Due to the fact that conventional heuristic attribute reduction algorithms are poor in running efficiency and difficult in accomplishing the co-evolutionary reduction mechanism in the decision table, an adaptive multi...Due to the fact that conventional heuristic attribute reduction algorithms are poor in running efficiency and difficult in accomplishing the co-evolutionary reduction mechanism in the decision table, an adaptive multicascade attribute reduction algorithm based on quantum-inspired mixed co-evolution is proposed. First, a novel and efficient self- adaptive quantum rotation angle strategy is designed to direct the participating populations to mutual adaptive evolution and to accelerate convergence speed. Then, a multicascade model of cooperative and competitive mixed co-evolution is adopted to decompose the evolutionary attribute species into subpopulations according to their historical performance records, which can increase the diversity of subpopulations and select some elitist individuals so as to strengthen the sharing ability of their searching experience. So the global optimization reduction set can be obtained quickly. The experimental results show that, compared with the existing algorithms, the proposed algorithm can achieve a higher performance for attribute reduction, and it can be considered as a more competitive heuristic algorithm on the efficiency and accuracy of minimum attribute reduction.展开更多
A design problem with deficient information is generally described as wicked or ill-defined.The information insufficiency leaves designers with loose settings,free environments,and a lack of strict boundaries,which pr...A design problem with deficient information is generally described as wicked or ill-defined.The information insufficiency leaves designers with loose settings,free environments,and a lack of strict boundaries,which provides them with more opportunities to facilitate innovation.Therefore,to capture the opportunity behind the uncertainty of a design problem,this study models an innovative design as a composite solving process,where the problem is clarified and resolved from fuzziness to satisfying solutions by interplay among design problems,knowledge,and solutions.Additionally,a triple-helix structured model for the innovative product design process is proposed based on the co-evolution of the problem,solution,and knowledge spaces,to provide designers with a distinct design strategy and method for innovative design.The three spaces interact and co-evolve through iterative mappings,including problem structuring,knowledge expansion,and solution generation.The mappings carry the information processing and decision-making activities of the design,and create the path to satisfying solutions.Finally,a case study of a reactor coolant flow distribution device is presented to demonstrate the practicability of this model and the method for innovative product design.展开更多
This paper proposes novel multiple-mobile-robot collision avoidance path planning based on cooperative co-evolution,which can be executed fully distributed and in parallel. A real valued co-evolutionary algorithm is d...This paper proposes novel multiple-mobile-robot collision avoidance path planning based on cooperative co-evolution,which can be executed fully distributed and in parallel. A real valued co-evolutionary algorithm is developed to coordinate the movement of multiple robots in 2D world, avoiding C-space or grid net searching. The collision avoidance is achieved by cooperatively co-evolving segments of paths and the time interval to pass them. Methods for constraint handling, which are developed for evolutionary algorithm, make the path planning easier. The effectiveness of the algorithm is demonstrated on a number of 2Dpath planning problems.展开更多
A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rat...A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.展开更多
Co-evolution has been shown to result in an adaptive reciprocal modification in the respective behaviors of interacting populations over time. In the case of host-parasite co-evolution,the adaptive behavior is most ev...Co-evolution has been shown to result in an adaptive reciprocal modification in the respective behaviors of interacting populations over time. In the case of host-parasite co-evolution,the adaptive behavior is most evident from the reciprocal change in fitness of host and parasite-manifested in terms of pathogen survival versus host resistance. Cytomegaloviruses and their hosts represent a pairing of populations that has co-evolved over hundreds of years. This review explores the pathogenetic consequences emerging from the behavioral changes caused by co-evolutionary forces on the virus and its host.展开更多
We study evolutionary prisoner's dilemma game on adaptive networks where a population of players co-evolves with their interaction networks. During the co-evolution process, interacted players with opposite strategie...We study evolutionary prisoner's dilemma game on adaptive networks where a population of players co-evolves with their interaction networks. During the co-evolution process, interacted players with opposite strategies either rewire the link between them with probability p or update their strategies with probability 1 - p depending on their payoffs. Numerical simulation shows that the final network is either split into some disconnected communities whose players share the same strategy within each community or forms a single connected network in which all nodes are in the same strategy. Interestingly, the density of cooperators in the final state can be maximised in an intermediate range of p via the competition between time scale of the network dynamics and that of the node dynamics. Finally, the mean-field analysis helps to understand the results of numerical simulation. Our results may provide some insight into understanding the emergence of cooperation in the real situation where the individuals' behaviour and their relationship adaptively co-evolve.展开更多
The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmenta...The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm.展开更多
Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional ...Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional attention schemes have not considered the impact of lesion type differences on grading,resulting in unreasonable extraction of important lesion features.Therefore,this paper proposes a DR diagnosis scheme that integrates a multi-level patch attention generator(MPAG)and a lesion localization module(LLM).Firstly,MPAGis used to predict patches of different sizes and generate a weighted attention map based on the prediction score and the types of lesions contained in the patches,fully considering the impact of lesion type differences on grading,solving the problem that the attention maps of lesions cannot be further refined and then adapted to the final DR diagnosis task.Secondly,the LLM generates a global attention map based on localization.Finally,the weighted attention map and global attention map are weighted with the fundus map to fully explore effective DR lesion information and increase the attention of the classification network to lesion details.This paper demonstrates the effectiveness of the proposed method through extensive experiments on the public DDR dataset,obtaining an accuracy of 0.8064.展开更多
A co-evolutional immune algorithm for the optimization of a function with real parameters is de-scribed.It uses a cooperative co-evolution of two populations,one is a population of antibodies and theother is a populat...A co-evolutional immune algorithm for the optimization of a function with real parameters is de-scribed.It uses a cooperative co-evolution of two populations,one is a population of antibodies and theother is a population of successful mutation vectors.These two population evolve together to improve thediversity of the antibodies.The algorithm described is then tested on a suite of optimization problems.The results show that on most of test functions,this algorithm can converge to the global optimum atquicker rate in a given range,the performance of optimization is improved effetely.展开更多
It is important to harmonize effectively the behaviors of the agents in the multi-agent system (MAS) to complete the solution process. The co-evolution computing techniques, inspired by natural selection and genetics,...It is important to harmonize effectively the behaviors of the agents in the multi-agent system (MAS) to complete the solution process. The co-evolution computing techniques, inspired by natural selection and genetics, are usually used to solve these problems. Based on learning and evolution mechanisms of the biological systems, an adaptive co-evolution model was proposed in this paper. Inner-population, inter-population, and community learning operators were presented. The adaptive co-evolution algorithm (ACEA) was designed in detail. Some simulation experiments were done to evaluate the performance of the ACEA. The results show that the ACEA is more effective and feasible than the genetic algorithm to solve the optimization problems.展开更多
Individual behaviors, such as drinking, smoking, screen time, and physical activity, can be strongly influenced by the behavior of friends. At the same time, the choice of friends can be influenced by shared behaviora...Individual behaviors, such as drinking, smoking, screen time, and physical activity, can be strongly influenced by the behavior of friends. At the same time, the choice of friends can be influenced by shared behavioral preferences. The actor-based stochastic models (ABSM) are developed to study the interdependence of social networks and behavior. These methods are efficient and useful for analysis of discrete behaviors, such as drinking and smoking;however, since the behavior evolution function is in an exponential format, the ABSM can generate inconsistent and unrealistic results when the behavior variable is continuous or has a large range, such as hours of television watched or body mass index. To more realistically model continuous behavior variables, we propose a co-evolution process based on a linear model which is consistent over time and has an intuitive interpretation. In the simulation study, we applied the expectation maximization (EM) and Markov chain Monte Carlo (MCMC) algorithms to find the maximum likelihood estimate (MLE) of parameter values. Additionally, we show that our assumptions are reasonable using data from the National Longitudinal Study of Adolescent Health (Add Health).展开更多
Accurate and timely monthly rainfall forecasting is a major challenge for the scientific community in hydrological research such as river management project and design of flood warning systems. Support Vector Regressi...Accurate and timely monthly rainfall forecasting is a major challenge for the scientific community in hydrological research such as river management project and design of flood warning systems. Support Vector Regression (SVR) is a very useful precipitation prediction model. In this paper, a novel parallel co-evolution algorithm is presented to determine the appropriate parameters of the SVR in rainfall prediction based on parallel co-evolution by hybrid Genetic Algorithm and Particle Swarm Optimization algorithm, namely SVRGAPSO, for monthly rainfall prediction. The framework of the parallel co-evolutionary algorithm is to iterate two GA and PSO populations simultaneously, which is a mechanism for information exchange between GA and PSO populations to overcome premature local optimum. Our methodology adopts a hybrid PSO and GA for the optimal parameters of SVR by parallel co-evolving. The proposed technique is applied over rainfall forecasting to test its generalization capability as well as to make comparative evaluations with the several competing techniques, such as the other alternative methods, namely SVRPSO (SVR with PSO), SVRGA (SVR with GA), and SVR model. The empirical results indicate that the SVRGAPSO results have a superior generalization capability with the lowest prediction error values in rainfall forecasting. The SVRGAPSO can significantly improve the rainfall forecasting accuracy. Therefore, the SVRGAPSO model is a promising alternative for rainfall forecasting.展开更多
Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior know...Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.展开更多
The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orient...The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orientation detection.Political articles(especially in the Arab world)are different from other articles due to their subjectivity,in which the author’s beliefs and political affiliation might have a significant influence on a political article.With categories representing the main political ideologies,this problem may be thought of as a subset of the text categorization(classification).In general,the performance of machine learning models for text classification is sensitive to hyperparameter settings.Furthermore,the feature vector used to represent a document must capture,to some extent,the complex semantics of natural language.To this end,this paper presents an intelligent system to detect political Arabic article orientation that adapts the categorical boosting(CatBoost)method combined with a multi-level feature concept.Extracting features at multiple levels can enhance the model’s ability to discriminate between different classes or patterns.Each level may capture different aspects of the input data,contributing to a more comprehensive representation.CatBoost,a robust and efficient gradient-boosting algorithm,is utilized to effectively learn and predict the complex relationships between these features and the political orientation labels associated with the articles.A dataset of political Arabic texts collected from diverse sources,including postings and articles,is used to assess the suggested technique.Conservative,reform,and revolutionary are the three subcategories of these opinions.The results of this study demonstrate that compared to other frequently used machine learning models for text classification,the CatBoost method using multi-level features performs better with an accuracy of 98.14%.展开更多
Through SWOT(strengths,weaknesses,opportunities,and threats)and PEST(political,economic,social,and technological)analysis,this study discusses the construction of a multi-level strategic system for the cultivation of ...Through SWOT(strengths,weaknesses,opportunities,and threats)and PEST(political,economic,social,and technological)analysis,this study discusses the construction of a multi-level strategic system for the cultivation of cultural industry management talents in colleges and universities.First of all,based on SWOT analysis,it is found that colleges and universities have rich educational resources and policy support,but they face challenges such as insufficient practical teaching and intensified international competition.External opportunities come from the rapid development of the cultivation of cultural industry management talents and policy promotion,while threats come from global market competition and talent flow.Secondly,PEST analysis reveals the key factors in the macro-environment:at the political level,the state vigorously supports the cultivation of cultural industry management talents;at the economic level,the market demand for cultural industries is strong;at the social level,the public cultural consumption is upgraded;at the technological level,digital transformation promotes industry innovation.On this basis,this paper puts forward a multi-level strategic system covering theoretical education,practical skill improvement,interdisciplinary integration,and international vision training.The system aims to solve the problems existing in talent training in colleges and universities and cultivate high-quality cultural industry management talents with theoretical knowledge,practical skills,and global vision,so as to adapt to the increasingly complex and diversified cultural industry management talents market demand and promote the long-term development of the industry.展开更多
An access control model is proposed based on the famous Bell-LaPadula (BLP) model.In the proposed model,hierarchical relationships among departments are built,a new concept named post is proposed,and assigning secur...An access control model is proposed based on the famous Bell-LaPadula (BLP) model.In the proposed model,hierarchical relationships among departments are built,a new concept named post is proposed,and assigning security tags to subjects and objects is greatly simplified.The interoperation among different departments is implemented through assigning multiple security tags to one post, and the more departments are closed on the organization tree,the more secret objects can be exchanged by the staff of the departments.The access control matrices of the department,post and staff are defined.By using the three access control matrices,a multi granularity and flexible discretionary access control policy is implemented.The outstanding merit of the BLP model is inherited,and the new model can guarantee that all the information flow is under control.Finally,our study shows that compared to the BLP model,the proposed model is more flexible.展开更多
An effective shape signature namely multi-level included angle functions MIAFs is proposed to describe the hierarchy information ranging from global information to local variations of shape.Invariance to rotation tran...An effective shape signature namely multi-level included angle functions MIAFs is proposed to describe the hierarchy information ranging from global information to local variations of shape.Invariance to rotation translation and scaling are the intrinsic properties of the MIAFs.For each contour point the multi-level included angles are obtained based on the paired line segments derived from unequal-arc-length partitions of contour.And a Fourier descriptor derived from multi-level included angle functions MIAFD is presented for efficient shape retrieval.The proposed descriptor is evaluated with the standard performance evaluation method on three shape image databases the MPEG-7 database the Kimia-99 database and the Swedish leaf database. The experimental results of shape retrieval indicate that the MIAFD outperforms the existing Fourier descriptors and has low computational complexity.And the comparison of the MIAFD with other shape description methods also shows that the proposed descriptor has the highest precision at the same recall value which verifies its effectiveness.展开更多
