期刊文献+
共找到5,092篇文章
< 1 2 250 >
每页显示 20 50 100
Caché数据库中数据的存储及其查询优化
1
作者 牛彩云 王建林 +1 位作者 光奇 樊睿 《信息技术与信息化》 2024年第1期17-21,共5页
Caché数据库的多维数据模型可以存储丰富的数据,在处理复杂的医疗数据时减少了表连接等处理过程,从而使多维数组能更快地存取数据。与主流的Oracle和SQL server等关系型数库相比,Caché主要在其存储结构上有很大的不同,Cach... Caché数据库的多维数据模型可以存储丰富的数据,在处理复杂的医疗数据时减少了表连接等处理过程,从而使多维数组能更快地存取数据。与主流的Oracle和SQL server等关系型数库相比,Caché主要在其存储结构上有很大的不同,Caché主要是以Global的形式存储数据,依据M语言开发应用程序。首先,介绍了Caché数据库中数据的存储形式;然后,展示了在医院HIS系统应用过程中Caché数据库中数据查询的几种方式及应用场合;最后,总结Caché数据库中SQL优化的几种办法。结果表明,Caché数据库具有更高的灵活性,适用于多种应用场合,而且在采用优化的查询方案后查询效率提高了很多倍。 展开更多
关键词 caché数据库 多维数据模型 查询优化 SQL语句 数据存储
下载PDF
多核处理器共享Cache的划分算法
2
作者 吕海玉 罗广 +1 位作者 朱嘉炜 张凤登 《电子科技》 2024年第9期27-33,共7页
针对多核处理器性能优化问题,文中深入研究多核处理器上共享Cache的管理策略,提出了基于缓存时间公平性与吞吐率的共享Cache划分算法MT-FTP(Memory Time based Fair and Throughput Partitioning)。以公平性和吞吐率两个评价性指标建立... 针对多核处理器性能优化问题,文中深入研究多核处理器上共享Cache的管理策略,提出了基于缓存时间公平性与吞吐率的共享Cache划分算法MT-FTP(Memory Time based Fair and Throughput Partitioning)。以公平性和吞吐率两个评价性指标建立数学模型,并分析了算法的划分流程。仿真实验结果表明,MT-FTP算法在系统吞吐率方面表现较好,其平均IPC(Instructions Per Cycles)值比UCP(Use Case Point)算法高1.3%,比LRU(Least Recently Used)算法高11.6%。MT-FTP算法对应的系统平均公平性比LRU算法的系统平均公平性高17%,比UCP算法的平均公平性高16.5%。该算法实现了共享Cache划分公平性并兼顾了系统的吞吐率。 展开更多
关键词 片上多核处理器 内存墙 划分 公平性 吞吐率 共享cachE 缓存时间 集成计算机
下载PDF
内存高效的持久性分布式文件系统客户端缓存DFS-Cache
3
作者 倪瑞轩 蔡淼 叶保留 《计算机应用》 CSCD 北大核心 2024年第4期1172-1179,共8页
为了在数据密集型工作流下有效降低缓存碎片整理开销并提高缓存命中率,提出一种持久性分布式文件系统客户端缓存DFS-Cache(Distributed File System Cache)。DFS-Cache基于非易失性内存(NVM)设计实现,能够保证数据的持久性和崩溃一致性... 为了在数据密集型工作流下有效降低缓存碎片整理开销并提高缓存命中率,提出一种持久性分布式文件系统客户端缓存DFS-Cache(Distributed File System Cache)。DFS-Cache基于非易失性内存(NVM)设计实现,能够保证数据的持久性和崩溃一致性,并大幅减少冷启动时间。DFS-Cache包括基于虚拟内存重映射的缓存碎片整理机制和基于生存时间(TTL)的缓存空间管理策略。前者基于NVM可被内存控制器直接寻址的特性,动态修改虚拟地址和物理地址之间的映射关系,实现零拷贝的内存碎片整理;后者是一种冷热分离的分组管理策略,借助重映射的缓存碎片整理机制,提升缓存空间的管理效率。实验采用真实的Intel傲腾持久性内存设备,对比商用的分布式文件系统MooseFS和GlusterFS,采用Fio和Filebench等标准测试程序,DFS-Cache最高能提升5.73倍和1.89倍的系统吞吐量。 展开更多
关键词 非易失性内存 分布式文件系统 客户端缓存 缓存碎片整理 冷热数据分组 缓存设计
下载PDF
R-DSP中二级Cache控制器的优化设计
4
作者 谭露露 谭勋琼 白创 《电子与封装》 2024年第7期63-68,共6页
针对二级Cache控制器(L2)对于提升R数字信号处理器(R-DSP)访存效率和整体性能的重要作用,结合L2中涉及的内存安全维护和多请求访存仲裁问题,在现有R-DSP中L2基础上实现优化。首先,采用多重分块的存储组织结构,提高访存效率;其次,并行处... 针对二级Cache控制器(L2)对于提升R数字信号处理器(R-DSP)访存效率和整体性能的重要作用,结合L2中涉及的内存安全维护和多请求访存仲裁问题,在现有R-DSP中L2基础上实现优化。首先,采用多重分块的存储组织结构,提高访存效率;其次,并行处理一级Cache控制器请求与外存请求,减小请求处理周期;最后,增加带宽管理与存储保护功能,合理仲裁访存请求并维护存储安全。实验结果表明,相较于传统设计,新设计在保护二级存储安全的同时实现带宽管理式访存仲裁。与现有R-DSP中的L2相比,新设计的存储体单拍最大可响应访存请求数量提升了1倍,一级请求和外存请求的平均处理时钟周期数分别降低了25%和19.6%。 展开更多
关键词 DSP 二级cachE 存储结构 并行处理 存储保护 带宽管理
下载PDF
一种带Cache加速的HyperRAM控制器设计与验证
5
作者 邹敏 鲁澳宇 +1 位作者 邹望辉 喻华 《现代电子技术》 北大核心 2024年第6期91-96,共6页
针对目前可穿戴设备上对存储设备性能要求高、体积小、功耗低等问题,在FPGA上实现了一款可拓展的高性能HyperRAM控制器,并引入Cache缓存加速设计,以提高对频繁访问数据的命中率和优化存储器访问模式,实现更高速的数据传输和优化的系统... 针对目前可穿戴设备上对存储设备性能要求高、体积小、功耗低等问题,在FPGA上实现了一款可拓展的高性能HyperRAM控制器,并引入Cache缓存加速设计,以提高对频繁访问数据的命中率和优化存储器访问模式,实现更高速的数据传输和优化的系统性能。运用UVM验证方法学和FPGA进行验证,结果表明,带有Cache缓存的HyperRAM控制器相较于普通HyperRAM,在读写连续地址时性能提高61%,并具有较好的可靠性与有效性,可为嵌入式系统提供高效、灵活的存储器解决方案。 展开更多
关键词 HyperRAM控制器 cache缓存 可穿戴设备 存储器 UVM验证方法学 FPGA
下载PDF
Cache侧信道攻击防御量化研究
6
作者 王占鹏 朱子元 王立敏 《信息安全学报》 CSCD 2024年第4期107-124,共18页
芯片安全防护技术关系到国家、企业和个人的信息安全,相关的研究一直是计算机安全领域的热点。片上高速缓存对芯片性能起着重要作用,可以有效提升芯片内核访问效率。传统的缓存设计并没有充分考虑安全性,侧信道攻击会对Cache造成巨大威... 芯片安全防护技术关系到国家、企业和个人的信息安全,相关的研究一直是计算机安全领域的热点。片上高速缓存对芯片性能起着重要作用,可以有效提升芯片内核访问效率。传统的缓存设计并没有充分考虑安全性,侧信道攻击会对Cache造成巨大威胁,可以窃取加密密钥等内存存储敏感信息。攻击者利用侧信道的技术窃取用户的隐私数据或加密算法密钥时不会改变片上系统芯片的运行状态,从而使计算机系统很难检测是否受到了攻击。与基于电磁信号和基于能量检测的侧信道攻击相比,基于存储共享的侧信道攻击只需要利用软件测量就可以实现,对芯片安全的威胁更大。目前存在多种侧信道攻击和防御手段,但缺乏一套完善的关于系统架构的安全度量方法,对Cache的安全性进行有效评估。本文对Cache侧信道攻击和防御手段进行模型化分析,提出一套Cache安全性量化研究方法。首先,我们采用CVSS漏洞评分模型对Cache侧信道攻击进行量化评分。然后,利用贝叶斯公式,构建侧信道攻击和防御的关系模型。最后,通过图模型对Cache侧信道攻击机理进行建模,计算在防御架构基础上不同威胁的攻击成功率,并结合CVSS防御得分求得不同防御方法的得分。本文针对Cache侧信道攻击进行机理建模,对攻击和防御进行评估和探索,为硬件安全人员提供理论支持。 展开更多
