期刊文献+
共找到4,703篇文章
< 1 2 236 >
每页显示 20 50 100
An Expert System to Detect Political Arabic Articles Orientation Using CatBoost Classifier Boosted by Multi-Level Features
1
作者 Saad M.Darwish Abdul Rahman M.Sabri +1 位作者 Dhafar Hamed Abd Adel A.Elzoghabi 《Computer Systems Science & Engineering》 2024年第6期1595-1624,共30页
The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orient... The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orientation detection.Political articles(especially in the Arab world)are different from other articles due to their subjectivity,in which the author’s beliefs and political affiliation might have a significant influence on a political article.With categories representing the main political ideologies,this problem may be thought of as a subset of the text categorization(classification).In general,the performance of machine learning models for text classification is sensitive to hyperparameter settings.Furthermore,the feature vector used to represent a document must capture,to some extent,the complex semantics of natural language.To this end,this paper presents an intelligent system to detect political Arabic article orientation that adapts the categorical boosting(CatBoost)method combined with a multi-level feature concept.Extracting features at multiple levels can enhance the model’s ability to discriminate between different classes or patterns.Each level may capture different aspects of the input data,contributing to a more comprehensive representation.CatBoost,a robust and efficient gradient-boosting algorithm,is utilized to effectively learn and predict the complex relationships between these features and the political orientation labels associated with the articles.A dataset of political Arabic texts collected from diverse sources,including postings and articles,is used to assess the suggested technique.Conservative,reform,and revolutionary are the three subcategories of these opinions.The results of this study demonstrate that compared to other frequently used machine learning models for text classification,the CatBoost method using multi-level features performs better with an accuracy of 98.14%. 展开更多
关键词 Political articles orientation detection CatBoost classifier multi-level features context-based classification social networks machine learning stylometric features
下载PDF
Mesh representation matters:investigating the influence of different mesh features on perceptual and spatial fidelity of deep 3D morphable models
2
作者 Robert KOSK Richard SOUTHERN +3 位作者 Lihua YOU Shaojun BIAN Willem KOKKE Greg MAGUIRE 《虚拟现实与智能硬件(中英文)》 EI 2024年第5期383-395,共13页
Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition sys... Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods. 展开更多
关键词 Shape modelling deep 3D morphable models Representation learning feature engineering Perceptual metrics
下载PDF
Constitution identification model in traditional Chinese medicine based on multiple features
3
作者 XU Anying WANG Tianshu +7 位作者 YANG Tao HAN Xiao ZHANG Xiaoyu WANG Ziyan ZHANG Qi LI Xiao SHANG Hongcai HU Kongfa 《Digital Chinese Medicine》 CAS CSCD 2024年第2期108-119,共12页
Objective To construct a precise model for identifying traditional Chinese medicine(TCM)constitutions;thereby offering optimized guidance for clinical diagnosis and treatment plan-ning;and ultimately enhancing medical... Objective To construct a precise model for identifying traditional Chinese medicine(TCM)constitutions;thereby offering optimized guidance for clinical diagnosis and treatment plan-ning;and ultimately enhancing medical efficiency and treatment outcomes.Methods First;TCM full-body inspection data acquisition equipment was employed to col-lect full-body standing images of healthy people;from which the constitutions were labelled and defined in accordance with the Constitution in Chinese Medicine Questionnaire(CCMQ);and a dataset encompassing labelled constitutions was constructed.Second;heat-suppres-sion valve(HSV)color space and improved local binary patterns(LBP)algorithm were lever-aged for the extraction of features such as facial complexion and body shape.In addition;a dual-branch deep network was employed to collect deep features from the full-body standing images.Last;the random forest(RF)algorithm was utilized to learn the extracted multifea-tures;which were subsequently employed to establish a TCM constitution identification mod-el.Accuracy;precision;and F1 score were the three measures selected to assess the perfor-mance of the model.Results It was found that the accuracy;precision;and F1 score of the proposed model based on multifeatures for identifying TCM constitutions were 0.842;0.868;and 0.790;respectively.In comparison with the identification models that encompass a single feature;either a single facial complexion feature;a body shape feature;or deep features;the accuracy of the model that incorporating all the aforementioned features was elevated by 0.105;0.105;and 0.079;the precision increased by 0.164;0.164;and 0.211;and the F1 score rose by 0.071;0.071;and 0.084;respectively.Conclusion The research findings affirmed the viability of the proposed model;which incor-porated multifeatures;including the facial complexion feature;the body shape feature;and the deep feature.In addition;by employing the proposed model;the objectification and intel-ligence of identifying constitutions in TCM practices could be optimized. 展开更多
