first pubfished in 1973.The author was a chair professor at the Institute of Technical Acoustics,the Technical University in Aachenl Germany since 1972 until his retirement in 1995.The author of the book intends to introduce展开更多
1 Introduction The science of sound in ducts can be traced back to the time when the sound wave equation was first derived.Many important ideas,concepts,and methods for acoustics were first developed for sound fields ...1 Introduction The science of sound in ducts can be traced back to the time when the sound wave equation was first derived.Many important ideas,concepts,and methods for acoustics were first developed for sound fields in ducts.Anyone with a little training in acoustics must be aware of normal specific acoustical impedance,the standing wave ratio,transmission line theory,and the cut-on frequencies of high-order wave-guide modes.In fact,duct acoustics has been so extensively taught展开更多
基金The project supported by the "BaiRen Plan" of Chinese Academy of Sciences
文摘The fluid mechanics of water entry is studied through investigating the underwater acoustics and the supercavitation.Underwater acoustic signals in water entry are extensively measured at about 30 different positions by using a PVDF needle hydrophone.From the measurements we obtain (1)the primary shock wave caused by the impact of the blunt body on free surface;(2)the vapor pressure inside the cavity;(3)the secondary shock wave caused by pulling away of the cavity from free surface;and so on.The supercavitation induced by the blunt body is observed by using a digital high-speed video camera as well as the single shot photography.The periodic and 3 dimensional motion of the supercavitation is revealed.The experiment is carried out at room temperature.
基金supported by the grant from National Science Foundation,Beijing(Project No.50078038).
文摘The traditional performing arts and theatrical buildings in China can be traced back to a long history and were well developed during Song and Yuan Dynasties, 11th-14th centuries. Pavilion stage, opened on three sides and thrusting into the audience area, was unique and the most popular form in the open-air theatres, the courtyard theatres, and the indoor theatres up to the present day. As the traditional Chinese opera is performed in an abstract way, no stage settings are required and used. Therefore, the pavilion stage including the flat or domed ceiling and the back wall is virtually functioned as a reflective shell, which increases the early reflections and also intensifies the sound in the audience area. Meanwhile, it provides sufficient self-support to the performers. Acoustical parameters including reverberation time RT, early decay time EDT, acoustic ratio C (50), strength index (loudness) G, and stage support factor ST1 were measured and reported on several traditional theatrical buildings.
基金supported by the National Basic Research Program of China(2009CB724100)
文摘Of the three mutually coupled fundamental processes (shearing, compressing, and thermal) in a general fluid motion, only the general formulation for the compress- ing process and a subprocess of it, the subject of aeroacous- tics, as well as their physical coupling with shearing and thermal processes, have so far not reached a consensus. This situation has caused difficulties for various in-depth complex multiprocess flow diagnosis, optimal configuration design, and flow/noise control. As the first step toward the desired formulation in fully nonlinear regime, this paper employs the operator factorization method to revisit the analytic linear theories of the fundamental processes and their decomposi- tion, especially the further splitting of compressing process into acoustic and entropy modes, developed in 1940s-1980s. The flow treated here is small disturbances of a compressible, viscous, and heat-conducting polytropic gas in an unbounded domain with arbitrary source of mass, external body force, and heat addition. Previous results are thereby revised and extended to a complete and unified theory. The theory pro- vides a necessary basis and valuable guidance for developing corresponding nonlinear theory by clarifying certain basic issues, such as the proper choice of characteristic variables of compressing process and the feature of their governing equations.
基金Supported by the National Natural Science Foundation of China(10902050)the China Postdoctoral Science Foundation Funded Project(20100481138)the Aeronautical Science Foundation of China(20101452017)
文摘Acoustic propagation problems in the sheared mean flow are numerically investigated using different acoustic propagation equations , including linearized Euler equations ( LEE ) and acoustic perturbation equations ( APE ) .The resulted acoustic pressure is compared for the cases of uniform mean flow and sheared mean flow using both APE and LEE.Numerical results show that interactions between acoustics and mean flow should be properly considered to better understand noise propagation problems , and the suitable option of the different acoustic equations is indicated by the present comparisons.Moreover , the ability of APE to predict acoustic propagation is validated.APE can replace LEE when the 3-D flow-induced noise problem is solved , thus computational cost can decrease.