关键词 cache侧信道 CVSS 贝叶斯模型 安全量化 安全架构
下载PDF
基于Cache优化的服务调用方法
7
作者 杨国胜 杨毅 +1 位作者 王海 段锴 《数字技术与应用》 2024年第4期60-63,共4页
集中式服务网关通常使用共享内存进行服务实例与治理参数的本地化生产与消费,实现业务处理与服务发现逻辑的解耦,增强系统的稳定性,但频繁的共享内存操作往往带来系统资源利用率和请求处理耗时上的低效。通过引入缓存机制,在服务网关的... 集中式服务网关通常使用共享内存进行服务实例与治理参数的本地化生产与消费,实现业务处理与服务发现逻辑的解耦,增强系统的稳定性,但频繁的共享内存操作往往带来系统资源利用率和请求处理耗时上的低效。通过引入缓存机制,在服务网关的路由组件内部实现并利用针对服务调用优化的Cache,热点数据请求直接从Cache中读取结构化信息,避免了共享内存操作与存储块的编解码,有效地利用缓存空间,提高了数据访问速度,同时减少了共享内存操作中的资源竞争,提高了系统并发。 展开更多
关键词 共享内存 服务网关 缓存机制 服务实例 cachE 结构化信息 热点数据 缓存空间
下载PDF
Scheme Based on Multi-Level Patch Attention and Lesion Localization for Diabetic Retinopathy Grading
8
作者 Zhuoqun Xia Hangyu Hu +4 位作者 Wenjing Li Qisheng Jiang Lan Pu Yicong Shu Arun Kumar Sangaiah 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期409-430,共22页
Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional ... Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional attention schemes have not considered the impact of lesion type differences on grading,resulting in unreasonable extraction of important lesion features.Therefore,this paper proposes a DR diagnosis scheme that integrates a multi-level patch attention generator(MPAG)and a lesion localization module(LLM).Firstly,MPAGis used to predict patches of different sizes and generate a weighted attention map based on the prediction score and the types of lesions contained in the patches,fully considering the impact of lesion type differences on grading,solving the problem that the attention maps of lesions cannot be further refined and then adapted to the final DR diagnosis task.Secondly,the LLM generates a global attention map based on localization.Finally,the weighted attention map and global attention map are weighted with the fundus map to fully explore effective DR lesion information and increase the attention of the classification network to lesion details.This paper demonstrates the effectiveness of the proposed method through extensive experiments on the public DDR dataset,obtaining an accuracy of 0.8064. 展开更多
关键词 DDR dataset diabetic retinopathy lesion localization multi-level patch attention mechanism
下载PDF
The Caching and Pricing Strategy for Information-Centric Networking with Advertisers’Participation
9
作者 Zheng Quan Yan Wenliang +4 位作者 Wu Rong Tan Xiaobin Yang Jian Yuan Liu Xu Zhenghuan 《China Communications》 SCIE CSCD 2024年第3期283-295,共13页
As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Informatio... As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Information-Centric Networking(ICN)came into being.From a technical point of view,ICN is a promising future network architecture.Researching and customizing a reasonable pricing mechanism plays a positive role in promoting the deployment of ICN.The current research on ICN pricing mechanism is focused on paid content.Therefore,we study an ICN pricing model for free content,which uses game theory based on Nash equilibrium to analysis.In this work,advertisers are considered,and an advertiser model is established to describe the economic interaction between advertisers and ICN entities.This solution can formulate the best pricing strategy for all ICN entities and maximize the benefits of each entity.Our extensive analysis and numerical results show that the proposed pricing framework is significantly better than existing solutions when it comes to free content. 展开更多