关键词 Traditional Chinese medicine(TCM) Constitution identification deep feature Facial complexion feature Body shape feature Multiple features
下载PDF
Olive Leaf Disease Detection via Wavelet Transform and Feature Fusion of Pre-Trained Deep Learning Models
4
作者 Mahmood A.Mahmood Khalaf Alsalem 《Computers, Materials & Continua》 SCIE EI 2024年第3期3431-3448,共18页
Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wa... Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wavelet,feature-fused,pre-trained deep learning model for detecting olive leaf diseases.The proposed model combines wavelet transforms with pre-trained deep-learning models to extract discriminative features from olive leaf images.The model has four main phases:preprocessing using data augmentation,three-level wavelet transformation,learning using pre-trained deep learning models,and a fused deep learning model.In the preprocessing phase,the image dataset is augmented using techniques such as resizing,rescaling,flipping,rotation,zooming,and contrasting.In wavelet transformation,the augmented images are decomposed into three frequency levels.Three pre-trained deep learning models,EfficientNet-B7,DenseNet-201,and ResNet-152-V2,are used in the learning phase.The models were trained using the approximate images of the third-level sub-band of the wavelet transform.In the fused phase,the fused model consists of a merge layer,three dense layers,and two dropout layers.The proposed model was evaluated using a dataset of images of healthy and infected olive leaves.It achieved an accuracy of 99.72%in the diagnosis of olive leaf diseases,which exceeds the accuracy of other methods reported in the literature.This finding suggests that our proposed method is a promising tool for the early detection of olive leaf diseases. 展开更多
关键词 Olive leaf diseases wavelet transform deep learning feature fusion
下载PDF
A Power Data Anomaly Detection Model Based on Deep Learning with Adaptive Feature Fusion
5
作者 Xiu Liu Liang Gu +3 位作者 Xin Gong Long An Xurui Gao Juying Wu 《Computers, Materials & Continua》 SCIE EI 2024年第6期4045-4061,共17页
With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve suffi... With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve sufficient extraction of data features,which seriously affects the accuracy and performance of anomaly detection.Therefore,this paper proposes a deep learning-based anomaly detection model for power data,which integrates a data alignment enhancement technique based on random sampling and an adaptive feature fusion method leveraging dimension reduction.Aiming at the distribution variability of power data,this paper developed a sliding window-based data adjustment method for this model,which solves the problem of high-dimensional feature noise and low-dimensional missing data.To address the problem of insufficient feature fusion,an adaptive feature fusion method based on feature dimension reduction and dictionary learning is proposed to improve the anomaly data detection accuracy of the model.In order to verify the effectiveness of the proposed method,we conducted effectiveness comparisons through elimination experiments.The experimental results show that compared with the traditional anomaly detection methods,the method proposed in this paper not only has an advantage in model accuracy,but also reduces the amount of parameter calculation of the model in the process of feature matching and improves the detection speed. 展开更多
关键词 Data alignment dimension reduction feature fusion data anomaly detection deep learning
下载PDF
Exploring Sequential Feature Selection in Deep Bi-LSTM Models for Speech Emotion Recognition
6
作者 Fatma Harby Mansor Alohali +1 位作者 Adel Thaljaoui Amira Samy Talaat 《Computers, Materials & Continua》 SCIE EI 2024年第2期2689-2719,共31页