基金supported by the National Natural Science Foundation of China (Grants 11332007 and 11202147)the Specialized Research Fund for the Doctoral Program of Higher Education (Grants 20120032120007)
文摘The objective of receptivity is to investigate the mechanisms by which external disturbances generate unsta- ble waves. In hypersonic boundary layers, a new receptivity process is revealed, which is that fast and slow acoustics through nonlinear interaction can excite the second mode near the lower-branch of the second mode. They can generate a sum-frequency disturbance though nonlinear interaction, which can excite the second mode. This receptivity process is generated by the nonlinear interaction and the nonparal- lel nature of the boundary layer. The receptivity coefficient is sensitive to the wavenumber difference between the sumfrequency disturbance and the lower-branch second mode. When the wavenumber difference is zero, the receptivity coefficient is maximum. The receptivity coefficient decreases with the increase of the wavenumber difference. It is also found that the evolution of the sum-frequency disturbance grows linearly in the beginning. It indicates that the forced term generated by the sum-frequency disturbance resonates with the second mode.
基金Project supported by the National Basic Research Program of China (Grant Nos.2011CB933503 and 2013CB733804)the National Natural Science Foundation of China (Grant No.31000453)the Fundamental Research Funds for Central Universities (Grant No.2013CB733804)
文摘Generation of magnetic micrbubbles and their basic magnetic and acoustic mechanism are reviewed. The ultrasound (US) and magnetic resonance (MR) dual imaging, the controlled therapeutic delivery, as well as theranostic multifunctions are all introduced based on recent research results. Some on-going research is also discussed.
基金Supported by Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Monitoring,Xi’an University of Science and Technology(Grant No.SKL-MEEIM201904)National Natural Science Foundation of China(Grant Nos.51805352,51605380).
文摘Gearbox condition monitoring(CM)plays a significant role in ensuring the operational reliability and efficiency of a wide range of critical industrial systems such as wind turbines and helicopters.Accurate and timely diagnosis of gear faults will improve the maintenance of gearboxes operating under sub-optimal conditions,avoid excessive energy consumption and prevent avoidable damages to systems.This study focuses on developing CM for a multi-stage helical gearbox using airborne sound.Based on signal phase alignments,Modulation Signal Bispectrum(MSB)analysis allows random noise and interrupting events in sound signals to be suppressed greatly and obtains nonlinear modulation features in association with gear dynamics.MSB coherence is evaluated for selecting the reliable bi-spectral peaks for indication of gear deterioration.A run-to-failure test of two industrial gearboxes was tested under various loading conditions.Two omnidirectional microphones were fixed near the gearboxes to sense acoustic information during operation.It has been shown that compared against vibration based CM,acoustics can perceive the responses of vibration in a larger areas and contains more comprehensive and stable information related to gear dynamics variation due to wear.Also,the MSB magnitude peaks at the first three harmonic components of gear mesh and rotation components are demonstrated to be sufficient in characterizing the gradual deterioration of gear transmission.Consequently,the combining of MSB peaks with baseline normalization yields more accurate monitoring trends and diagnostics,allowing the gradual deterioration process and gear wear location to be represented more consistently.