关键词 ADVERTISERS cachE free content Information-Centric Networking pricing strategy
下载PDF
Deep neural network based on multi-level wavelet and attention for structured illumination microscopy
10
作者 Yanwei Zhang Song Lang +2 位作者 Xuan Cao Hanqing Zheng Yan Gong 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第2期12-23,共12页
Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior know... Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems. 展开更多
关键词 Super-resolution reconstruction multi-level wavelet packet transform residual channel attention selective kernel attention
下载PDF
User Preference Aware Hierarchical Edge-User Cooperative Caching Strategy
11
作者 Wu Dapeng Yang Lin +2 位作者 Cui Yaping He Peng Wang Ruyan 《China Communications》 SCIE CSCD 2024年第6期69-86,共18页
The emergence of various new services has posed a huge challenge to the existing network architecture.To improve the network delay and backhaul pressure,caching popular contents at the edge of network has been conside... The emergence of various new services has posed a huge challenge to the existing network architecture.To improve the network delay and backhaul pressure,caching popular contents at the edge of network has been considered as a feasible scheme.However,how to efficiently utilize the limited caching resources to cache diverse contents has been confirmed as a tough problem in the past decade.In this paper,considering the time-varying user requests and the heterogeneous content sizes,a user preference aware hierarchical cooperative caching strategy in edge-user caching architecture is proposed.We divide the caching strategy into three phases,that is,the content placement,the content delivery and the content update.In the content placement phase,a cooperative content placement algorithm for local content popularity is designed to cache contents proactively.In the content delivery phase,a cooperative delivery algorithm is proposed to deliver the cached contents.In the content update phase,a content update algorithm is proposed according to the popularity of the contents.Finally,the proposed caching strategy is validated using the MovieLens dataset,and the results reveal that the proposed strategy improves the delay performance by at least 35.3%compared with the other three benchmark strategies. 展开更多
关键词 cooperative caching network delay timevarying popularity user preference
下载PDF
An SDN-Based Algorithm for Caching,Routing,and Load Balancing in ICN
12
作者 MohammadBagher Tavasoli Hossein Saidi Ali Ghiasian 《China Communications》 SCIE CSCD 2024年第5期64-76,共13页
One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Netw... One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Networking(SDN)for efficient ICN management.To achieve this,we formulate the problem as a mixed-integer nonlinear programming(MINLP)model,incorporating caching,routing,and load balancing decisions.We explore two distinct scenarios to tackle the problem.Firstly,we solve the problem in an offline mode using the GAMS environment,assuming a stable network state to demonstrate the superior performance of the cacheenabled network compared to non-cache networks.Subsequently,we investigate the problem in an online mode where the network state dynamically changes over time.Given the computational complexity associated with MINLP,we propose the software-defined caching,routing,and load balancing(SDCRL)algorithm as an efficient and scalable solution.Our evaluation demonstrates that the SDCRL algorithm significantly reduces computational time while maintaining results that closely resemble those achieved by GAMS. 展开更多