Machine Learning(ML)algorithms play a pivotal role in Speech Emotion Recognition(SER),although they encounter a formidable obstacle in accurately discerning a speaker’s emotional state.The examination of the emotiona... Machine Learning(ML)algorithms play a pivotal role in Speech Emotion Recognition(SER),although they encounter a formidable obstacle in accurately discerning a speaker’s emotional state.The examination of the emotional states of speakers holds significant importance in a range of real-time applications,including but not limited to virtual reality,human-robot interaction,emergency centers,and human behavior assessment.Accurately identifying emotions in the SER process relies on extracting relevant information from audio inputs.Previous studies on SER have predominantly utilized short-time characteristics such as Mel Frequency Cepstral Coefficients(MFCCs)due to their ability to capture the periodic nature of audio signals effectively.Although these traits may improve their ability to perceive and interpret emotional depictions appropriately,MFCCS has some limitations.So this study aims to tackle the aforementioned issue by systematically picking multiple audio cues,enhancing the classifier model’s efficacy in accurately discerning human emotions.The utilized dataset is taken from the EMO-DB database,preprocessing input speech is done using a 2D Convolution Neural Network(CNN)involves applying convolutional operations to spectrograms as they afford a visual representation of the way the audio signal frequency content changes over time.The next step is the spectrogram data normalization which is crucial for Neural Network(NN)training as it aids in faster convergence.Then the five auditory features MFCCs,Chroma,Mel-Spectrogram,Contrast,and Tonnetz are extracted from the spectrogram sequentially.The attitude of feature selection is to retain only dominant features by excluding the irrelevant ones.In this paper,the Sequential Forward Selection(SFS)and Sequential Backward Selection(SBS)techniques were employed for multiple audio cues features selection.Finally,the feature sets composed from the hybrid feature extraction methods are fed into the deep Bidirectional Long Short Term Memory(Bi-LSTM)network to discern emotions.Since the deep Bi-LSTM can hierarchically learn complex features and increases model capacity by achieving more robust temporal modeling,it is more effective than a shallow Bi-LSTM in capturing the intricate tones of emotional content existent in speech signals.The effectiveness and resilience of the proposed SER model were evaluated by experiments,comparing it to state-of-the-art SER techniques.The results indicated that the model achieved accuracy rates of 90.92%,93%,and 92%over the Ryerson Audio-Visual Database of Emotional Speech and Song(RAVDESS),Berlin Database of Emotional Speech(EMO-DB),and The Interactive Emotional Dyadic Motion Capture(IEMOCAP)datasets,respectively.These findings signify a prominent enhancement in the ability to emotional depictions identification in speech,showcasing the potential of the proposed model in advancing the SER field. 展开更多
关键词 Artificial intelligence application multi features sequential selection speech emotion recognition deep Bi-LSTM
下载PDF
Deep learning CNN-APSO-LSSVM hybrid fusion model for feature optimization and gas-bearing prediction
7
作者 Jiu-Qiang Yang Nian-Tian Lin +3 位作者 Kai Zhang Yan Cui Chao Fu Dong Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2329-2344,共16页
Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the i... Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the input samples is particularly important.Commonly used feature optimization methods increase the interpretability of gas reservoirs;however,their steps are cumbersome,and the selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data efficiently.In contrast to CML methods,deep learning(DL)methods can directly extract the important features of targets from raw data.Therefore,this study proposes a feature optimization and gas-bearing prediction method based on a hybrid fusion model that combines a convolutional neural network(CNN)and an adaptive particle swarm optimization-least squares support vector machine(APSO-LSSVM).This model adopts an end-to-end algorithm structure to directly extract features from sensitive multicomponent seismic attributes,considerably simplifying the feature optimization.A CNN was used for feature optimization to highlight sensitive gas reservoir information.APSO-LSSVM was used to fully learn the relationship between the features extracted by the CNN to obtain the prediction results.The constructed hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature optimization and intelligent prediction,giving full play to the advantages of DL and CML methods.The prediction results obtained are better than those of a single CNN model or APSO-LSSVM model.In the feature optimization process of multicomponent seismic attribute data,CNN has demonstrated better gas reservoir feature extraction capabilities than commonly used attribute optimization methods.In the prediction process,the APSO-LSSVM model can learn the gas reservoir characteristics better than the LSSVM model and has a higher prediction accuracy.The constructed CNN-APSO-LSSVM model had lower errors and a better fit on the test dataset than the other individual models.This method proves the effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to combine DL and CML technologies to predict gas reservoirs. 展开更多