The multi-level ditch system developed in the Sanjiang Plain,Northeast China has sped up water drainage process hence transferred more pollutants from farmlands into the rivers of this region.Understanding the seasona...The multi-level ditch system developed in the Sanjiang Plain,Northeast China has sped up water drainage process hence transferred more pollutants from farmlands into the rivers of this region.Understanding the seasonal dynamics of nitrogen (N) and phosphorus (P) transportation in the ditch system and the role of different ditch size is thus crucial for water pollution control of the rivers in the Sanjiang Plain.In this study,an investigation was conducted in the Nongjiang watershed of the Sanjiang Plain to study the nutrient variation and the correlation between water and sediments in the ditch system in terms of ditch level.Water and sediments samples were collected in each ditch level in growing season at regular intervals (once per month),and TN,NO 3--N,NH 4+-N,TP,and PO 4 3--P were analyzed.The results show that nutrient contents in water were higher in June and July,especially in July,the contents of TN and TP were 3.21mg/L and 0.84mg/L in field ditch,4.04mg/L and 1.06mg/L in lateral ditch,2.46mg/L and 0.70mg/L in branch ditch,1.92mg/L and 0.63mg/L in main ditch,respectively.In August and September,the nutrient contents in the water were relatively lower.The peak value of nutrient in ditch water had been moving from the field ditch to the main ditch over time,showing a remarkable impact of ditch system on river water environment.The nutrient transfer in ditch sediments could only be found in rainfall season.Nutrient contents in ditch sediment had effect on that in ditch water,but nutrients in ditch water and sediments had different origination.Ditch management in terms of the key fac-tors is hence very important for protecting river water environment.展开更多
This paper is a continuation of our last paper [1] which describes the theory of Virt-BLP model. Based on Virt-BLP model,this paper implements a mandatory access control(MAC) framework applicable to multi-level securi...This paper is a continuation of our last paper [1] which describes the theory of Virt-BLP model. Based on Virt-BLP model,this paper implements a mandatory access control(MAC) framework applicable to multi-level security(MLS) in Xen. The Virt-BLP model is the theoretical basis of this MAC framework,and this MAC framework is the implementation of Virt-BLP model. Our last paper focuses on Virt-BLP model,while this paper concentrates on the design and implementation of MAC framework. For there is no MAC framework applicable to MLS in virtual machine system at present,our MAC framework fills the blank by applying Virt-BLP model to Xen,which is better than current researches to guarantee the security of communication between virtual machines(VMs) . The experimental results show that our MAC framework is effective to manage the communication between VMs.展开更多
In industrial processes,there exist faults that have complex effect on process variables.Complex and simple faults are defined according to their effect dimensions.The conventional approaches based on structured resid...In industrial processes,there exist faults that have complex effect on process variables.Complex and simple faults are defined according to their effect dimensions.The conventional approaches based on structured residuals cannot isolate complex faults.This paper presents a multi-level strategy for complex fault isolation.An extraction procedure is employed to reduce the complex faults to simple ones and assign them to several levels.On each level,faults are isolated by their different responses in the structured residuals.Each residual is obtained insensitive to one fault but more sensitive to others.The faults on different levels are verified to have different residual responses and will not be confused.An entire incidence matrix containing residual response characteristics of all faults is obtained,based on which faults can be isolated.The proposed method is applied in the Tennessee Eastman process example,and the effectiveness and advantage are demonstrated.展开更多
基金The National Natural Science Foundation of China(No. 61139002,61171132)the Funding of Jiangsu Innovation Program for Graduate Education (No. CXZZ11_0219 )+2 种基金the Natural Science Foundation of Jiangsu Province (No. BK2010280)the Open Project of Jiangsu Provincial Key Laboratory of Computer Information Processing Technology (No. KJS1023)the Applying Study Foundation of Nantong(No. BK2011062)
文摘Due to the fact that conventional heuristic attribute reduction algorithms are poor in running efficiency and difficult in accomplishing the co-evolutionary reduction mechanism in the decision table, an adaptive multicascade attribute reduction algorithm based on quantum-inspired mixed co-evolution is proposed. First, a novel and efficient self- adaptive quantum rotation angle strategy is designed to direct the participating populations to mutual adaptive evolution and to accelerate convergence speed. Then, a multicascade model of cooperative and competitive mixed co-evolution is adopted to decompose the evolutionary attribute species into subpopulations according to their historical performance records, which can increase the diversity of subpopulations and select some elitist individuals so as to strengthen the sharing ability of their searching experience. So the global optimization reduction set can be obtained quickly. The experimental results show that, compared with the existing algorithms, the proposed algorithm can achieve a higher performance for attribute reduction, and it can be considered as a more competitive heuristic algorithm on the efficiency and accuracy of minimum attribute reduction.