关键词 in-network caching information-centric network power efficiency ROUTING software-defined networking
下载PDF
Deep Reinforcement Learning-Based Task Offloading and Service Migrating Policies in Service Caching-Assisted Mobile Edge Computing
13
作者 Ke Hongchang Wang Hui +1 位作者 Sun Hongbin Halvin Yang 《China Communications》 SCIE CSCD 2024年第4期88-103,共16页
Emerging mobile edge computing(MEC)is considered a feasible solution for offloading the computation-intensive request tasks generated from mobile wireless equipment(MWE)with limited computational resources and energy.... Emerging mobile edge computing(MEC)is considered a feasible solution for offloading the computation-intensive request tasks generated from mobile wireless equipment(MWE)with limited computational resources and energy.Due to the homogeneity of request tasks from one MWE during a longterm time period,it is vital to predeploy the particular service cachings required by the request tasks at the MEC server.In this paper,we model a service caching-assisted MEC framework that takes into account the constraint on the number of service cachings hosted by each edge server and the migration of request tasks from the current edge server to another edge server with service caching required by tasks.Furthermore,we propose a multiagent deep reinforcement learning-based computation offloading and task migrating decision-making scheme(MBOMS)to minimize the long-term average weighted cost.The proposed MBOMS can learn the near-optimal offloading and migrating decision-making policy by centralized training and decentralized execution.Systematic and comprehensive simulation results reveal that our proposed MBOMS can converge well after training and outperforms the other five baseline algorithms. 展开更多
关键词 deep reinforcement learning mobile edge computing service caching service migrating
下载PDF
Efficient cache replacement framework based on access hotness for spacecraft processors
14
作者 GAO Xin NIAN Jiawei +1 位作者 LIU Hongjin YANG Mengfei 《中国空间科学技术(中英文)》 CSCD 北大核心 2024年第2期74-88,共15页
A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity... A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity of contemporary high-performance spacecraft processors.To harness these non-uniform access behaviors,an efficient cache replacement framework featuring an auxiliary cache specifically designed to retain evicted hot data was proposed.This framework reconstructs the cache replacement policy,facilitating data migration between the main cache and the auxiliary cache.Unlike traditional cacheline-granularity policies,the approach excels at identifying and evicting infrequently used data,thereby optimizing cache utilization.The evaluation shows impressive performance improvement,especially on workloads with irregular access patterns.Benefiting from fine granularity,the proposal achieves superior storage efficiency compared with commonly used cache management schemes,providing a potential optimization opportunity for modern resource-constrained processors,such as spacecraft processors.Furthermore,the framework complements existing modern cache replacement policies and can be seamlessly integrated with minimal modifications,enhancing their overall efficacy. 展开更多