关键词 Multicomponent seismic data deep learning Adaptive particle swarm optimization Convolutional neural network Least squares support vector machine feature optimization Gas-bearing distribution prediction
下载PDF
Nonparametric Statistical Feature Scaling Based Quadratic Regressive Convolution Deep Neural Network for Software Fault Prediction
8
作者 Sureka Sivavelu Venkatesh Palanisamy 《Computers, Materials & Continua》 SCIE EI 2024年第3期3469-3487,共19页
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w... The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods. 展开更多
关键词 Software defect prediction feature selection nonparametric statistical Torgerson-Gower scaling technique quadratic censored regressive convolution deep neural network softstep activation function nelder-mead method
下载PDF
Deep Learning for Wind Speed Forecasting Using Bi-LSTM with Selected Features 被引量:1
9
作者 Siva Sankari Subbiah Senthil Kumar Paramasivan +2 位作者 Karmel Arockiasamy Saminathan Senthivel Muthamilselvan Thangavel 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3829-3844,共16页
Wind speed forecasting is important for wind energy forecasting.In the modern era,the increase in energy demand can be managed effectively by fore-casting the wind speed accurately.The main objective of this research ... Wind speed forecasting is important for wind energy forecasting.In the modern era,the increase in energy demand can be managed effectively by fore-casting the wind speed accurately.The main objective of this research is to improve the performance of wind speed forecasting by handling uncertainty,the curse of dimensionality,overfitting and non-linearity issues.The curse of dimensionality and overfitting issues are handled by using Boruta feature selec-tion.The uncertainty and the non-linearity issues are addressed by using the deep learning based Bi-directional Long Short Term Memory(Bi-LSTM).In this paper,Bi-LSTM with Boruta feature selection named BFS-Bi-LSTM is proposed to improve the performance of wind speed forecasting.The model identifies relevant features for wind speed forecasting from the meteorological features using Boruta wrapper feature selection(BFS).Followed by Bi-LSTM predicts the wind speed by considering the wind speed from the past and future time steps.The proposed BFS-Bi-LSTM model is compared against Multilayer perceptron(MLP),MLP with Boruta(BFS-MLP),Long Short Term Memory(LSTM),LSTM with Boruta(BFS-LSTM)and Bi-LSTM in terms of Root Mean Square Error(RMSE),Mean Absolute Error(MAE),Mean Square Error(MSE)and R2.The BFS-Bi-LSTM surpassed other models by producing RMSE of 0.784,MAE of 0.530,MSE of 0.615 and R2 of 0.8766.The experimental result shows that the BFS-Bi-LSTM produced better forecasting results compared to others. 展开更多
关键词 Bi-directional long short term memory boruta feature selection deep learning machine learning wind speed forecasting
下载PDF
A Framework of Deep Optimal Features Selection for Apple Leaf Diseases Recognition
10
作者 Samra Rehman Muhammad Attique Khan +5 位作者 Majed Alhaisoni Ammar Armghan Usman Tariq Fayadh Alenezi Ye Jin Kim Byoungchol Chang 《Computers, Materials & Continua》 SCIE EI 2023年第4期697-714,共18页
Identifying fruit disease manually is time-consuming, expertrequired,and expensive;thus, a computer-based automated system is widelyrequired. Fruit diseases affect not only the quality but also the quantity.As a resul... Identifying fruit disease manually is time-consuming, expertrequired,and expensive;thus, a computer-based automated system is widelyrequired. Fruit diseases affect not only the quality but also the quantity.As a result, it is possible to detect the disease early on and cure the fruitsusing computer-based techniques. However, computer-based methods faceseveral challenges, including low contrast, a lack of dataset for training amodel, and inappropriate feature extraction for final classification. In thispaper, we proposed an automated framework for detecting apple fruit leafdiseases usingCNNand a hybrid optimization algorithm. Data augmentationis performed initially to balance the selected apple dataset. After that, twopre-trained deep models are fine-tuning and trained using transfer learning.Then, a fusion technique is proposed named Parallel Correlation Threshold(PCT). The fused feature vector is optimized in the next step using a hybridoptimization algorithm. The selected features are finally classified usingmachine learning algorithms. Four different experiments have been carriedout on the augmented Plant Village dataset and yielded the best accuracy of99.8%. The accuracy of the proposed framework is also compared to that ofseveral neural nets, and it outperforms them all. 展开更多