基金Supported by National Natural Science Foundation of China(Grant No.51435011).
文摘A design problem with deficient information is generally described as wicked or ill-defined.The information insufficiency leaves designers with loose settings,free environments,and a lack of strict boundaries,which provides them with more opportunities to facilitate innovation.Therefore,to capture the opportunity behind the uncertainty of a design problem,this study models an innovative design as a composite solving process,where the problem is clarified and resolved from fuzziness to satisfying solutions by interplay among design problems,knowledge,and solutions.Additionally,a triple-helix structured model for the innovative product design process is proposed based on the co-evolution of the problem,solution,and knowledge spaces,to provide designers with a distinct design strategy and method for innovative design.The three spaces interact and co-evolve through iterative mappings,including problem structuring,knowledge expansion,and solution generation.The mappings carry the information processing and decision-making activities of the design,and create the path to satisfying solutions.Finally,a case study of a reactor coolant flow distribution device is presented to demonstrate the practicability of this model and the method for innovative product design.
基金Project (No.2002CB312200) supported by the National Basic Research Program (973) of China
文摘This paper proposes novel multiple-mobile-robot collision avoidance path planning based on cooperative co-evolution,which can be executed fully distributed and in parallel. A real valued co-evolutionary algorithm is developed to coordinate the movement of multiple robots in 2D world, avoiding C-space or grid net searching. The collision avoidance is achieved by cooperatively co-evolving segments of paths and the time interval to pass them. Methods for constraint handling, which are developed for evolutionary algorithm, make the path planning easier. The effectiveness of the algorithm is demonstrated on a number of 2Dpath planning problems.
基金Project(2013CB733605)supported by the National Basic Research Program of ChinaProject(21176073)supported by the National Natural Science Foundation of China
文摘A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.
基金supported by US Public Health Service (NIH grants AI041927,AI050468,DE014145,and DE016813)
文摘Co-evolution has been shown to result in an adaptive reciprocal modification in the respective behaviors of interacting populations over time. In the case of host-parasite co-evolution,the adaptive behavior is most evident from the reciprocal change in fitness of host and parasite-manifested in terms of pathogen survival versus host resistance. Cytomegaloviruses and their hosts represent a pairing of populations that has co-evolved over hundreds of years. This review explores the pathogenetic consequences emerging from the behavioral changes caused by co-evolutionary forces on the virus and its host.
基金Project supported by the National Natural Science Foundation of China (Grant No. 20873130)the Graduate Innovation Fund of USTC
文摘We study evolutionary prisoner's dilemma game on adaptive networks where a population of players co-evolves with their interaction networks. During the co-evolution process, interacted players with opposite strategies either rewire the link between them with probability p or update their strategies with probability 1 - p depending on their payoffs. Numerical simulation shows that the final network is either split into some disconnected communities whose players share the same strategy within each community or forms a single connected network in which all nodes are in the same strategy. Interestingly, the density of cooperators in the final state can be maximised in an intermediate range of p via the competition between time scale of the network dynamics and that of the node dynamics. Finally, the mean-field analysis helps to understand the results of numerical simulation. Our results may provide some insight into understanding the emergence of cooperation in the real situation where the individuals' behaviour and their relationship adaptively co-evolve.