基金financially supported by the National Key R&D Program of China (Grant No. 2017YFC0306402)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA22040102)
文摘This paper presents autonomous docking of an inhouse built resident Remotely Operated Vehicle(ROV),called Rover ROV,through acoustic guided techniques.A novel cage-type docking station has been developed.The docking station can be placed on a deep-sea lander,taking the Rover ROV to the seafloor.Instead of using vision-based pose estimation techniques and expensive navigation sensors,the Rover ROV docking adopts an ultra-short baseline(USBL)and low-cost inertial sensors to build an adaptive fault-tolerant integrated navigation system.To solve the problem of sonar-based failure positioning,the measurement residuals are exploited to detect measurement faults.Then,an adaptation scheme for estimating the statistical characteristics of noise in real-time is proposed,which can provide robust and smooth positioning results.It is more suitable for a compact and low-cost deep-sea resident ROV.Field experiments have been conducted successfully in the Qiandao Lake and the South China Sea area with a depth of 3000 m,respectively.The experimental results show that the functionality of autonomous docking has been achieved.Under the guidance of the navigation system,the Rover ROV can autonomously and efficiently return to the docking station within a range of 100 m even when the amounts of outliers exist in the acoustic positioning data.These achievements can be applied to current ROVs by an easy retrofit.
文摘Based on the efficient sound absorption characteristics of Helmholtz resonance structures in the range of medium and low frequency acoustic waves,this paper investigates an effective solution for light timber construction walls with acoustic problems.This study takes the light timber construction wall structure as the research object.Based on the Helmholtz resonance principle,the structure design of the wall unit,impedance tube experiment and COMSOL MULTIPHYSICS simulation calculation were carried out to obtain the change rule of acoustic performance of the Helmholtz resonance wall unit structure.The research results show that the overall stability of sound insulation of the structure is improved,and the frequency range with sound transmission loss more than 50 dB in the experimental group is 640–1600 Hz,while in the control group is 500–906 Hz and 1238–1600 Hz;the sound absorption performance of the structure is obviously better than that of the ordinary structure,especially in the low frequency acoustic wave range of 100–320 Hz,the sound absorption coefficient of the experimental group is more than 0.49,while the sound absorption coefficient of the control group is less than 0.1.It is expected that these results will contribute to the optimization of the acoustic performance of light timber construction walls and have high application and popularization value.
基金the National Key Research and Development Program of China(Grant No.2022YFA1404402)the National Natural Science Foundation of China(Grant Nos.12174190,11634006,12074286,and 81127901)+1 种基金the High-Performance Computing Center of Collaborative Innovation Center of Advanced Microstructuresthe the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Transformation acoustics(TA)has emerged as a powerful tool for designing several intriguing conceptual devices,which can manipulate acoustic waves in a flexible manner,yet their applications are limited in Hermitian materials.In this work,we propose the theory of complex-coordinate transformation acoustics(CCTA)and verify the effectiveness in realizing acoustic non-Hermitian metamaterials.Especially,we apply this theory for the first time to the design of acoustic parity-time(PT)and antisymmetric parity-time(APT)metamaterials and demonstrate two distinctive examples.First,we use this method to obtain the exceptional points(EPs)of the PT/APT system and observe the spontaneous phase transition of the scattering matrix in the transformation parameter space.Second,by selecting the Jacobian matrix's constitutive parameters,the PT/APT-symmetric system can also be configured to approach the zero and pole of the scattering matrix,behaving as an acoustic coherent perfect absorber and equivalent laser.We envision our proposed CCTAbased paradigm to open the way for exploring the non-Hermitian physics and finding application in the design of acoustic functional devices such as absorbers and amplifiers whose material parameters are hard to realize by using the conventional transformation method.
基金supported in part by the Research on the Application of Multimodal Artificial Intelligence in Diagnosis and Treatment of Type 2 Diabetes under Grant No.2020SK50910in part by the Hunan Provincial Natural Science Foundation of China under Grant 2023JJ60020.
文摘Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional attention schemes have not considered the impact of lesion type differences on grading,resulting in unreasonable extraction of important lesion features.Therefore,this paper proposes a DR diagnosis scheme that integrates a multi-level patch attention generator(MPAG)and a lesion localization module(LLM).Firstly,MPAGis used to predict patches of different sizes and generate a weighted attention map based on the prediction score and the types of lesions contained in the patches,fully considering the impact of lesion type differences on grading,solving the problem that the attention maps of lesions cannot be further refined and then adapted to the final DR diagnosis task.Secondly,the LLM generates a global attention map based on localization.Finally,the weighted attention map and global attention map are weighted with the fundus map to fully explore effective DR lesion information and increase the attention of the classification network to lesion details.This paper demonstrates the effectiveness of the proposed method through extensive experiments on the public DDR dataset,obtaining an accuracy of 0.8064.