关键词 Convolutional neural networks deep learning features fusion features optimization CLASSIFICATION
下载PDF
HRNetO:Human Action Recognition Using Unified Deep Features Optimization Framework
11
作者 Tehseen Ahsan Sohail Khalid +3 位作者 Shaheryar Najam Muhammad Attique Khan Ye Jin Kim Byoungchol Chang 《Computers, Materials & Continua》 SCIE EI 2023年第4期1089-1105,共17页
Human action recognition(HAR)attempts to understand a subject’sbehavior and assign a label to each action performed.It is more appealingbecause it has a wide range of applications in computer vision,such asvideo surv... Human action recognition(HAR)attempts to understand a subject’sbehavior and assign a label to each action performed.It is more appealingbecause it has a wide range of applications in computer vision,such asvideo surveillance and smart cities.Many attempts have been made in theliterature to develop an effective and robust framework for HAR.Still,theprocess remains difficult and may result in reduced accuracy due to severalchallenges,such as similarity among actions,extraction of essential features,and reduction of irrelevant features.In this work,we proposed an end-toendframework using deep learning and an improved tree seed optimizationalgorithm for accurate HAR.The proposed design consists of a fewsignificantsteps.In the first step,frame preprocessing is performed.In the second step,two pre-trained deep learning models are fine-tuned and trained throughdeep transfer learning using preprocessed video frames.In the next step,deeplearning features of both fine-tuned models are fused using a new ParallelStandard Deviation Padding Max Value approach.The fused features arefurther optimized using an improved tree seed algorithm,and select the bestfeatures are finally classified by using the machine learning classifiers.Theexperiment was carried out on five publicly available datasets,including UTInteraction,Weizmann,KTH,Hollywood,and IXAMS,and achieved higheraccuracy than previous techniques. 展开更多
关键词 Action recognition features fusion deep learning features selection
下载PDF
Human Gait Recognition Based on Sequential Deep Learning and Best Features Selection
12
作者 Ch Avais Hanif Muhammad Ali Mughal +3 位作者 Muhammad Attique Khan Usman Tariq Ye Jin Kim Jae-Hyuk Cha 《Computers, Materials & Continua》 SCIE EI 2023年第6期5123-5140,共18页
Gait recognition is an active research area that uses a walking theme to identify the subject correctly.Human Gait Recognition(HGR)is performed without any cooperation from the individual.However,in practice,it remain... Gait recognition is an active research area that uses a walking theme to identify the subject correctly.Human Gait Recognition(HGR)is performed without any cooperation from the individual.However,in practice,it remains a challenging task under diverse walking sequences due to the covariant factors such as normal walking and walking with wearing a coat.Researchers,over the years,have worked on successfully identifying subjects using different techniques,but there is still room for improvement in accuracy due to these covariant factors.This paper proposes an automated model-free framework for human gait recognition in this article.There are a few critical steps in the proposed method.Firstly,optical flow-based motion region esti-mation and dynamic coordinates-based cropping are performed.The second step involves training a fine-tuned pre-trained MobileNetV2 model on both original and optical flow cropped frames;the training has been conducted using static hyperparameters.The third step proposed a fusion technique known as normal distribution serially fusion.In the fourth step,a better optimization algorithm is applied to select the best features,which are then classified using a Bi-Layered neural network.Three publicly available datasets,CASIA A,CASIA B,and CASIA C,were used in the experimental process and obtained average accuracies of 99.6%,91.6%,and 95.02%,respectively.The proposed framework has achieved improved accuracy compared to the other methods. 展开更多
关键词 Human gait recognition optical flow deep learning features FUSION feature selection
下载PDF
GaitDONet: Gait Recognition Using Deep Features Optimization and Neural Network
13
作者 Muhammad Attique Khan Awais Khan +6 位作者 Majed Alhaisoni Abdullah Alqahtani Ammar Armghan Sara A.Althubiti Fayadh Alenezi Senghour Mey Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2023年第6期5087-5103,共17页