基金supported by the National Natural Science Foundation of China(Grant Nos.42077232 and 42077235)the Key Research and Development Plan of Jiangsu Province(Grant No.BE2022156).
文摘The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm.
基金supported in part by the Research on the Application of Multimodal Artificial Intelligence in Diagnosis and Treatment of Type 2 Diabetes under Grant No.2020SK50910in part by the Hunan Provincial Natural Science Foundation of China under Grant 2023JJ60020.
文摘Early screening of diabetes retinopathy(DR)plays an important role in preventing irreversible blindness.Existing research has failed to fully explore effective DR lesion information in fundus maps.Besides,traditional attention schemes have not considered the impact of lesion type differences on grading,resulting in unreasonable extraction of important lesion features.Therefore,this paper proposes a DR diagnosis scheme that integrates a multi-level patch attention generator(MPAG)and a lesion localization module(LLM).Firstly,MPAGis used to predict patches of different sizes and generate a weighted attention map based on the prediction score and the types of lesions contained in the patches,fully considering the impact of lesion type differences on grading,solving the problem that the attention maps of lesions cannot be further refined and then adapted to the final DR diagnosis task.Secondly,the LLM generates a global attention map based on localization.Finally,the weighted attention map and global attention map are weighted with the fundus map to fully explore effective DR lesion information and increase the attention of the classification network to lesion details.This paper demonstrates the effectiveness of the proposed method through extensive experiments on the public DDR dataset,obtaining an accuracy of 0.8064.
基金Supported by the National Fundamental Research Project(A1420060159)
文摘A co-evolutional immune algorithm for the optimization of a function with real parameters is de-scribed.It uses a cooperative co-evolution of two populations,one is a population of antibodies and theother is a population of successful mutation vectors.These two population evolve together to improve thediversity of the antibodies.The algorithm described is then tested on a suite of optimization problems.The results show that on most of test functions,this algorithm can converge to the global optimum atquicker rate in a given range,the performance of optimization is improved effetely.
基金Project of Shanghai Committee of Science and Technology, China ( No.08JC1400100, No. QB081404100)Leading Academic Discipline Project of Shanghai Municipal Education Commission, China (No.J51901)
文摘It is important to harmonize effectively the behaviors of the agents in the multi-agent system (MAS) to complete the solution process. The co-evolution computing techniques, inspired by natural selection and genetics, are usually used to solve these problems. Based on learning and evolution mechanisms of the biological systems, an adaptive co-evolution model was proposed in this paper. Inner-population, inter-population, and community learning operators were presented. The adaptive co-evolution algorithm (ACEA) was designed in detail. Some simulation experiments were done to evaluate the performance of the ACEA. The results show that the ACEA is more effective and feasible than the genetic algorithm to solve the optimization problems.
文摘Individual behaviors, such as drinking, smoking, screen time, and physical activity, can be strongly influenced by the behavior of friends. At the same time, the choice of friends can be influenced by shared behavioral preferences. The actor-based stochastic models (ABSM) are developed to study the interdependence of social networks and behavior. These methods are efficient and useful for analysis of discrete behaviors, such as drinking and smoking;however, since the behavior evolution function is in an exponential format, the ABSM can generate inconsistent and unrealistic results when the behavior variable is continuous or has a large range, such as hours of television watched or body mass index. To more realistically model continuous behavior variables, we propose a co-evolution process based on a linear model which is consistent over time and has an intuitive interpretation. In the simulation study, we applied the expectation maximization (EM) and Markov chain Monte Carlo (MCMC) algorithms to find the maximum likelihood estimate (MLE) of parameter values. Additionally, we show that our assumptions are reasonable using data from the National Longitudinal Study of Adolescent Health (Add Health).