文摘In this paper we present the Projection Based Interpolation (PBI) technique for construction of continuous approximation of MRI scan data of the human head. We utilize the result of the PBI algorithm to perform three dimensional (3D) Finite Element Method (FEM) simulations of the acoustics of the human head. The computational problem is a multi-physics problem modeled as acoustics coupled with linear elasticity. The computational grid contains tetrahedral finite elements with the number of equations and polynomial orders of approximation varying locally on finite element edges, faces, and interiors. We utilize our own out-of-core parallel direct solver for the solution of this multi-physics problem. The solver minimizes the memory usage by dumping out all local systems from all nodes of the entire elimination tree during the elimination phase.
基金National Natural Science Foundation of China (No. 52204101)Natural Science Foundation of Shandong Province (No. ZR2022QE137)Open Project of State Key Laboratory for Geomechanics and Deep Underground Engineering in CUMTB (No. SKLGDUEK2023).
文摘Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties and acoustic emission characteristics of soft rocks with different water contents under dynamic disturbance.The mechanical properties and acoustic emission characteristics of muddy sandstones at different water contents were analysed.Results of experimental studies show that water is a key factor in the mechanical properties of rocks,softening them,increasing their porosity,reducing their brittleness and increasing their plasticity.Under uniaxial compression,the macroscopic damage characteristics of the muddy sandstone change from mono-bevel shear damage and‘X’type conjugate bevel shear damage to a roadway bottom-drum type damage as the water content increases.Dynamic perturbation has a strengthening effect on the mechanical properties of samples with 60%and less water content,and a weakening effect on samples with 80%and more water content,but the weakening effect is not obvious.Macroscopic damage characteristics of dry samples remain unchanged,water samples from shear damage and tensile–shear composite damage gradually transformed into cleavage damage,until saturation transformation monoclinic shear damage.The evolution of acoustic emission energy and event number is mainly divided into four stages:loading stage(Ⅰ),dynamic loading stage(Ⅱ),yield failure stage(Ⅲ),and post-peak stage(Ⅳ),the acoustic emission characteristics of the stages were different for different water contents.The characteristic value of acoustic emission key point frequency gradually decreases,and the damage degree of the specimen increases,corresponding to low water content—high main frequency—low damage and high water content—low main frequency—high damage.
文摘Comfort in buildings is one of the most requested value to reach. Today, designers have to deal with so many technical features including outer appearance, air-conditioning, structural layouts, acoustic insulation and inner treatments, materials bio-compatibility, material recycling and reuse, water wasting and so on. In the same time, costumers want to buy buildings which won’t cost a lot in terms of heating and cooling as in the past. Besides, every single apartment, loft, office etc., even if there are many of them in a single building, has to be very quiet. Voluntary or compulsory standards, protocols and state laws lead the designers throughout the project and in some cases to the final in field tests too. Nevertheless, different sort of calculations, leading philosophy, expected results, parameters and tags are included in order to achieve the final aims. In this paper, energy efficiency and acoustic performances of buildings are discussed, proposing and comparing designing solutions for a specific case study.