Human gait recognition(HGR)is the process of identifying a sub-ject(human)based on their walking pattern.Each subject is a unique walking pattern and cannot be simulated by other subjects.But,gait recognition is not e... Human gait recognition(HGR)is the process of identifying a sub-ject(human)based on their walking pattern.Each subject is a unique walking pattern and cannot be simulated by other subjects.But,gait recognition is not easy and makes the system difficult if any object is carried by a subject,such as a bag or coat.This article proposes an automated architecture based on deep features optimization for HGR.To our knowledge,it is the first architecture in which features are fused using multiset canonical correlation analysis(MCCA).In the proposed method,original video frames are processed for all 11 selected angles of the CASIA B dataset and utilized to train two fine-tuned deep learning models such as Squeezenet and Efficientnet.Deep transfer learning was used to train both fine-tuned models on selected angles,yielding two new targeted models that were later used for feature engineering.Features are extracted from the deep layer of both fine-tuned models and fused into one vector using MCCA.An improved manta ray foraging optimization algorithm is also proposed to select the best features from the fused feature matrix and classified using a narrow neural network classifier.The experimental process was conducted on all 11 angles of the large multi-view gait dataset(CASIA B)dataset and obtained improved accuracy than the state-of-the-art techniques.Moreover,a detailed confidence interval based analysis also shows the effectiveness of the proposed architecture for HGR. 展开更多
关键词 Human gait recognition BIOMETRIC deep learning features fusion OPTIMIZATION neural network
下载PDF
Deep-Net:Fine-Tuned Deep Neural Network Multi-Features Fusion for Brain Tumor Recognition
14
作者 Muhammad Attique Khan Reham R.Mostafa +6 位作者 Yu-Dong Zhang Jamel Baili Majed Alhaisoni Usman Tariq Junaid Ali Khan Ye Jin Kim Jaehyuk Cha 《Computers, Materials & Continua》 SCIE EI 2023年第9期3029-3047,共19页
Manual diagnosis of brain tumors usingmagnetic resonance images(MRI)is a hectic process and time-consuming.Also,it always requires an expert person for the diagnosis.Therefore,many computer-controlled methods for diag... Manual diagnosis of brain tumors usingmagnetic resonance images(MRI)is a hectic process and time-consuming.Also,it always requires an expert person for the diagnosis.Therefore,many computer-controlled methods for diagnosing and classifying brain tumors have been introduced in the literature.This paper proposes a novel multimodal brain tumor classification framework based on two-way deep learning feature extraction and a hybrid feature optimization algorithm.NasNet-Mobile,a pre-trained deep learning model,has been fine-tuned and twoway trained on original and enhancedMRI images.The haze-convolutional neural network(haze-CNN)approach is developed and employed on the original images for contrast enhancement.Next,transfer learning(TL)is utilized for training two-way fine-tuned models and extracting feature vectors from the global average pooling layer.Then,using a multiset canonical correlation analysis(CCA)method,features of both deep learning models are fused into a single feature matrix—this technique aims to enhance the information in terms of features for better classification.Although the information was increased,computational time also jumped.This issue is resolved using a hybrid feature optimization algorithm that chooses the best classification features.The experiments were done on two publicly available datasets—BraTs2018 and BraTs2019—and yielded accuracy rates of 94.8%and 95.7%,respectively.The proposedmethod is comparedwith several recent studies andoutperformed inaccuracy.In addition,we analyze the performance of each middle step of the proposed approach and find the selection technique strengthens the proposed framework. 展开更多
关键词 Brain tumor haze contrast enhancement deep learning transfer learning features optimization
下载PDF
An Automated Classification Technique for COVID-19 Using Optimized Deep Learning Features
15
作者 Ejaz Khan Muhammad Zia Ur Rehman +3 位作者 Fawad Ahmed Suliman A.Alsuhibany Muhammad Zulfiqar Ali Jawad Ahmad 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3799-3814,共16页
In 2020,COVID-19 started spreading throughout the world.This deadly infection was identified as a virus that may affect the lungs and,in severe cases,could be the cause of death.The polymerase chain reaction(PCR)test ... In 2020,COVID-19 started spreading throughout the world.This deadly infection was identified as a virus that may affect the lungs and,in severe cases,could be the cause of death.The polymerase chain reaction(PCR)test is commonly used to detect this virus through the nasal passage or throat.However,the PCR test exposes health workers to this deadly virus.To limit human exposure while detecting COVID-19,image processing techniques using deep learning have been successfully applied.In this paper,a strategy based on deep learning is employed to classify the COVID-19 virus.To extract features,two deep