关键词 spacecraft processors cache management replacement policy storage efficiency memory hierarchy MICROARCHITECTURE
下载PDF
Cost-Efficient Edge Caching for NOMA-Enabled IoT Services
15
作者 Chen Ying Xing Hua +2 位作者 Ma Zhuo Chen Xin Huang Jiwei 《China Communications》 SCIE CSCD 2024年第8期182-191,共10页
Mobile edge computing(MEC)is a promising paradigm by deploying edge servers(nodes)with computation and storage capacity close to IoT devices.Content Providers can cache data in edge servers and provide services for Io... Mobile edge computing(MEC)is a promising paradigm by deploying edge servers(nodes)with computation and storage capacity close to IoT devices.Content Providers can cache data in edge servers and provide services for IoT devices,which effectively reduces the delay for acquiring data.With the increasing number of IoT devices requesting for services,the spectrum resources are generally limited.In order to effectively meet the challenge of limited spectrum resources,the Non-Orthogonal Multiple Access(NOMA)is proposed to improve the transmission efficiency.In this paper,we consider the caching scenario in a NOMA-enabled MEC system.All the devices compete for the limited resources and tend to minimize their own cost.We formulate the caching problem,and the goal is to minimize the delay cost for each individual device subject to resource constraints.We reformulate the optimization as a non-cooperative game model.We prove the existence of Nash equilibrium(NE)solution in the game model.Then,we design the Game-based Cost-Efficient Edge Caching Algorithm(GCECA)to solve the problem.The effectiveness of our GCECA algorithm is validated by both parameter analysis and comparison experiments. 展开更多
关键词 cachING cost Internet of Things mobile edge computing non-orthogonal multiple access
下载PDF
Video caching and scheduling with edge cooperation
16
作者 Zhidu Li Fuxiang Li +2 位作者 Tong Tang Hong Zhang Jin Yang 《Digital Communications and Networks》 SCIE CSCD 2024年第2期450-460,共11页
In this paper,we explore a distributed collaborative caching and computing model to support the distribution of adaptive bit rate video streaming.The aim is to reduce the average initial buffer delay and improve the q... In this paper,we explore a distributed collaborative caching and computing model to support the distribution of adaptive bit rate video streaming.The aim is to reduce the average initial buffer delay and improve the quality of user experience.Considering the difference between global and local video popularities and the time-varying characteristics of video popularity,a two-stage caching scheme is proposed to push popular videos closer to users and minimize the average initial buffer delay.Based on both long-term content popularity and short-term content popularity,the proposed caching solution is decouple into the proactive cache stage and the cache update stage.In the proactive cache stage,we develop a proactive cache placement algorithm that can be executed in an off-peak period.In the cache update stage,we propose a reactive cache update algorithm to update the existing cache policy to minimize the buffer delay.Simulation results verify that the proposed caching algorithms can reduce the initial buffer delay efficiently. 展开更多