文摘Room acoustics play an important role in the intelligibility of speech. The main aspect of acoustics that is usually studied is the duration of the reverberation decay, since a long decay causes a blurring of phonemes. However, other parameters of the acoustics such as the strength of the reverberation can actually improve intelligibility. These factors do not receive the same attention. In many common practical situations such as classrooms and residential rooms, it would be of value to quantitatively study the acoustics to optimize the room’s function, but this is not done routinely due to the expected expense or difficulty involved. This research explores inexpensive first-principle methods to quantitatively measure three key parameters of a room’s acoustics: the reverberation decay time RT60, the reverberant intensity IR, and the room’s total absorption A. The required equipment includes two laptops installed with certain free softwares. Generation of the required noise signal and level detection are carried out using the REW software, and long-duration recordings are carried out using the Audacity software. The procedures are simple enough to be performed without specialized training and do not require specialized equipment, only commonly available household resources. This research also sheds light on the fact that not all reverberation is bad and that strong but short-duration reverberation can enhance communication. This information can be expected to benefit schools and other venues where speech intelligibility is vital.
基金Supported by National Key Research and Development Program of China (Grant No.2021YFB3400100)National Natural Science Foundation of China (Grant Nos.52241103,U2241261,52022039)。
文摘Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates waves.It offers efficient energy focalization and broad-spectrum vibration suppression,making it highly promising for applications in large equipment such as aircraft,trains,and ships.Despite previous advancements in ABH-DVA development,certain challenges remain,particularly in ensuring effective coupling with host structures during control.To address these issues,this study proposes a partitioned ABH-featured dynamic vibration absorber(PABH-DVA)with partitions in the radial direction of the disc.By employing a plate as the host structure,simulations and experiments were conducted,demonstrating that the PABH-DVA outperforms the original symmetric ABH-DVA in terms of damping performance.The study also calculated and compared the coupling coefficients of the two ABH-DVAs to uncover the mechanism behind the enhanced damping.Simulation results revealed that the PABH-DVA exhibits more coupled modes,occasionally with lower coupling coefficients than the symmetric ABH-DVA.The influence of frequency ratio and modal mass was further analyzed to explain the reasons behind the PABH-DVA's superior damping performance.Additionally,the study discussed the impact of the number of slits and their orientation.This research further explains the coupling mechanism between the ABH-DVA and the controlled structure,and provides new ideas for the further application of ABH in engineering.
基金funded by the National Natural Science Foundation of China (Grant No.52175111)。
文摘In automotive industries,panel acoustic contribution analysis(PACA)is used to investigate the contributions of the body panels to the acoustic pressure at a certain point of interest.Currently,PACA is implementedmostly by either experiment-based methods or traditional numerical methods.However,these schemes are effort-consuming and inefficient in solving engineering problems,thereby restraining the further development of PACA in automotive acoustics.In this work,we propose a PACA scheme using discontinuous isogeometric boundary element method(IGABEM)to build an easily implementable and efficient method to identify the relative acoustic contributions of each automotive body panel.Discontinuous IGABEMis more accurate and converges faster than continuous BEM and IGABEM in the interior sound pressure evaluation of automotive compartments.In this work,a contribution ratio is defined to estimate the relative acoustic contribution of the structure panels;it can be calculated by reusing the coefficient matrix that has already been generated in the sound pressure evaluation process.The utilization of the parallel technique enables the proposed method to be more efficient than conventional methods;it is validated in two numerical examples,including a car passenger compartment subjected to realistic boundary conditions.A sound pressure response experiment based on a steel box is conducted to verify the accuracy of the interior sound pressure calculation using discontinuous IGABEM.This work is expected to promote the practical process of IGABEM for application in automotive acoustic problems.
文摘CRC Press,Talor&Francis Group,ISBN:978-1-4822-6043-4(Hardback),2017,6th Ed.This book represents a classical text in room acoustics-its original edition having been first pubfished in 1973.The author was a chair professor at the Institute of Technical Acoustics,the Technical University in Aachenl Germany since 1972 until his retirement in 1995.The author of the book intends to introduce
文摘1 Introduction The science of sound in ducts can be traced back to the time when the sound wave equation was first derived.Many important ideas,concepts,and methods for acoustics were first developed for sound fields in ducts.Anyone with a little training in acoustics must be aware of normal specific acoustical impedance,the standing wave ratio,transmission line theory,and the cut-on frequencies of high-order wave-guide modes.In fact,duct acoustics has been so extensively taught