learning models have been used,the DenseNet201 and the SqueezeNet.Transfer learning is used in feature extraction,and models are fine-tuned.A publicly available computerized tomography(CT)scan dataset has been used in this study.The extracted features from the deep learning models are optimized using the Ant Colony Optimization algorithm.The proposed technique is validated through multiple evaluation parameters.Several classifiers have been employed to classify the optimized features.The cubic support vector machine(Cubic SVM)classifier shows superiority over other commonly used classifiers and attained an accuracy of 98.72%.The proposed technique achieves state-of-the-art accuracy,a sensitivity of 98.80%,and a specificity of 96.64%. 展开更多
关键词 CT scans COVID-19 classification deep learning feature optimization
下载PDF
A Novel Handcrafted with Deep Features Based Brain Tumor Diagnosis Model
16
作者 Abdul Rahaman Wahab Sait Mohamad Khairi Ishak 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2057-2070,共14页
In healthcare sector,image classification is one of the crucial problems that impact the quality output from image processing domain.The purpose of image classification is to categorize different healthcare images under... In healthcare sector,image classification is one of the crucial problems that impact the quality output from image processing domain.The purpose of image classification is to categorize different healthcare images under various class labels which in turn helps in the detection and management of diseases.Magnetic Resonance Imaging(MRI)is one of the effective non-invasive strate-gies that generate a huge and distinct number of tissue contrasts in every imaging modality.This technique is commonly utilized by healthcare professionals for Brain Tumor(BT)diagnosis.With recent advancements in Machine Learning(ML)and Deep Learning(DL)models,it is possible to detect the tumor from images automatically,using a computer-aided design.The current study focuses on the design of automated Deep Learning-based BT Detection and Classification model using MRI images(DLBTDC-MRI).The proposed DLBTDC-MRI techni-que aims at detecting and classifying different stages of BT.The proposed DLBTDC-MRI technique involves medianfiltering technique to remove the noise and enhance the quality of MRI images.Besides,morphological operations-based image segmentation approach is also applied to determine the BT-affected regions in brain MRI image.Moreover,a fusion of handcrafted deep features using VGGNet is utilized to derive a valuable set of feature vectors.Finally,Artificial Fish Swarm Optimization(AFSO)with Artificial Neural Network(ANN)model is utilized as a classifier to decide the presence of BT.In order to assess the enhanced BT classification performance of the proposed model,a comprehensive set of simulations was performed on benchmark dataset and the results were vali-dated under several measures. 展开更多
关键词 Brain tumor medical imaging image classification handcrafted features deep learning parameter optimization
下载PDF
Deepfake Video Detection Employing Human Facial Features
17
作者 Daniel Schilling Weiss Nguyen Desmond T. Ademiluyi 《Journal of Computer and Communications》 2023年第12期1-13,共13页
Deepfake technology can be used to replace people’s faces in videos or pictures to show them saying or doing things they never said or did. Deepfake media are often used to extort, defame, and manipulate public opini... Deepfake technology can be used to replace people’s faces in videos or pictures to show them saying or doing things they never said or did. Deepfake media are often used to extort, defame, and manipulate public opinion. However, despite deepfake technology’s risks, current deepfake detection methods lack generalization and are inconsistent when applied to unknown videos, i.e., videos on which they have not been trained. The purpose of this study is to develop a generalizable deepfake detection model by training convoluted neural networks (CNNs) to classify human facial features in videos. The study formulated the research questions: “How effectively does the developed model provide reliable generalizations?” A CNN model was trained to distinguish between real and fake videos using the facial features of human subjects in videos. The model was trained, validated, and tested using the FaceForensiq++ dataset, which contains more than 500,000 frames and subsets of the DFDC dataset, totaling more than 22,000 videos. The study demonstrated high generalizability, as the accuracy of the unknown dataset was only marginally (about 1%) lower than that of the known dataset. The findings of this study indicate that detection systems can be more generalizable, lighter, and faster by focusing on just a small region (the human face) of an entire video. 展开更多