关键词 Video service Distributed and collaborative caching Long-term popularity Short-term popularity
下载PDF
A Fault-Tolerant Mobility-Aware Caching Method in Edge Computing
17
作者 Yong Ma Han Zhao +5 位作者 Kunyin Guo Yunni Xia Xu Wang Xianhua Niu Dongge Zhu Yumin Dong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期907-927,共21页
Mobile Edge Computing(MEC)is a technology designed for the on-demand provisioning of computing and storage services,strategically positioned close to users.In the MEC environment,frequently accessed content can be dep... Mobile Edge Computing(MEC)is a technology designed for the on-demand provisioning of computing and storage services,strategically positioned close to users.In the MEC environment,frequently accessed content can be deployed and cached on edge servers to optimize the efficiency of content delivery,ultimately enhancing the quality of the user experience.However,due to the typical placement of edge devices and nodes at the network’s periphery,these components may face various potential fault tolerance challenges,including network instability,device failures,and resource constraints.Considering the dynamic nature ofMEC,making high-quality content caching decisions for real-time mobile applications,especially those sensitive to latency,by effectively utilizing mobility information,continues to be a significant challenge.In response to this challenge,this paper introduces FT-MAACC,a mobility-aware caching solution grounded in multi-agent deep reinforcement learning and equipped with fault tolerance mechanisms.This approach comprehensively integrates content adaptivity algorithms to evaluate the priority of highly user-adaptive cached content.Furthermore,it relies on collaborative caching strategies based onmulti-agent deep reinforcement learningmodels and establishes a fault-tolerancemodel to ensure the system’s reliability,availability,and persistence.Empirical results unequivocally demonstrate that FTMAACC outperforms its peer methods in cache hit rates and transmission latency. 展开更多
关键词 Mobile edge networks MOBILITY fault tolerance cooperative caching multi-agent deep reinforcement learning content prediction
下载PDF
Proactive Caching at the Wireless Edge:A Novel Predictive User Popularity-Aware Approach
18
作者 Yunye Wan Peng Chen +8 位作者 Yunni Xia Yong Ma Dongge Zhu Xu Wang Hui Liu Weiling Li Xianhua Niu Lei Xu Yumin Dong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1997-2017,共21页
Mobile Edge Computing(MEC)is a promising technology that provides on-demand computing and efficient storage services as close to end users as possible.In an MEC environment,servers are deployed closer to mobile termin... Mobile Edge Computing(MEC)is a promising technology that provides on-demand computing and efficient storage services as close to end users as possible.In an MEC environment,servers are deployed closer to mobile terminals to exploit storage infrastructure,improve content delivery efficiency,and enhance user experience.However,due to the limited capacity of edge servers,it remains a significant challenge to meet the changing,time-varying,and customized needs for highly diversified content of users.Recently,techniques for caching content at the edge are becoming popular for addressing the above challenges.It