文摘Accurate and timely monthly rainfall forecasting is a major challenge for the scientific community in hydrological research such as river management project and design of flood warning systems. Support Vector Regression (SVR) is a very useful precipitation prediction model. In this paper, a novel parallel co-evolution algorithm is presented to determine the appropriate parameters of the SVR in rainfall prediction based on parallel co-evolution by hybrid Genetic Algorithm and Particle Swarm Optimization algorithm, namely SVRGAPSO, for monthly rainfall prediction. The framework of the parallel co-evolutionary algorithm is to iterate two GA and PSO populations simultaneously, which is a mechanism for information exchange between GA and PSO populations to overcome premature local optimum. Our methodology adopts a hybrid PSO and GA for the optimal parameters of SVR by parallel co-evolving. The proposed technique is applied over rainfall forecasting to test its generalization capability as well as to make comparative evaluations with the several competing techniques, such as the other alternative methods, namely SVRPSO (SVR with PSO), SVRGA (SVR with GA), and SVR model. The empirical results indicate that the SVRGAPSO results have a superior generalization capability with the lowest prediction error values in rainfall forecasting. The SVRGAPSO can significantly improve the rainfall forecasting accuracy. Therefore, the SVRGAPSO model is a promising alternative for rainfall forecasting.
基金supported by the National Natural Science Foundation of China(Grant Nos.62005307 and 61975228).
文摘Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.
文摘The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orientation detection.Political articles(especially in the Arab world)are different from other articles due to their subjectivity,in which the author’s beliefs and political affiliation might have a significant influence on a political article.With categories representing the main political ideologies,this problem may be thought of as a subset of the text categorization(classification).In general,the performance of machine learning models for text classification is sensitive to hyperparameter settings.Furthermore,the feature vector used to represent a document must capture,to some extent,the complex semantics of natural language.To this end,this paper presents an intelligent system to detect political Arabic article orientation that adapts the categorical boosting(CatBoost)method combined with a multi-level feature concept.Extracting features at multiple levels can enhance the model’s ability to discriminate between different classes or patterns.Each level may capture different aspects of the input data,contributing to a more comprehensive representation.CatBoost,a robust and efficient gradient-boosting algorithm,is utilized to effectively learn and predict the complex relationships between these features and the political orientation labels associated with the articles.A dataset of political Arabic texts collected from diverse sources,including postings and articles,is used to assess the suggested technique.Conservative,reform,and revolutionary are the three subcategories of these opinions.The results of this study demonstrate that compared to other frequently used machine learning models for text classification,the CatBoost method using multi-level features performs better with an accuracy of 98.14%.
基金Achievements of Sichuan Fine Arts Institute Education and Teaching Reform Research Project“Construction of Multi-Level Strategic System for Cultivating Cultural Industry Management Talents in Colleges and Universities”(2024jg10)。
文摘Through SWOT(strengths,weaknesses,opportunities,and threats)and PEST(political,economic,social,and technological)analysis,this study discusses the construction of a multi-level strategic system for the cultivation of cultural industry management talents in colleges and universities.First of all,based on SWOT analysis,it is found that colleges and universities have rich educational resources and policy support,but they face challenges such as insufficient practical teaching and intensified international competition.External opportunities come from the rapid development of the cultivation of cultural industry management talents and policy promotion,while threats come from global market competition and talent flow.Secondly,PEST analysis reveals the key factors in the macro-environment:at the political level,the state vigorously supports the cultivation of cultural industry management talents;at the economic level,the market demand for cultural industries is strong;at the social level,the public cultural consumption is upgraded;at the technological level,digital transformation promotes industry innovation.On this basis,this paper puts forward a multi-level strategic system covering theoretical education,practical skill improvement,interdisciplinary integration,and international vision training.The system aims to solve the problems existing in talent training in colleges and universities and cultivate high-quality cultural industry management talents with theoretical knowledge,practical skills,and global vision,so as to adapt to the increasingly complex and diversified cultural industry management talents market demand and promote the long-term development of the industry.
基金The National Natural Science Foundation of China(No.60403027,60773191,70771043)the National High Technology Research and Development Program of China(863 Program)(No.2007AA01Z403)
文摘An access control model is proposed based on the famous Bell-LaPadula (BLP) model.In the proposed model,hierarchical relationships among departments are built,a new concept named post is proposed,and assigning security tags to subjects and objects is greatly simplified.The interoperation among different departments is implemented through assigning multiple security tags to one post, and the more departments are closed on the organization tree,the more secret objects can be exchanged by the staff of the departments.The access control matrices of the department,post and staff are defined.By using the three access control matrices,a multi granularity and flexible discretionary access control policy is implemented.The outstanding merit of the BLP model is inherited,and the new model can guarantee that all the information flow is under control.Finally,our study shows that compared to the BLP model,the proposed model is more flexible.