关键词 Artificial Intelligence Convoluted Neural Networks deepfake GANs GENERALIZATION deep Learning Facial features Video Frames
下载PDF
基于改进DeeplabV3+的水面多类型漂浮物分割方法研究
18
作者 包学才 刘飞燕 +2 位作者 聂菊根 许小华 柯华盛 《水利水电技术(中英文)》 北大核心 2024年第4期163-175,共13页
【目的】为解决传统图像处理方法鲁棒性差、常用深度学习检测方法无法准确识别大片漂浮物的边界等问题,【方法】提出一种基于改进DeeplabV3+的水面多类型漂浮物识别的语义分割方法,提高水面漂浮的识别能力。对所收集实际水面漂浮物进行... 【目的】为解决传统图像处理方法鲁棒性差、常用深度学习检测方法无法准确识别大片漂浮物的边界等问题,【方法】提出一种基于改进DeeplabV3+的水面多类型漂浮物识别的语义分割方法,提高水面漂浮的识别能力。对所收集实际水面漂浮物进行分类,采用自制数据集进行对比试验。算法选择xception网络作为主干网络以获得初步漂浮物特征,在加强特征提取网络部分引入注意力机制以强调有效特征信息,在后处理阶段加入全连接条件随机场模型,将单个像素点的局部信息与全局语义信息融合。【结果】对比图像分割性能指标,改进后的算法mPA(Mean Pixel Accuracy)提升了5.73%,mIOU(Mean Intersection Over Union)提升了4.37%。【结论】相比于其他算法模型,改进后的DeeplabV3+算法对漂浮物特征的获取能力更强,同时能获得丰富的细节信息以更精准地识别多类型水面漂浮物的边界与较难分类的漂浮物,在对多个水库场景测试后满足实际水域环境中漂浮物检测的需求。 展开更多
关键词 深度学习 语义分割 特征提取 漂浮物识别 注意力机制 全连接条件随机场 算法模型 影响因素
下载PDF
Deep reinforcement learning based multi-level dynamic reconfiguration for urban distribution network:a cloud-edge collaboration architecture 被引量:1
19
作者 Siyuan Jiang Hongjun Gao +2 位作者 Xiaohui Wang Junyong Liu Kunyu Zuo 《Global Energy Interconnection》 EI CAS CSCD 2023年第1期1-14,共14页
With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provi... With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provides reliable support for reconfiguration optimization in urban distribution networks.Thus,this study proposed a deep reinforcement learning based multi-level dynamic reconfiguration method for urban distribution networks in a cloud-edge collaboration architecture to obtain a real-time optimal multi-level dynamic reconfiguration solution.First,the multi-level dynamic reconfiguration method was discussed,which included feeder-,transformer-,and substation-levels.Subsequently,the multi-agent system was combined with the cloud-edge collaboration architecture to build a deep reinforcement learning model for multi-level dynamic reconfiguration in an urban distribution network.The cloud-edge collaboration architecture can effectively support the multi-agent system to conduct“centralized training and decentralized execution”operation modes and improve the learning efficiency of the model.Thereafter,for a multi-agent system,this study adopted a combination of offline and online learning to endow the model with the ability to realize automatic optimization and updation of the strategy.In the offline learning phase,a Q-learning-based multi-agent conservative Q-learning(MACQL)algorithm was proposed to stabilize the learning results and reduce the risk of the next online learning phase.In the online learning phase,a multi-agent deep deterministic policy gradient(MADDPG)algorithm based on policy gradients was proposed to explore the action space and update the experience pool.Finally,the effectiveness of the proposed method was verified through a simulation analysis of a real-world 445-node system. 展开更多
关键词 Cloud-edge collaboration architecture Multi-agent deep reinforcement learning multi-level dynamic reconfiguration Offline learning Online learning
下载PDF
Soft Tissue Feature Tracking Based on Deep Matching Network 被引量:1
20
作者 Siyu Lu Shan Liu +4 位作者 Pengfei Hou Bo Yang Mingzhe Liu Lirong Yin Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期363-379,共17页
Research in the field ofmedical image is an important part of themedical robot to operate human organs.Amedical robot is the intersection ofmulti-disciplinary research fields,in whichmedical image is an important dire... Research in the field ofmedical image is an important part of themedical robot to operate human organs.Amedical robot is the intersection ofmulti-disciplinary research fields,in whichmedical image is an important direction and has achieved fruitful results.In this paper,amethodof soft tissue surface feature tracking basedonadepthmatching network is proposed.This method is described based on the triangular matching algorithm.First,we construct a self-made sample set for training the depth matching network from the first N frames of speckle matching data obtained by the triangle matching algorithm.The depth matching network is pre-trained on the ORL face data set and then trained on the self-made training set.After the training,the speckle matching is carried out in the subsequent frames to obtain the speckle matching matrix between the subsequent frames and the first frame.From this matrix,the inter-frame feature matching results can be obtained.In this way,the inter-frame speckle tracking is completed.On this basis,the results of this method are compared with the matching results based on the convolutional neural network.The experimental results show that the proposed method has higher matching accuracy.In particular,the accuracy of the MNIST handwritten data set has reached more than 90%. 展开更多
关键词 Soft tissue feature tracking deep matching network
下载PDF
上一页 1 2 236 下一页 到第
使用帮助 返回顶部