is capable of filling the communication gap between the users and content providers while relieving pressure on remote cloud servers.However,existing static caching strategies are still inefficient in handling the dynamics of the time-varying popularity of content and meeting users’demands for highly diversified entity data.To address this challenge,we introduce a novel method for content caching over MEC,i.e.,PRIME.It synthesizes a content popularity prediction model,which takes users’stay time and their request traces as inputs,and a deep reinforcement learning model for yielding dynamic caching schedules.Experimental results demonstrate that PRIME,when tested upon the MovieLens 1M dataset for user request patterns and the Shanghai Telecom dataset for user mobility,outperforms its peers in terms of cache hit rates,transmission latency,and system cost. 展开更多
关键词 Mobile edge computing content caching system average cost deep reinforcement learning collaborative mechanism
下载PDF
Information Centric Networking Based Cooperative Caching Framework for 5G Communication Systems
19
作者 R.Mahaveerakannan Thanarajan Tamilvizhi +2 位作者 Sonia Jenifer Rayen Osamah Ibrahim Khalaf Habib Hamam 《Computers, Materials & Continua》 SCIE EI 2024年第9期3945-3966,共22页
The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the info... The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the information-centric network(ICN)paradigm offers hope for a solution by emphasizing content retrieval by name instead of location.If 5G networks are to meet the expected data demand surge from expanded connectivity and Internet of Things(IoT)devices,then effective caching solutions will be required tomaximize network throughput andminimize the use of resources.Hence,an ICN-based Cooperative Caching(ICN-CoC)technique has been used to select a cache by considering cache position,content attractiveness,and rate prediction.The findings show that utilizing our suggested approach improves caching regarding the Cache Hit Ratio(CHR)of 84.3%,Average Hop Minimization Ratio(AHMR)of 89.5%,and Mean Access Latency(MAL)of 0.4 s.Within a framework,it suggests improved caching strategies to handle the difficulty of effectively controlling data consumption in 5G networks.These improvements aim to make the network run more smoothly by enhancing content delivery,decreasing latency,and relieving congestion.By improving 5G communication systems’capacity tomanage the demands faced by modern data-centric applications,the research ultimately aids in advancement. 展开更多
关键词 Information-centric networking caching schemes 5G communication non-negative matrix factorization(NMF) weighted clustering algorithm
下载PDF
Graph4Cache:一种用于缓存预取的图神经网络模型
20
作者 尚晶 武智晖 +1 位作者 肖智文 张逸飞 《计算机研究与发展》 EI CSCD 北大核心 2024年第8期1945-1956,共12页
大多数计算系统利用缓存来减少数据访问时间,加快数据处理并平衡服务负载.缓存管理的关键在于确定即将被加载到缓存中或从缓存中丢弃的合适数据,以及进行缓存置换的合适时机,这对于提高缓存命中率至关重要.现有的缓存方案面临2个问题:... 大多数计算系统利用缓存来减少数据访问时间,加快数据处理并平衡服务负载.缓存管理的关键在于确定即将被加载到缓存中或从缓存中丢弃的合适数据,以及进行缓存置换的合适时机,这对于提高缓存命中率至关重要.现有的缓存方案面临2个问题:在实时的、在线的缓存场景下难以洞察用户访问数据的热度信息,以及忽略了数据访问序列之间复杂的高阶信息.提出了一个基于GNN的缓存预取网络Graph4Cache.通过将单个访问序列建模为有向图(ASGraph),并引入虚拟节点聚合图中所有节点的信息和表示整个序列.然后由ASGraph的虚拟节点构造一个跨序列无向图(CSGraph)来学习跨序列特征,这极大地丰富了单个序列中有限的数据项转换模式.通过融合这2种图结构的信息,学习到了序列之间的高阶关联信息,并获取了丰富的用户意图.在多个公共数据集上的实验结果证明了该方法的有效性.Graph4Cache在P@20和MRR@20上均优于现有的缓存预测算法. 展开更多
关键词 图神经网络 缓存预取 访问序列图 跨序列图 缓存预测
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部