基金The National Natural Science Foundation of China(No.61170116,61375010,60973064)
文摘An effective shape signature namely multi-level included angle functions MIAFs is proposed to describe the hierarchy information ranging from global information to local variations of shape.Invariance to rotation translation and scaling are the intrinsic properties of the MIAFs.For each contour point the multi-level included angles are obtained based on the paired line segments derived from unequal-arc-length partitions of contour.And a Fourier descriptor derived from multi-level included angle functions MIAFD is presented for efficient shape retrieval.The proposed descriptor is evaluated with the standard performance evaluation method on three shape image databases the MPEG-7 database the Kimia-99 database and the Swedish leaf database. The experimental results of shape retrieval indicate that the MIAFD outperforms the existing Fourier descriptors and has low computational complexity.And the comparison of the MIAFD with other shape description methods also shows that the proposed descriptor has the highest precision at the same recall value which verifies its effectiveness.
基金Under the auspices of Major State Basic Research Development Program of China (No.2007CB407307)National Key Technology Research and Development Program of China (No.2006BAC15B01)National Natural Science Foundation of China (No. 40671182)
文摘The multi-level ditch system developed in the Sanjiang Plain,Northeast China has sped up water drainage process hence transferred more pollutants from farmlands into the rivers of this region.Understanding the seasonal dynamics of nitrogen (N) and phosphorus (P) transportation in the ditch system and the role of different ditch size is thus crucial for water pollution control of the rivers in the Sanjiang Plain.In this study,an investigation was conducted in the Nongjiang watershed of the Sanjiang Plain to study the nutrient variation and the correlation between water and sediments in the ditch system in terms of ditch level.Water and sediments samples were collected in each ditch level in growing season at regular intervals (once per month),and TN,NO 3--N,NH 4+-N,TP,and PO 4 3--P were analyzed.The results show that nutrient contents in water were higher in June and July,especially in July,the contents of TN and TP were 3.21mg/L and 0.84mg/L in field ditch,4.04mg/L and 1.06mg/L in lateral ditch,2.46mg/L and 0.70mg/L in branch ditch,1.92mg/L and 0.63mg/L in main ditch,respectively.In August and September,the nutrient contents in the water were relatively lower.The peak value of nutrient in ditch water had been moving from the field ditch to the main ditch over time,showing a remarkable impact of ditch system on river water environment.The nutrient transfer in ditch sediments could only be found in rainfall season.Nutrient contents in ditch sediment had effect on that in ditch water,but nutrients in ditch water and sediments had different origination.Ditch management in terms of the key fac-tors is hence very important for protecting river water environment.
基金supported by National Key Basic Research and Development Plan (973 Plan) of China (No. 2007CB310900)National Natural Science Foundation of China (No. 90612018, 90715030 and 60970008)
文摘This paper is a continuation of our last paper [1] which describes the theory of Virt-BLP model. Based on Virt-BLP model,this paper implements a mandatory access control(MAC) framework applicable to multi-level security(MLS) in Xen. The Virt-BLP model is the theoretical basis of this MAC framework,and this MAC framework is the implementation of Virt-BLP model. Our last paper focuses on Virt-BLP model,while this paper concentrates on the design and implementation of MAC framework. For there is no MAC framework applicable to MLS in virtual machine system at present,our MAC framework fills the blank by applying Virt-BLP model to Xen,which is better than current researches to guarantee the security of communication between virtual machines(VMs) . The experimental results show that our MAC framework is effective to manage the communication between VMs.
基金Supported by the National Natural Science Foundation of China(60574047)the National High Technology Research and Development Program of China(2007AA04Z168,2009AA04Z154)the Research Fund for the Doctoral Program of Higher Education in China(20050335018)
文摘In industrial processes,there exist faults that have complex effect on process variables.Complex and simple faults are defined according to their effect dimensions.The conventional approaches based on structured residuals cannot isolate complex faults.This paper presents a multi-level strategy for complex fault isolation.An extraction procedure is employed to reduce the complex faults to simple ones and assign them to several levels.On each level,faults are isolated by their different responses in the structured residuals.Each residual is obtained insensitive to one fault but more sensitive to others.The faults on different levels are verified to have different residual responses and will not be confused.An entire incidence matrix containing residual response characteristics of all faults is obtained,based on which faults can be isolated.The proposed method is applied in the Tennessee Eastman process example,and the effectiveness and advantage are demonstrated.